内存对齐

最近被面试了,打击挺大,问啥啥不会。

举一个很多不会的题中的一个,关于内存对齐的问题,以前也知道点,个人感觉很重要,在这里与同道中人分享下:

很多书籍中都讲到:内存可以看成一个byte数组,我们通过编程语言提供的工具对这个'大数组'中的每个元素进行读写,比如在C中我们可以用指针一次读写一个或者更多个字节,这是我们一般程序员眼中的内存样子。但是从机器角度更具体的说从CPU角度看呢,CPU发出的指令是一个字节一个字节读写内存吗?答案是'否'。CPU是按照'块(chunk)'来读写内存的,块的大小可以是2bytes, 4bytes, 8bytes, 16bytes甚至是32bytes. 这个CPU访问内存采用的块的大小,我们可以称为'内存访问粒度'。

程序员眼中的内存样子:

---------------------------------

| | | | | | | | | | | | | | | | |

---------------------------------

0 1 2 3 4 5 6 7 8 9 A B C D E F (地址)

CPU眼中的内存样子:(以粒度=4为例)

---------------------------------------------

| | | | | | | | | | | | | | | | | | | |

---------------------------------------------

0 1 2 3 4 5 6 7 8 9 A B C D E F (地址)

有了上面的概念,我们来看看粒度对CPU访问内存的影响。

假设这里我们需要的数据分别存储于地址0和地址1起始的连续4个字节的存储器中,我们目的是分别读取这些数据到一个4字节的寄存器中,

如果'内存访问粒度'为1,CPU从地址0开始读取,需要4次访问才能将4个字节读到寄存器中;

同样如果'内存访问粒度'为1,CPU从地址1开始读取,也需要4次访问才能将4个字节读到寄存器中;而且对于这种理想中的''内存访问粒度'为1的CPU,所有地址都是'aligned address'。

如果'内存访问粒度'为2,CPU从地址0开始读取,需要2次访问才能将4个字节读到寄存器中;每次访存都能从'aligned address'起始。

如果'内存访问粒度'为2,CPU从地址1开始读取,相当于内存中数据分布在1,2,3,4三个地址上,由于1不是'aligned address',所以这时CPU要做些其他工作,由于这四个字节分步在三个chunk上,所以CPU需要进行三次访存操作,第一次读取chunk1(即地址0,1上两个字节,而且仅仅地址1上的数据有用),第二次读取chunk2(即地址2,3上两个字节,这两个地址上的数据都有用),最后一次读取chunk3(即地址5,6上两个字节,而且仅仅地址5上的

数据有用),最后CPU会将读取的有用的数据做merge操作,然后放到寄存器中。

同理可以推断如果'内存访问粒度'为4,那么从地址1开始读取,需要2次访问,访问后得到的结果merge后放到寄存器中。

是不是所有的CPU都会帮你这么做呢,当然不是。有些厂商的CPU发现你访问unaligned address,就会报错,或者打开调试器或者dump core,比如sun sparc solaris绝对不会容忍你访问unaligned address,都会以一个core结束你的程序的执行。所以一般编译器都会在编译时做相应的优化以保证程序运行时所有数据都是存储在'aligned address'上的,这就是内存对齐的由来。

我们可以指定按照何种粒度访问特定内存块儿:其中void *T为指向特定内存块的地址指针char *p = (char*)T;每次操作一个字节

short *p = (short*)T;每次操作两个字节

int *p = (int*)T;每次操作4个字节

以此类推。

在'Data alignment: Straighten up and fly right'这篇文章中作者还得出一个结论那就是:"如果访问的地址是unaligned的,那么采用大粒度访问内存有可能比小粒度访问内存还要慢"。

我试验用的编译器包括GCC 3.4.2和VC6.0的C编译器,平台为Windows XP + Sp2。

我们将用典型的struct对齐来说明。首先我们定义一个struct:

#pragma pack(n)

struct test_t {

int a;

char b;

short c;

char d;

};

#pragma pack(n)

首先我们首先确认在试验平台上的各个类型的size,经验证两个编译器的输出均为:

sizeof(char) = 1

sizeof(short) = 2

sizeof(int) = 4

我们的试验过程如下:通过#pragma pack(n)改变“对齐系数”,然后察看sizeof(struct test_t)的值。

1、1字节对齐(#pragma pack(1))

输出结果:sizeof(struct test_t) = 8 [两个编译器输出一致]

