力学专题:动态平衡问题(图解法,解析法和相似三角形法)(高考)

力学专题:动态平衡问题(图解法,解析法和相似三角形法)(高考)
力学专题:动态平衡问题(图解法,解析法和相似三角形法)(高考)

物体的受力分析及典型例题

物体的受力(动态平衡)分析及典型例题 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。 弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。 【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质

量为m 的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a 水平向右加速运动;(3)小车以加速度a 水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A 与接触面间有、无摩擦力。 图a 中物体A 静止。图b 中物体A 沿竖直面下滑,接触面粗糙。图c 中物体A 沿光滑斜面下滑。图d 中物体A 静止。 图a 中 无 摩擦力产生,图b 中 无 摩擦力产生,图c 中 无 摩擦力产生,图d 中 有 摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是:( B ) A .P 、Q 两点的摩擦力方向均与轮转动方向相反 B .P 点的摩擦力方向与甲轮的转动方向相反, Q 点的摩擦力方向与乙轮的转动方向相同 C .P 点的摩擦力方向与甲轮的转动方向相同, Q 点的摩擦力方向与乙轮的转动方向相反 D .P 、Q 两点的摩擦力方向均与轮转动方向相同 【例7】如图1—10所示,物体A 叠放在物体B 上,水平地面光滑,外力F 作用于物体B 上使它们一起运动,试分析两物体受到的静摩擦力的方向。

专题四图解法分析动态平衡问题.doc

专题四图解法分析动态平衡问题 (命题人:刘会芹审题人:曹国彬打印者:杨平于永刚)所谓图解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,做一些较为复杂的定性分析,从图形上一下就可以看出结果,得出结论。 题型特点:(1)物体受三个力。(2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。 解题思路:(1)明确研究对象。(2)分析物体的受力。(3)用力的合成或力的分解作平行四边形(也可简化为矢量三角形)。(4)正确找出力的变化方向。(5)根据有向线段的长度变化判断各个力的变化情况。 注意几点:(1)哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。 (2)正确判断力的变化方向及方向变化的范围。 (3)力的方向在变化的过程中,力的大小是否存在极值问题。 专题训练 1.半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA 绳固定不动,将OB绳的B端沿半圆支架从水平位置缓慢移到竖直位置C 的过程中(如图),分析OA绳和OB绳所受力的大小如何变化。 2.如图,电灯悬挂于两墙之间,更换水平绳OA使连结点A向上移动而保持O点的位置不变,则A点向上移动时() A.绳OA的拉力逐渐增大 B.绳OA的拉力逐渐减小 C.绳OA的拉力先增大后减小 A O D.绳OA的拉力先减小后增大

3.如图,用细绳将重球悬挂在竖直光滑墙上,当绳伸长时( ) A .绳的拉力变小,墙对球的弹力变大 B .绳的拉力变小,墙对球的弹力变小 C .绳的拉力变大,墙对球的弹力变小 D .绳的拉力变大,墙对球的弹力变大 4.如图,均匀光滑的小球放在光滑的墙壁与木板之间,图中 30=θ,当将θ角缓慢增大至接近 90的过程中( ) A .小球施于木板的压力不断增大 B .小球施于墙的压力不断减小 C .小球对墙壁的压力始终小于mg D .小球对木板的压力始终大于mg 5.在共点力的合成实验中,如图,使弹簧秤b 按图示的位置开始顺时针方向缓慢转 90角,在这个过程中,保持O 点位置不动,a 弹簧秤的拉伸方向不变,则整个过程中关于a 、b 弹簧的读数变化是( ) A .a 增大,b 减小 B .a 减小,b 减小 C .a 减小,b 先减小后增大 D .a 先减小后增大 θ

