最新高中数学导数专题讲义(答案版)

最新高中数学导数专题讲义(答案版)
最新高中数学导数专题讲义(答案版)

导数专题讲座内容汇总

目录

导数专题一、单调性问题 (2)

导数专题二、极值问题 (38)

导数专题三、最值问题 (52)

导数专题四、零点问题 (76)

导数专题五、恒成立问题和存在性问题 (118)

导数专题六、渐近线和间断点问题 (168)

导数专题七、特殊值法判定超越函数的零点问题 (187)

导数专题八、避免分类讨论的参变分离和变换主元 (198)

导数专题九、公切线解决导数中零点问题 (211)

导数专题十、极值点偏移问题 (216)

导数专题十一、构造函数解决导数问题 (224)

导数专题一、单调性问题

【知识结构】

【知识点】

一、导函数代数意义:利用导函数的正负来判断原函数单调性;

二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论,讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤:

第一步、求函数的定义域、求导,并求导函数零点;

第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与区间的位置关系(分类讨论);

第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域); 第四步、(列表)根据第五步的草图列出()'f x ,()f x 随x 变化的情况表,并写出函数的单调区间;

第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数值比较得到函数的最值.

四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系;

4.根与定义域端点讨论等。

五、求解函数单调性问题的思路:

(1)已知函数在区间上单调递增或单调递减,转化为或恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参变量的范围;

(3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于零有解.

六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离;

(2)导函数的根与区间端点直接比较;

()0f x '≥()0f x '≤

(3)导函数主要部分为一元二次时,转化为二次函数根的分布问题.这里讨论的以一元二次为主。

七、求解函数单调性问题方法提炼:

(1)将函数单调增(减)转化为导函数恒成立;

(2),由(或)可将恒成立转化为

(或)恒成立;

(3)由“分离参数法”或“分类讨论”,解得参数取值范围。

()f x ()()0f x '≥≤()()()f x g x h x '=()0g x >()0g x <()()0f x '≥≤()()0h x ≥≤()()0h x ≤≥

【考点分类】

考点一、分类讨论求解函数单调性;

【例1-1】(2015-2016朝阳一模理18)已知函数. (Ⅰ)求函数的单调区间;

(Ⅱ)当时,都有成立,求的取值范围;

(Ⅲ)试问过点可作多少条直线与曲线相切?并说明理由. 【答案】(Ⅰ)函数的定义域为.. (1)当时,恒成立,函数在上单调递增; (2)当时, 令,得. 当时,,函数为减函数; 当时,,函数为增函数.

综上所述,当时,函数的单调递增区间为.

当时,函数的单调递减区间为,单调递增区间为. (Ⅱ)由(Ⅰ)可知,(1)当时,即时,函数在区间上为增函数, 所以在区间上,,显然函数在区间上恒大于零;

(2)当时,即时,函数在上为减函数,在上为增函数,所以.

依题意有,解得,所以. (3)当时,即时,在区间上为减函数, 所以.

依题意有,解得,所以. ()f x =ln ,x a x a +∈R ()f x []1,2x ∈()0f x >a (1

3)P ,()y f x =()f x {}

0x x >()1a x a

f x x x

+'=+

=0a ≥()0f x '>()f x (0,)+∞0a <()0f x '=x a =-0x a <<-()0f x '<()f x x a >-()0f x '>()f x 0a ≥()f x (0,)+∞0a <()f x (0,)a -(+)a -∞,

1a -≤1a ≥-()f x []1,2[]1,2min ()(1)1f x f ==()f x []1,212a <-<21a -<<-()f x [)1

a -,(],2a -min ()()ln()f x f a a a a =-=-+-min ()ln()0f x a a a =-+->e a >-21a -<<-2a -≥2a ≤-()f x []1,2min ()(2)2+ln 2f x f a ==min ()2+ln 20f x a =>2ln 2a >-

2

2ln 2

a -

<≤-

综上所述,当时,函数在区间上恒大于零. (Ⅲ)设切点为

,则切线斜率, 切线方程为. 因为切线过点,则. 即. ………………① 令 ,则 . (1)当时,在区间上,, 单调递增;

在区间上,,单调递减, 所以函数的最大值为. 故方程无解,即不存在满足①式. 因此当时,切线的条数为.

(2)当时, 在区间上,,单调递减,

在区间上,,单调递增, 所以函数的最小值为.

取,则.

故在上存在唯一零点.