分析过程:

1) 成员数据对齐

#pragma pack(1)

struct test_t {

int a;

char b;

short c;

char d;

};

#pragma pack()

成员总大小=8

2) 整体对齐

整体对齐系数 = min((max(int,short,char), 1) = 1

整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 8 [注1]

2、2字节对齐(#pragma pack(2))

输出结果:sizeof(struct test_t) = 10 [两个编译器输出一致]

分析过程:

1) 成员数据对齐

#pragma pack(2)

struct test_t {

int a;

char b;

short c;

char d;

};

#pragma pack()

成员总大小=10

2) 整体对齐

整体对齐系数 = min((max(int,short,char), 2) = 2

整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 10

3、4字节对齐(#pragma pack(4))

输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]

分析过程:

1) 成员数据对齐

#pragma pack(4)

struct test_t {

int a;

char b;

short c;

char d;

};

运维项目工作总结 参考

xxxx运维服务工作总结

目录 1概述....................................................................... 2运维项目背景............................................................... 3运维目标................................................................... 4运维人员配备............................................................... 5运维工作总结............................................................... 5.11-8月份................................................................... 5.1.1XXXX系统测试与部署 ................................................... 5.1.2协助XXXX机房搬迁..................................................... 5.1.3二线专家支撑.......................................................... 5.1.4XXXX系统优化 ......................................................... 5.29-12月份.................................................................. 5.2.1系统运维支撑.......................................................... 系统巡检方式............................................................ 远程方式............................................................. 现场方式............................................................. 系统维护巡检内容........................................................ 远程方式巡检内容..................................................... 现场方式巡检内容.................................................... 系统运行分析............................................................ 系统CPU分析......................................................... 系统内存分析......................................................... 系统硬盘空间分析..................................................... 系统进程运行分析..................................................... 系统故障分析......................................................... 现网作业工作............................................................ 5.2.2业务协维.............................................................. 系统业务管理............................................................ 运营支撑内容............................................................ ZS业务客户服务与支持..................................................... 运营数据分析............................................................ 5.2.3专家服务.............................................................. 运维体系的建立.......................................................... 输出文档 ............................................................... 运维、系统二线支撑......................................................

内存对齐方式

对齐方式 为什么会有内存对齐? 在结构中,编译器为结构的每个成员按其自然对界(alignment)条件分配空间;各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个结构的地址相同。在缺省情况下,C编译器为每一个变量或数据单元按其自然对界条件分配空间。 字,双字,和四字在自然边界上不需要在内存中对齐。(对字,双字,和四字来说,自然边界分别是偶数地址,可以被4整除的地址,和可以被8整除的地址。)无论如何,为了提高程序的性能,数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;然而,对齐的内存访问仅需要一次访问。 一个字或双字操作数跨越了4字节边界,或者一个四字操作数跨越了8字节边界,被认为是未对齐的,从而需要两次总线周期来访问内存。一个字起始地址是奇数但却没有跨越字边界被认为是对齐的,能够在一个总线周期中被访问。 某些操作双四字的指令需要内存操作数在自然边界上对齐。如果操作数没有对齐,这些指令将会产生一个通用保护异常(#GP)。双四字的自然边界是能够被16整除的地址。其他的操作双四字的指令允许未对齐的访问(不会产生通用保护异常),然而,需要额外的内存总线周期来访问内存中未对齐的数据。 影响结构体的sizeof的因素: 1)不同的系统(如32位或16位系统):不同的系统下int等类型的长度是变化的,如对于16位系统,int的长度(字节)为2,而在32位系统下,int的长度为4;因此如果结构体中有int等类型的成员,在不同的系统中得到的sizeof值是不相同的。 2)编译器设置中的对齐方式:对齐方式的作用常常会让我们对结构体的sizeof 值感到惊讶,编译器默认都是8字节对齐。 对齐: 为了能使CPU对变量进行高效快速的访问,变量的起始地址应该具有某些特性,即所谓的“对齐”。例如对于4字节的int类型变量,其起始地址应位于4字节边界上,即起始地址能够被4整除。变量的对齐规则如下(32位系统)