高一物理必修一高一动态平衡,相似三角形法

高一动态平衡,相似三角形法 1.如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态.把A向右移动少许后,它们仍处于静止状态,则() A. 地面对A的摩擦力增大 B. A与B之间的作用力减 C. B对墙的压力增大 D. A对地面的压力减小 2.质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中( ) A. F逐渐变小,T逐渐变小 B. F逐渐变大,T逐渐变大 C. F逐渐变大,T逐渐变小 D. F逐渐变小,T逐渐变大 3.如图所示,倾角为θ的斜面体C置于水平面上,B置于斜面上,通过细绳跨过光滑的定滑轮与A相连接,连接B的一段细绳与斜面平行,A、B、C都处于静止状态.则( ) A. 水平面对C的支持力等于B、C的总重力 B. C一定受到水平面的摩擦力 C. B一定受到C的摩擦力 D. 若将细绳剪断,物体B开始沿斜面向下滑动,则水平面对C的摩擦力可能为零4.如图所示,a、b、c三根轻细绳悬挂两个质量相同的小球A、B保持静止,细绳a是水平的,现对B球施加一个水平向右的力F,将B缓慢拉到图中虚线位置,A球保持不动,这时三根细绳张力F a、F b、F c的变化情况是 A. 都变大 B. 都不变 C. F a、F b不变,F c变大 D. F a、F c变大,F b不变

5.如图所示,质量分别均匀的细棒中心为O 点, 1O 为光滑铰链, 2O 为光滑定滑轮, 2O 在1O 正上方, 一根轻绳一端系于O 点,另一端跨过定滑轮2O 由于水平外力F 牵引,用N 表示铰链对杆的作用,现在外力F 作用下,细棒从图示位置缓慢转到竖直位置的过程中,下列说法正确的是 A. F 逐渐变小,N 大小不变 B. F 逐渐变小,N 大小变大 C. F 先变小后变大,N 逐渐变小 D. F 先变小后变大,N 逐渐变大 6.如图所示,不计重力的轻杆OP 能以O 点为圆心在竖直平面内自由转动,P 端用轻绳PB 挂一重物,另用一根轻绳通过滑轮系住P 端.在力F 的作用下,当杆OP 和竖直方向的夹角α(0<α<π)缓慢增大时,力F 的大小应( ) A. 逐渐增大 B. 恒定不变 C. 逐渐减小 D. 先增大后减小 7.如图所示,一半球状的物体放在地面上静止不动,一光滑的小球系在轻绳的一端,轻绳绕过定滑轮另一端在力F 的作用下,拉动小球由图示位置沿球体表面缓慢向上移动。(定滑轮位于半球球心的正上方,不计滑轮的摩擦)则( ) A. 拉力F 的大小在增大 B. 小球受到球状体的支持力减小 C. 地面对半球体的支持力减小 D. 地面对半球体的摩擦力在减小

法(十一种方法求解共点力的平衡问题下)图解法求解动态平衡问题(答案不全)

图解法求动态平衡问题 图解法实质: 对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下的矢量图(画在同一个图中),然后根据有向线段(表示力)的变化判断各个力的变化情况. 一、经典例题 1.如图所示,将球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向缓慢向上偏移至竖直方向的过程中,细绳上的拉力将( ) A.逐渐增大 B.逐渐减小 C.先增大后减小 D.先减小后增大 2.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),关于木板对小球的推力F1、半球面对小球的支持力F2的变化情况,下列说法正确的是( ) A.F1增大,F2减小 B.F1增大,F2增大 C.F1减小,F2减小 D.F1减小,F2增大 3.【方法归纳】 图解法就是在对物体进行受力分析(一般受三个力)的基础上,若满足有一个力大小、方向均

不变,另有一个力方向不变时,可画出这三个力的封闭矢量三角形来分析力的变化情况的方法 4.图解法求解平衡类问题步骤 A.选某一状态对物体进行受力分析 B.根据平衡条件画出平行四边形 C.根据已知量的变化情况,画出平行四边形的边角变化 D.确定未知量大小、方向的变化 二、练习题 1.(多选)如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面劈接触,处于静止状态,球与斜面的接触面非常小,细线悬点O固定不动,在斜面劈从图示位置缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是( ). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G sin α 2.(多选)如图示,质量相同,分布均匀的两个圆柱体a、b靠在一起,表面光滑,重力均为G,其中b的下一半刚好固定在水平面MN的下方,上边露出另一半,a静止在平面上,现过a的轴心施以水平作用力F,可缓慢地将a拉离水平面MN一直滑到b的顶端,对该过程进行分析,应有( ) A.拉力F先增大后减小,最大值是G B.开始时拉力F最大为3G,以后逐渐减小为0 C.a、b间压力由0逐渐增大,最大为G D.a、b间的压力开始最大为2G,而后逐渐减小到G