取,则. 设,,则. 2

ln 2

a >-

()f x []1,2000,ln )x x a x +(0

1a k x =+0000

(ln )(1)()a

y x a x x x x -+=+

-(1,3)P 0000

3(ln )(1)(1)a

x a x x x -+=+

-00

1

(ln 1)20a x x +

--=1()(ln 1)2g x a x x =+

--(0)x >2211(1)()()a x g x a x x x

-'=-=0a <(0,1)()0g x '>()g x (1,)+∞()0g x '<()g x ()g x (1)20g =-<()0g x =0x 0a <00a >(0,1)()0g x '<()g x (1,)+∞()0g x '>()g x ()g x (1)20g =-<2

1+1e

e a

x =>22

1112()(1e 1)2e 0a

a g x a a a

----=++--=>()g x (1,)+∞2-1-21e

x =221122()(1e 1)2e 24a a g x a a a a ++=--+--=--2

12

[e 2(1)]a a a

+=-+21(1)t t a

=+

>()e 2t u t t =-()e 2t

u t '=-

当时,恒成立.

所以在单调递增,恒成立.所以. 故在上存在唯一零点.

因此当时,过点P 存在两条切线. (3)当时,,显然不存在过点P 的切线. 综上所述,当时,过点P 存在两条切线; 当时,不存在过点P 的切线. 【例1-2】(2015-2016海淀一模理18)已知函数,. (Ⅰ)求函数的最小值; (Ⅱ)求函数的单调区间;

(Ⅲ) 求证:直线不是曲线的切线.

【答案】(Ⅰ)函数的定义域为,

当变化时,,的变化情况如下表:

函数在上的极小值为, 所以的最小值为 (Ⅱ)解:函数的定义域为,

由(Ⅰ)得,,所以

1t >()e 2e 20t

u t '=->->()u t (1,)+∞()(1)e 20u t u >=->2()0g x >()g x (0,1)0a >(1

3),0a =()f x x =(1

3),0a >(13),0a ≤(1

3),1()ln 1f x x x =+-1

()ln x g x x

-=()f x ()g x y x =()y g x =()f x (0,)+∞22111

'()x f x x x x -=

-=x '()f x ()f x ()f x (,)+∞01()ln1101

f a =+-=()f x 0()

g x (0,1)(1,)+∞U 22211

ln (1)

ln 1

()'()ln ln ln x x x f x x x g x x

x x

--+-=

==()0f x ≥'()0

g x ≥

所以的单调增区间是,无单调减区间. (Ⅲ)证明:假设直线是曲线的切线.

设切点为,则,即

又,则. 所以, 得,与 矛盾 所以假设不成立,直线不是曲线

的切线

【练1-1】(2015-2016西城一模理18)已知函数1()x x f x xe ae -=-,且'(1)f e =. (Ⅰ) 求a 的值及()f x 的单调区间;

(Ⅱ) 若关于x 的方程2()2(2)f x kx k =->存在两个不相等的正实数根12,x x ,证明:

124

ln x x e

->.

【答案】(Ⅰ)对()f x 求导,得1()(1)e e x x f x x a -'=+-, 所以(1)2e e f a '=-=,解得e a =. 故()e e x x f x x =-,()e x f x x '=. 令()0f x '=,得0x =.

当x 变化时,()f x '与()f x 的变化情况如下表所示:

所以函数 (Ⅱ)解:方程2()2f x kx =-,即为2(1)e 20x x kx --+=,

设函数2()(1)e 2x g x x kx =--+. 求导,得()e 2(e 2)x x g x x kx x k '=-=-.

由()0g x '=,解得0x =,或ln(2)x k =. 所以当(0,)x ∈+∞变化时,()g x '与()g x 的变化情况如下表所示:

()g x (0,1),(1,)+∞y x =()g x 00(,)x y 0'()1g x =00

20

1ln 11ln x x x +

-=000001,ln x y y x x -=

=000

1

ln x x x -=0000

11

ln 1x x x x -=

=-0'()0g x =0'()1g x =y x =()g x

在单调递减,在上单调递增 由2k >,得ln(2)ln 41k >>.

又因为(1)20g k =-+<, 所以(ln(2))0g k <.

不妨设12x x <(其中12,x x 为2()2f x kx =-的两个正实数根),

因为函数()g x 在(0,ln 2)k 单调递减,且(0)10g =>,(1)20g k =-+<,

所以101x <<. 同理根据函数()g x 在(ln 2,)k +∞上单调递增,且(ln(2))0g k <, 可得2ln(2)ln 4x k >>,

所以12214||ln 41ln e

x x x x -=->-=,

即 124

||ln e

x x ->.