高中物理力学图解动态平衡问题与相似三角形问题

图解法分析动态平衡问题 所谓图解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,做一些较为复杂的定性分析,从图形上一下就可以看出结果,得出结论。 题型特点:(1)物体受三个力。(2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。 解题思路:(1)明确研究对象。(2)分析物体的受力。(3)用力的合成或力的分解作平行四边形(也可简化为矢量三角形)。(4)正确找出力的变化方向。(5)根据有向线段的长度变化判断各个力的变化情况。 注意几点:(1)哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。 (2)正确判断力的变化方向及方向变化的围。 (3)力的方向在变化的过程中,力的大小是否存在极值问题。 【例1】如图2-4-2所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是( ) A.增大B.先减小,后增大 C.减小D.先增大,后减小 解析:方法一:对力的处理(求合力)采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法).作出力的平行四边形,如图甲所示.由图可看出,FBC先减小后增大.方法二:对力的处理(求合力)采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将FAB、FBC分别沿水平方向和竖直方向分解,由两方向合力为零分别列出: FAB cos 60°=FB C sin θ, FAB sin 60°+FB C cos θ=FB,

联立解得FBC sin(30°+θ)=FB/2, 显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大. 答案:B 变式1-1如图2-4-3所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ. 且θ+β<90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N 的大小变化情况是( ) A.F逐渐增大,T逐渐减小,F N逐渐减小B.F逐渐减小,T逐渐减小,F N逐渐增大C.F逐渐增大,T先减小后增大,F N逐渐增大 D.F逐渐减小,T先减小后增大,F N逐渐减小 解析:利用矢量三角形法对球体进行分析如图甲所示,可知T是先减小后增大.斜面 对球的支持力F N′逐渐增大,对斜面受力分析如图乙所示,可知F=F N″sinθ,则F 逐渐增大,水平面对斜面的支持力F N=G+F N″·cos θ,故F N逐渐增大. 答案:C 利用相似三角形相似求解平衡问题 2.相似三角形法: 当物体受三个共点力作用处于平衡状态时,若三力中有二力的方向发生变化,而无法直接用图解法得出结论时,可以用表示三力关系的矢量三角形跟题中的其他三角形相似对应边成比例,建立关系求解。 【例2】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-4-4所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是( ) A.F N先减小,后增大B.F N始终不变 C.F先减小,后增大D.F始终不变 解析:取BO杆的B端为研究对象,受到绳子拉力(大小为F)、BO杆的支持力F N和悬挂重物的绳子的拉力(大小为G)的作用,将F N 与G合成,其合力与F等值反向,如图所示,得到一个力的三角形(如图中画斜线部分),此

动态规划例题

例1:机器负荷分配问题 某公司新购进1000台机床,每台机床都可在高、低两种不同的负荷下进行生产,设在高负荷下生产的产量函数为g(x )=10x (单位:百件),其中x 为投入生产的机床数量,年完好率为a =0.7;在低负荷下生产的产量函数为h(y)=6y (单位:百件),其中y 为投人生产的机床数量,年完好率为b=0.9。计划连续使用5年,试问每年如何安排机床在高、低负荷下的生产计划,使在五年内生产的产品总产量达到最高。 例2:某企业通过市场调查,估计今后四个时期市场对某种产品的需要量如下表: 时期(k) 1 2 3 4 需要量(d k ) 2(单位) 3 2 4 假定不论在任何时期,生产每批产品的固定成本费为3(千元),若不生产,则为零;生产单位产品成本费为1(千元);每个时期生产能力所允许的最大生产批量为不超过6个单位,则任何时期生产x 个单位产品的成本费用为: 若 0<x ≤6 , 则生产总成本=3十1·x 若 x =0 , 则生产总成本=0 又设每个时期末未销售出去的产品,在一个时期内单位产品的库存费用为0.5(千元),同时还假定第1时期开始之初和在第4个时期之末,均无产品库存。现在我们的问题是;在满足上述给定的条件下,该厂如何安排各个时期的生产与库存,使所花的总成本费用最低? 例3:设某企业在第一年初购买一台新设备,该设备在五年内的年运行收益、年运行费用及更换新设备的净费用如下表:(单位:万元) 年份(k) 役龄(t) 运行收益()k g t 运行费用()k r t 更新费用()k c t 第一年 0 22 6 18 第二年 0 1 23 21 6 8 19 22