【练1-2】(2011-2012石景山一模文18)已知函数. (Ⅰ)若函数的图象在处的切线斜率为,求实数的值; (Ⅱ)求函数的单调区间; (Ⅲ)若函数在上是减函数,求实数的取值范围. 【答案】(Ⅰ)2222'()2a x a f x x x x

+=+= …………1分

由已知'(2)1f =,解得3a =-. …………3分

(II )函数()f x 的定义域为(0,)+∞.

(1)当0a ≥时, '()0f x >,()f x 的单调递增区间为(0,)+∞;……5分

(2)当0a <时'()f x =

.

当x 变化时,'(),()f x f x 的变化情况如下:

2

()2ln f x x a x =+()f x (2,(2))f 1a ()f x 2

()()g x f x x

=

+[1,2]a

由上表可知,函数()f x 的单调递减区间是;

单调递增区间是)+∞. …………8分 (II )由22()2ln g x x a x x =

++得222'()2a

g x x x x

=-++,…………9分 由已知函数()g x 为[1,2]上的单调减函数,

则'()0g x ≤在[1,2]上恒成立,

即22220a x x x -

++≤在[1,2]上恒成立. 即2

1a x x

-在[1,2]上恒成立. …………11分

令21()h x x x =

-,在[1,2]上2211

'()2(2)0h x x x x x

=--=-+<, 所以()h x 在[1,2]为减函数. min

7

()

(2)2

h x h ==-, 所以7

2

a ≤-

. …………14分 【练1-3】(2015-2016朝阳期末文19)已知函数()(21)ln 2k

f x k x x x

=-++,k ∈R . (Ⅰ)当1k =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)当e k =时,试判断函数()f x 是否存在零点,并说明理由; (Ⅲ)求函数()f x 的单调区间.

【答案】函数()f x 的定义域:),0(+∞∈x .

2

222)

12)(()12(2212)(x x k x x k x k x x k x k x f -+=--+=+--='.

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

导数讲义终极版

导数目录 【导数的计算与几何意义】 【三次函数】 【导数与单调性】 【导数与极最值】 【导数与零点】 【导数中的恒成立与存在性问题】 【原函数导函数混合还原】 【导数中的距离问题】 【导数题基础练习】 【分离参数】 【构造新函数类】 【导数中的函数不等式放缩】 【导数中的卡根思想 【可使用洛必达法则】 【先构造,再赋值,证明和式或积式不等式】 【极值点偏移问题】 【极值点减元思想】 【导数解决含有x ln与x e的证明题】 【导数解决含三角函数的证明】 【高考导数真题研究】

[基础知识整合] 1、导数的定义:,)()(lim )(000 0x x f x x f x f x ?-?+='→? x x f x x f x f x ?-?+='→?) ()(lim )(0 2、导数的几何意义: 导数值)(0x f '是曲线)(x f y =上点))(,(00x f x 处的切线的斜率 3、常见函数的导数: ;sin )(cos ;cos )(sin );()(;01x x x x Q n nx x C n n -='='∈='='- ;)(;log 1 )(log ;1)(ln x x a a e e e x x x x ='='= ' ;ln )(a a a x x =' 4、导数的四则运算:[])()(;)(;)(;)(2 x u k x ku v u v v u v u u v v u uv v u v u '=' '+'=''+'=''±'='±; 5、复合函数的导数:[])()())((x u f x f ??'?'=' 6、导函数与单调性: 求增区间,解0)(>'x f ; 求减区间,解0)(<'x f 若函数)(x f 在区间),(b a 上是增函数0)(≥'?x f 在),(b a 上恒成立; 若函数)(x f 在区间),(b a 上是减函数0)(≤'?x f 在),(b a 上恒成立; 若函数)(x f 在区间),(b a 上存在增区间0)(>'?x f 在),(b a 上成立; 若函数)(x f 在区间),(b a 上存在减区间0)(<'?x f 在),(b a 上成立. 7、导函数与极最值: 确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题: 强化变形技巧、巧妙构造函数、一定要多记题型,总结方法

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高中数学导数经典100题

题401:省峨山彝族自治县第一中学2018届高三2月份月考理科 已知函数()ln f x ax x =+,其中a 为常数,e 为自然对数的底数. (1)若()f x 在区间(0,]e 上的最大值为3-,求a 的值; (2)当1a =-时,判断方程ln 1|()|2x f x x = +是否有实根?若无实根请说明理由,若有实根请给出根的个数. 题402:2018年普通高等学校招生全国统一考试仿真卷-(理六) 已知()ln()f x x m mx =+- (1)求()f x 的单调区间; (2)设1m >,12,x x 为函数()f x 的两个零点,求证:120x x +< 题403:省实验中学2018届高三上学期第六次月考数学(文) 已知函数2()ln (0)f x x a x a =-> (1)讨论函数()f x 在(,)a +∞上的单调性; (2)证明:322ln x x x x -≥且322ln 16200x x x x --+> 题404:西北师大附中2017届高三校第二次诊断考试试题数学(理科) 已知函数21()ln (1)..2 f x a x x a x a R =+-+∈ (1)求函数()f x 的单调区间; (2)若()0f x ≥对定义域的任意x 恒成立,数a 的取值围; (3)证明:对于任意正整数,,m n 不等式 111...ln(1)ln(2)ln()() n m m m n m m n +++>++++恒成立.

题405:一中2017-2018学年度高三年级第五次月考 数学(理)试 已知函数3()ln(1)ln(1)(3)()f x x x k x x k R =++---∈ (1)当3k =时,求曲线()y f x =在原点处的切线方程; (2)若()0f x >对(0,1)x ∈恒成立,求k 的取值围. 题406:第一中学2018届高三上学期期末考试数学(理) 已知函数()ln 1,a f x x a R x =+-∈ (1)若函数()f x 的最小值为0,求a 的值; (2)证明:(ln 1)sin 0x e x x +-> 题407:2017—2018学年度衡中七调理科数学 已知函数1()x f x e a -=+,函数()ln ,g x ax x a R =+∈ (1)求函数()y g x =的单调区间; (2)若不等式()()1f x g x ≥+在区间[1,)+∞恒成立,数a 的取值围 (3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高中数学导数练习题(有答案)

导数练习题(含答案) 【编著】黄勇权 一、求下函数的导数 (1)f (x )=2x 2+3x+2 (2)f (x )=3sinx+7x 2 (3)f (x )=lnx+2x (4)f (x )=2x +6x (5)f (x )=4cosx -7 (6)f (x )=7e x +9x (7)f (x )=x 3+4x 2+6 (8)f (x )=2sinx -4cosx (9)f (x )=log2x (10)f (x )= x 1 (11)f (x )=lnx+3e x (12)f (x )=2x x (13)f (x )=sinx 2 (14)f (x )=ln (2x 2+6x ) (15)f (x )=x 1x 3x 2++ (16)f (x )=xlnx+9x (17)f (x )= x sinx lnx + (18)f (x )=tanx (19)f (x )=x x e 1e 1-+ (20) f (x )=(x 2-x )3 【答案】 一、求下函数的导数 (1)f /=4x+3 (2)f /=3cos+14x (3)f /=x 1+2 (4)f /=2x ln2+6 (5)f /= -4sinx (6)f /=7e x (7)f /=3x 2+8x (8)f /=2cosx+4sinx

(9)因为f (x )=log2x =2ln lnx =lnx 2 ln 1? 所以:f /=(lnx 2ln 1?)/ =(2ln 1)?(lnx )/ =2ln 1?x 1 =ln2 x 1? (10)因为:f (x )=x 1 f /=2x x 1x 1) ()()('?-?'= x x 1210?- = x x 21- = 2x 2x - (11)f /= x e 3x 1+ (12)f (x )= 2x x =23x - f /=(2 3-)25x -= 3 x 2x 3- (13)f /=(sinx 2)/?(x 2)/=cosx 2?(2x )=2x ?cosx 2 (14)f /=[ln (2x 2+6x )]/?(2x 2+6x)/ = x 6x 212+? (4x+6) = x 3x 3x 22++ (15)f (x )=x 1x 3x 2++ = x+3+x 1 f /=(x+3+x 1)/= 1+0 -2x 1 =22x 1-x (16)f /=(x )/(lnx )+(x )(lnx )/+9 =lnx+x 1x ?+9 =lnx+10

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高中数学全套讲义 选修1-1 导数概念中挡 学生版

目录 目录 (1) 考点一导数的概念 (2) 题型1 变化的快慢和变化率 (2) 题型2 导数的概念 (4) 考点二导数的几何意义 (4) 题型3 有关斜率的判断与计算 (4) 课后综合巩固练习 (5)