力与物体的平衡典型例题与习题

力与物体的平衡 题型一:常规力平衡问题 解决这类问题需要注意:此类题型常用分解法也可以用合成法,关键是找清力及每个力的方向和大小表示!多为双方向各自平衡,建立各方向上的平衡方程后再联立求解。 [例1]一个质量m 的物体放在水平地面上,物体与地面间的摩擦因数为μ,轻弹簧的一端系在物体上,如图所示.当用力F 与水平方向成θ角拉弹簧时,弹簧的长度 伸长x ,物体沿水平面做匀速直线运动.求弹簧的劲度系数. [解析]可将力F 正交分解到水平与竖直方向,再从两个方向上寻求平衡关系!水平方向应该是力F 的分力Fcos θ与摩擦力平衡,而竖直 方向在考虑力的时 候,不能只考虑重力和地面的支持力,不要忘记力F 还有一个竖直方向的分力作用! 水平: F cos θ=μF N ① 竖直:F N + F sin θ=mg ② F =kx ③ 联立解出:k = ) sin (cos θμθμ+x mg [变式训练1] 如图,质量为m 的物体置于倾角为θ的斜面上,先用平行于斜面的推力F 1作用于物体上,能使其能沿斜面匀速上滑,若改用水平推力作用于物体上,也能使物体沿斜面匀速上滑,则两次力之比F 1/F 2=? 题型二:动态平衡与极值问题 解决这类问题需要注意: (1)三力平衡问题中判断变力大小的变化趋势时,可利用平行四边形定则将其小和方向均不变的一个力,分别向两个已知方向分解,从而可从图中或用解析法判断出变力大小变化趋势,作图时应使三力作用点O 的位置保持不变. (2)一个物体受到三个力而平衡,其中一个力的大小和方向是确定的,另一个力的方向始终不改变,而第三个力的大小和方向都可改变,问第三个力取什么方向这个力有最小值,当第三个力的方向与第二个力垂直时有最小值,这个规律掌握后,运用图解法或计算法就比较容易了. [例2] 如图2-5-3所示,用细线AO 、BO 悬挂重力,BO 是水平的,AO 与竖直方向成α角.如果改变BO 长度使β角减小,而保持O 点不动,角α(α < 450)不变,在β角减小到等于α角的过程中,两细线拉力有何变化? [解析]取O 为研究对象,O 点受细线AO 、BO 的拉力分别为F 1、F 2,挂重力的细线拉力 F 3 = mg .F 1、F 2的合力F 与F 3大小相等方向相反.又因为F 1的方向不变,F 的末端作射线平 行于F 2,那么随着β角的减小F 2末端在这条射线上移动,如图2-5-3(解)所示.由图可以看出,F 2先减小,后增大,而F1则逐渐减小. [变式训练2]如图所示,轻绳的一端系在质量为m 的物体上,另一端系在一个圆环上,圆环套在粗糙水平横杆MN 上,现用水平力F 拉绳上一点,使物体处在图中实线位置.然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来位置不动,则在这一过程中,水平拉力F 、环与横杆的摩擦力f 和环对杆的压力N 的变化情况是( ) A.F 逐渐减小,f 逐渐增大,N 逐渐减小 B.F 逐渐减小,f 逐渐减小,N 保持不变 图2-5-3