考点一 导数的概念 1.平均变化率:已知函数()y f x =在点0x x =及其附近有定义, 令0x x x ?=-,0000()()()()y y y f x f x f x x f x ?=-=-=+?-,则当0 x ?≠时,比值00()()f x x f x y x x +?-?= ??叫做函数()y f x =在0x 到0x x +?之间的平均变化率. 2.瞬时变化率:如果当x ?趋近于0时,平均变化率00()() f x x f x x +?-?趋近于一个常数l ,则 数l 称为函数()f x 在点0x 的瞬时变化率. 可用符号记为:当0x ?→时,00()() f x x f x l x +?-→?. 还可以说:当0x ?→时,函数平均变化率的极限等于函数在0x 的瞬时变化 率l ,记作:000()() lim x f x x f x l x ?→+?-=?. 3.导数:函数在0x 的瞬时变化率,通常就定义为()f x 在0x x =处的导数.并记作()0f x '0 |x x y ='可以写为:0000()() lim ()x f x x f x f x x ?→+?-'=?. 4.导函数:如果()f x 在开区间()a b ,内每一点x 导数都存在,则称()f x 在区间()a b ,可导, 这样,对于开区间()a b ,内的每个值x ,都对应一个确定的导数()f x ',于是在区间()a b , 内构成一个新的函数,我们把这个函数称为函数()y f x =的导函数,记为()f x '.导函数通常简称为导数,今后,如不特别指明求某一点的导数,求导数指的就是求导函数. 题型1 变化的快慢和变化率 1.(2018春?菏泽期中)已知函数()y f x =,其导函数()y f x '=的图象如图,则对于函数 ()y f x =的描述正确的是( ) A .在(,0)-∞上为减函数 B .在0x =处取得最大值 C .在(4,)+∞上为减函数 D .在2x =处取得最小值 2.(2019春?韩城市期末)设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x ='的图象可能为( )

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高中数学导数及微积分练习题

1.求导:(1)函数y= 2cos x x 的导数为-------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x ) 2 ------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3)---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A). 54 (B).52 (C).51 (D).5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1 ()1()()0()1 2f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3 x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1 ,则=a _________ 。 8.已知抛物线2y x b x c =++在点(1 2),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高三数学导数基础讲义教案

高三数学导数基础讲义教案 二、考试要求 ⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。 ⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log x的导数)。掌 a 握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三、复习目标 1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念. x的导数)。 2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, log a 掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 四、双基透视 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 5.瞬时速度

近3年2015-2017各地高考数学真题分类专题汇总--导数及其应用

2017年高考数学试题分类汇编及答案解析---导数及其应用 一、选择题(在每小题给出的四个选项中?只有一项是符合题目要求的) 1(2017北京文)已知函数1()3()3 x x f x =-?则()f x ( ) .A 是偶函数?且在R 上是增函数 .B 是奇函数?且在R 上是增函数 .C 是偶函数?且在R 上是减函数 .D 是奇函数?且在R 上是增函数 2.(2017新课标Ⅱ文)函数2()ln(28)f x x x =--的单调递增区间是( ) .A (,2)-∞- .B (,1)-∞ .C (1, )+∞ .D (4,)+∞ З.(2017山东文)设()()1 21,1x f x x x <<=-≥?? ,若()()1f a f a =+,则 1f a ?? = ??? ( )2.A 4.B 6.C 8.D 4.(2017山东文)若函数()e x f x 在()f x 的定义域上单调递增,则称函数()f x 具有M 性 质.下列函数中具有M 性质的是( ) x x f A -=2)(. .B ()2f x x = .C ()3x f x -= .D ()c o s f x x = 5.(2017新课标Ⅰ文数)函数sin21cos x y x = -的部分图像大致为( ) б.(2017新课标Ⅰ文数)已知函数()ln ln(2)f x x x =+-?则( ) .A )(x f y =在)2,0(单调递增 .B )(x f y =在)2,0(单调递减 .C )(x f y =的图像关于直线1=x 对称 .D )(x f y =的图像关于点)0,1(对称 7.(2017天津文)已知奇函数()f x 在R 上是增函数.若 0.8221 (log ),(log 4.1),(2)5a f b f c f =-==?则,,a b c 的大小关系为( ) .A a b c << .B b a c << .C c b a << .D c a b <<

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高中数学竞赛教材讲义第十四章极限与导数讲义

第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为 )(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x - →表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导, 此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x) 在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1)'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7) )'(log x a x x a log 1= ;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3) )(')]'([x u c x cu ?=(c 为常数);(4) ) () (']')(1[2x u x u x u -=;(5))()()(')(')(]')()([2x u x v x u x v x u x u x u -=。

相关文档
最新文档