力学图解动态平衡问题与相似三角形问题----学生版

图解法分析动态平衡问题 【例1】如图2-4-2所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是() A.增大B.先减小,后增大 C.减小D.先增大,后减小 变式1-1如图2-4-3所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ. 且θ+β<90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N 的大小变化情况是() A.F逐渐增大,T逐渐减小,F N逐渐减小B.F逐渐减小,T逐渐减小,F N逐渐增大C.F逐渐增大,T先减小后增大,F N逐渐增大 D.F逐渐减小,T先减小后增大,F N逐渐减小 利用相似三角形相似求解平衡问题 2.相似三角形法: 当物体受三个共点力作用处于平衡状态时,若三力中有二力的方向发生变化,而无法直接用图解法得出结论时,可以用表示三力关系的矢量三角形跟题中的其他三角形相似对应边成比例,建立关系求解。 【例2】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-4-4所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力F N 的大小变化情况是() A.F N先减小,后增大B.F N始终不变 C.F先减小,后增大D.F始终不变 变式2-1如图2-4-5所示,两球A、B用劲度系数为k1的轻弹簧相连,球B用长为L的细绳悬于O点,球A固定在O点正下方,且点O、A之间的距离恰为L,系统平衡时绳子所受的拉力为F1.现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为() A.F1>F2 B.F1=F2 C.F1

高中物理受力分析(动态平衡问题)典型例题(含答案)【经典】(可编辑修改word版)

3 5 知识点三:共点力平衡(动态平衡、矢量三角形法) 1.(单选)如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕 O 点转至水平位置,则此过程中球对挡板的压力 F 1 和球对斜面的压力 F 2 的变化情况是( ).答案 B A .F 1 先增大后减小,F 2 一直减小 B .F 1 先减小后增大,F 2 一直减小 C .F 1 和 F 2 都一直减小 D .F 1 和 F 2 都一直增大 2、 (单选)(天津卷,5)如图所示,小球用细绳系住,绳的另一端固定于 O 点.现用水平力 F 缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平, 此过程中斜面对小球的支持力 F N 以及绳对小球的拉力 F T 的变化情况是( ).答案 D A .F N 保持不变,F T 不断增大 B .F N 不断增大,F T 不断减小 C .F N 保持不变,F T 先增大后减小 D .F N 不断增大,F T 先减小后增大 3.(单选)如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力 F 1、半球面对小球的支持力 F 2 的变化情况正确的是( ). 答案 B A .F 1 增大,F 2 减小 B .F 1 增大,F 2 增大 C .F 1 减小,F 2 减小 D .F 1 减小,F 2 增大 4、(单选)如图所示,一物块受一恒力 F 作用,现要使该物块沿直线 AB 运动,应该再加上另 一个力的作用,则加上去的这个力的最小值为( ).答案 B A .F cos θ B .F sin θ C .F tan θ D .F cot θ 5.(单选)如图所示,一倾角为 30°的光滑斜面固定在地面上,一质量为 m 的小木块在水平力 F 的作用下静止在斜面上.若只改变 F 的方向不改变 F 的大小,仍使木块静止,则此时力 F 与水平 面的夹角为( ).答案 A A .60° B .45° C .30° D .15° 6.(多选)一铁架台放于水平地面上,其上有一轻质细线悬挂一小球,开始时细线竖直,现将水平力 F 作用于小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止,则在这 一过程中( ). 答案:AD A .细线拉力逐渐增大 B .铁架台对地面的压力逐渐增大 C .铁架台对地面的压力逐渐减小 D .铁架台所受地面的摩擦力逐渐增大 7、(多选)(苏州调研)如图所示,质量均为 m 的小球 A 、B 用两根不可伸长的轻绳连接后悬挂于 O 点,在外力 F 的作用下,小球 A 、B 处于静止状态.若要使两小球处于静止状态且悬线 OA 与竖直方 向的夹角 θ 保持 30°不变,则外力 F 的大小( ).答案 BCD A .可能为 mg B .可能为 mg 3 2 C .可能为 2mg D .可能为 mg 8、(单选)如图所示,轻绳的一端系在质量为 m 的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆 MN 上.现用水平力 F 拉绳上一点,使物体处于图中实线位置,然后改变 F 的大小使 其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力 F 、环与杆 的摩擦力 F 摩和环对杆的压力 F N 的变化情况是( ).答案 D A .F 逐渐增大,F 摩保持不变,F N 逐渐增大 B .F 逐渐增大,F 摩逐渐增大,F N 保持不 变

物体的动态平衡问题解题技巧

物体的动态平衡问题解题技巧 省高中 恩谱 一、总论 1、动态平衡问题的产生——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化,但物体仍然平衡,典型关键词——缓慢转动、缓慢移动…… 2、动态平衡问题的解法——解析法、图解法 解析法——画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力的变化规律; 图解法——画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。 3、动态平衡问题的分类——动态三角形、相似三角形、圆与三角形(2类)、其他特殊类型 二、例析 1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形 【例1】如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为F N1,球对木板的压力大小为F N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水 平位置。不计摩擦,在此过程中 A .F N1始终减小,F N2始终增大 B .F N1始终减小,F N2始终减小 C .F N1先增大后减小,F N2始终减小 D .F N1先增大后减小,F N2先减小后增大 解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化的函数,然后由函数讨论; 【解析】小球受力如图,由平衡条件,有 0sin 2N =-mg F θ 0cos 1N 2N =-F F θ 联立,解得:θsin 2N mg F =,θ tan 1N mg F = 木板在顺时针放平过程中,θ角一直在增大,可知F N1、F N2都一直在减 小。选B 。 解法二:图解法——画受力分析图,构建初始力的三角形,然后“抓住不变,讨论变化”,不变的是小球重力和F N1的方向,然后按F N2方向变化规律转动F N2,即可看出结果。 【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三角形,其中重力mg 保持不变,F N1的方向始终水平向右,而F N2的方向逐渐变得竖直。 则由右图可知F N1、F N2都一直在减小。 【拓展】水平地面上有一木箱,木箱与地面间的动摩擦因数为μ(0<μ<1)。现对木箱施加一拉力F ,使木箱做匀速直线运动。设F 的方向与水平地面的夹角为θ,如图所示,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则 F N2 mg F F N1 F mg θ

材料科学基础考研经典题目教学内容

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18. 为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19. 在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样条件下,单相 固溶体合金凝固的形貌又如何?分析原因 答:正的温度梯度指的是随着离开液—固界面的距离Z 的增大,液相温度T 随之升高的情况,即0>dZ dT 。在这种条件下,纯金属晶体的生长以接近平面状向前推移,这是由于温度梯度是正的,当界面上偶尔有凸起部分而伸入温度较高的液体中时,它的生长速度就会减慢甚至停止,周围部分的过冷度较凸起部分大,从而赶上来,使凸起部分消失,这种过程使液—固界面保持稳定的平面形状。固溶体合金凝固时会产生成分过冷,在液体处于正的温度梯度下,相界面前沿的成分过冷区呈现月牙形,其大小与很多因素有关。此时,成分过冷区的特性与纯金属在负的温度梯度下的热过冷非常相似。可以按液固相界面前沿过冷区的大小分三种情况讨论:⑴当无成分过冷区或成分过冷区较小时,界面不可能出现较大的凸起,此时平界面是稳定的,合金以平面状生长,形成平面晶。⑵当成分过冷区稍大时,这时界面上凸起的尖部将获得一定的过冷度,从而促进了凸起进一步向液体深处生长,考虑到界面的力学平衡关系,平界面变得不稳定,合金以胞状生长,形成胞状晶或胞状组织。⑶当成分过冷区较大时,平界面变得更加不稳定,界面上的凸起将以较快速度向液体深处生长,形成一次轴,同时在一次轴的侧向形成二次轴,以此类推,因此合金以树枝状生长,最终形成树枝晶。 20. 纯金属晶体中主要的点缺陷类型是什么?试述它们可能产生的途径? 答:纯金属晶体中,点缺陷的主要类型是空位、间隙原子、空位对及空位与间隙原子对等。产生的途径:⑴依靠热振动使原子脱离正常点阵位置而产生。空位、间隙原子或空位与间隙原子对都可由热激活而形成。这种缺陷受热的控制,它的浓度依赖于温度,随温度升高,其平衡态的浓度亦增高。⑵冷加工时由于位错间有交互作用。在适当条件下,位错交互作用的结果能产生点缺陷,如带割阶的位错运动会放出空位。⑶辐照。高能粒子(中子、α粒子、高速电子)轰击金属晶体时,点阵中的原子由于粒子轰击而离开原来位置,产生空位或间隙原子。 21. 简述一次再结晶与二次再结晶的驱动力,并如何区分冷热加工?动态再结晶与静态再结晶后的组 织结构的主要区别是什么? 答:一次再结晶的驱动力是基体的弹性畸变能,而二次再结晶的驱动力是来自界面能的降低。再结晶温

最新动态平衡(动态三角形、相似三角形)练习题整理

1.如图所示,一定质量的物体通过轻绳悬挂,结点为O.人沿水平方向拉着OB绳,物体和人均处于 静止状态.若人的拉力方向不变,缓慢向左移动一小段距离,下列说法正确的是() A.OA绳中的拉力先减小后增大 B.OB绳中的拉力不变 C.人对地面的压力逐渐减小 D.地面给人的摩擦力逐渐增大 2.如图所示,将球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向缓慢向上偏移至竖直 方向的过程中,细绳上的拉力将 () A.逐渐增大 B.逐渐减小 C.先增大后减小 D.先减小后增大 3.如图所示,不计重力的轻杆OP能以O点为圆心在竖直平面内自由转动,P端用轻绳PB挂一重物,用一根轻绳通过滑轮系住P端.在力F的作用下,当杆OP和竖直方向的夹角α(0<α<π)缓慢增大时,力F的大小应() A.恒定不变 B.逐渐增大 C.逐渐减小 D.先增大后减小 4.如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕 O点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是() A.F1先增大后减小,F2一直减小 B.F1先减小后增大,F2一直减小 C.F1和F2都一直减小 D.F1和F2都一直增大 5.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推 动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的 支持力F2的变化情况正确的是() A.F1增大,F2减小 B.F1增大,F2增大 C.F1减小,F2减小 D.F1减小,F2增大

6.如图所示,物体m与斜面体M一起静止在水平面上,若将斜面的倾角θ减小一些,下列说法正确的是() A.斜面体对物体的支持力减小 B.斜面体对物体的摩擦力减小 C.水平面对斜面体的支持力减小 D.水平面对斜面体的摩擦力减小 7.如图所示,上表面光滑的半圆柱体放在水平面上,小物块从靠近半圆柱体顶点O的A点,在外力F作用下沿圆弧缓慢下滑到B点,此过程中F始终沿圆弧的切线方向且半圆柱体保持静止状态.下列说法中正确的是() A.外力F先变小后变大 B.半圆柱体对小物块的支持力变大 C.地面对半圆柱体的支持力变大 D.地面对半圆柱体的摩擦力先变大后变小

动态规划练习试题和解答

动态规划练习题 [题1] 多米诺骨牌(DOMINO) 问题描述:有一种多米诺骨牌是平面的,其正面被分成上下两部分,每一部分的表面或者为空,或者被标上1至6个点。现有一行排列在桌面上:顶行骨牌的点数之和为6+1+1+1=9;底行骨牌点数之和为1+5+3+2=11。顶行和底行的差值是2。这个差值是两行点数之和的差的绝对值。每个多米诺骨牌都可以上下倒置转换,即上部变为下部,下部变为上部。 现在的任务是,以最少的翻转次数,使得顶行和底行之间的差值最小。对于上面这个例子,我们只需翻转最后一个骨牌,就可以使得顶行和底行的差值为0,所以例子的答案为1。 输入格式: 文件的第一行是一个整数n(1〈=n〈=1000〉,表示有n个多米诺骨牌在桌面上排成一行。接下来共有n行,每行包含两个整数a、b(0〈=a、b〈=6,中间用空格分开〉。第I+1行的a、b分别表示第I个多米诺骨牌的上部与下部的点数(0表示空)。 输出格式: 只有一个整数在文件的第一行。这个整数表示翻动骨牌的最少次数,从而使得顶行和底行的差值最小。 [题2] Perform巡回演出 题目描述: Flute市的Phlharmoniker乐团2000年准备到Harp市做一次大型演出,本着普及古典音乐的目的,乐团指挥L.Y.M准备在到达Harp市之前先在周围一些小城市作一段时间的巡回演出,此后的几天里,音乐家们将每天搭乘一个航班从一个城市飞到另一个城市,最后才到达目的地Harp市(乐团可多次在同一城市演出). 由于航线的费用和班次每天都在变,城市和城市之间都有一份循环的航班表,每一时间,每一方向,航班表循环的周期都可能不同.现要求寻找一张花费费用最小的演出表. 输入: 输入文件包括若干个场景.每个场景的描述由一对整数n(2<=n<=10)和k(1<=k<=1000)开始,音乐家们要在这n个城市作巡回演出,城市用1..n标号,其中1是起点Flute市,n是终点Harp市,接下来有n*(n-1)份航班表,一份航班表一行,描述每对城市之间的航线和价格,第一组n-1份航班表对应从城市1到其他城市(2,3,...n)的航班,接下的n-1行是从城市2到其他城市(1,3,4...n)的航班,如此下去. 每份航班又一个整数d(1<=d<=30)开始,表示航班表循环的周期,接下来的d个非负整数表示1,2...d天对应的两个城市的航班的价格,价格为零表示那天两个城市之间没有航班.例如"3 75 0 80"表示第一天机票价格是75KOI,第二天没有航班,第三天的机票是80KOI,然后循环:第四天又是75KOI,第五天没有航班,如此循环.输入文件由n=k=0的场景结束. 输出: 对每个场景如果乐团可能从城市1出发,每天都要飞往另一个城市,最后(经过k天)抵达城市n,则输出这k个航班价格之和的最小值.如果不可能存在这样的巡回演出路线,输出0. 样例输入: 样例输出:

动态平衡试题,死结和活结

★★★★★高一物理培优讲义2 分析动态平衡问题 1.动态平衡问题:通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,从宏观上看,物体是运动变化的,但从微观上理解是平衡的,即任一时刻物体均处于平衡状态。 2.图解法:对研究对象进行受力分析,再根据三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化判断各力的变化情况。 3.图解法分析动态平衡问题,往往涉及三个力,其中一个力为恒力,另一个力方向不变,但大小发生变化,第三个力则随外界条件的变化而变化,包括大小和方向都变化。 解答此类“动态型”问题时,一定要认清哪些因素保持不变,哪些因素是改变的,这是解答动态问题的关键 4.典型例题: 例1:半圆形支架BCD上悬着两细绳OA和OB,结于圆心O,下悬重为 G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐 渐移至竖直的位置C的过程中,如图所示,分析OA绳和OB绳所受力的 大小如何变化? 例2:如图所示,把球夹在竖直墙AC和木板BC之间,不计摩擦,球对墙的 压力为F N1,球对板的压力为F N2.在将板BC逐渐放至水平的过程中,下列 说法中,正确的是() A.F N1和F N2都增大 B.F N1和F N2都减小 C.F N1增大,F N2减小 D.F N1减小,F N2增大 思考:1如图所示,电灯悬挂于两壁之间,更换水平绳OA使连结点 A向上移动而保持O点的位置不变,则A点向上移动时 () A.绳OA的拉力逐渐增大; B.绳OA的拉力逐渐减小; C.绳OA的拉力先增大后减小; D.绳OA的拉力先减小后增大。 例3:如图所示,一个重为G的匀质球放在光滑斜直面上,斜面倾角为α, 在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板 与斜面的夹角β缓慢增大,问:在此过程中,球对挡板和球对斜面的压力 大小如何变化?

相似三角形法分析动态平衡问题)

相似三角形法分析动态平衡问题 (1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。 (2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。 例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面 B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉 住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( ) A 、N 变大,T 变小 B 、N 变小,T 变大 C 、N 变小,T 先变小后变大 D 、N 不变,T 变小 解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式: R N R h mg L T =+= 可得:mg R h L T += 运动过程中L 变小,T 变小。 mg R h R N += 运动中各量均为定值,支持力N 不变。正确答案D 。 例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

相关文档
最新文档