运维项目工作总结参考

运维项目工作总结参考-CAL-FENGHAI.-(YICAI)-Company One1

xxxx运维服务工作总结

目录

1概述 2011年对于XXXX来说是具有历史意义的一年,XXXX成功上线到接入第一个业务系统:集团采购门户系统,揭开了XXXXXXXX认证的一个新的篇章,XXXX 公司作为XXXX的运维服务方,在历史的一年即将过去,通过对XXXX运维工作进行年度总结,从中发现工作中的不足,在以后的工作中逐渐改善。 2运维项目背景 3运维目标 XXXX公司为XXXX系统提供运行维护服务包括,XXXX软件系统、系统相关的主机设备、操作系统、数据库和存储设备的运行维护服务,保证XXXX系统整体的正常运行,降低整体管理成本,提高XXXX系统的整体服务水平。同时根据日常维护的数据和记录,提供XXXX系统的整体建设规划和建议,更好的为XXXX发展提供有力的支持。 同时XXXX公司为XXXX系统提供业务协维服务,包括业务系统接入前期业务支撑、业务系统接入后期业务支撑,为业务系统提供专业的业务指引、开发指引,方便各业务系统快速接入XXXX系统。 XXXX系统的组成主要可分为两类:硬件设备和软件系统。硬件设备包括网络设备、安全设备、主机设备、存储设备等;软件设备可分为操作系统软件、典型应用软件(如:数据库软件、中间件软件等)、业务应用软件等。 XXXX公司通过运行维护服务的有效管理来提升XXXX系统的服务效率,结合用户现有的环境、组织结构、IT资源和管理流程的特点,从流程、人员和技术三方面来规划用户的网络信息系统的结构。将用户的运行目标、业务需求与IT服务的相协调一致。 XXXX公司提供的服务的目标是,对用户现有的XXXX系统基础资源进行监控和管理,及时掌握网络信息系统资源现状和配置信息,反映XXXX系统资源的可用性情况和健康状况,创建一个可知可控的IT环境,从而保证XXXX系统的各类业务应用系统的可靠、高效、持续、安全运行。 4运维人员配备 XXXX运维人员梯队结构 人的因素是决定运维服务好坏的最重要的因素,合理的人力配置能够提高运维的质量和效率,保障运维工作的顺利开展, XXXX公司通过人力资源的整合

常用java技巧总结

面向对象的思想特点 A:是一种更符合我们思想习惯的思想 B:可以将复杂的事情简单化 C:将我们从执行者变成了指挥者 面向对象: 我们怎么才能更符合面向对象思想呢? A:有哪些类呢? B:每个类有哪些东西呢? C:类与类直接的关系是什么呢? 开发,设计,特征 面向对象开发 就是不断的创建对象,使用对象,指挥对象做事情。 面向对象设计 其实就是在管理和维护对象之间的关系。 面向对象特征 封装(encapsulation) 继承(inheritance) 多态(polymorphism) 继承:把多个类中相同的成员给提取出来定义到一个独立的类中。然后让这多个类和该独立的类产生一个关系,这多个类就具备了这些内容。这个关系叫继承。 继承的好处: A:提高了代码的复用性 B:提高了代码的维护性 C:让类与类产生了一个关系,是多态的前提 继承的弊端: A:让类的耦合性增强。这样某个类的改变,就会影响其他和该类相关的类。 原则:低耦合,高内聚。 耦合:类与类的关系 内聚:自己完成某件事情的能力 B:打破了封装性 Java中继承的特点 A:Java中类只支持单继承 B:Java中可以多层(重)继承(继承体系) 继承的注意事项: A:子类不能继承父类的私有成员 B:子类不能继承父类的构造方法,但是可以通过super去访问 C:不要为了部分功能而去继承

多态:同一个对象在不同时刻体现出来的不同状态。 多态前提: A:有继承或者实现关系。 B:有方法重写。 C:有父类或者父接口引用指向子类对象。 多态中的成员访问特点 A:成员变量 编译看左边,运行看左边 B:构造方法 子类的构造都会默认访问父类构造 C:成员方法 编译看左边,运行看右边 D:静态方法 编译看左边,运行看左边 多态的好处 提高了程序的维护性(由继承保证) 提高了程序的扩展性(由多态保证) 多态的弊端 不能访问子类特有功能 静态的特点: A:随着类的加载而加载 B:优先与对象存在 C:被类的所有对象共享 这其实也是我们判断该不该使用静态的依据。 D:可以通过类名调用 静态变量和成员变量的区别 A:所属不同 静态变量:属于类,类变量 成员变量:属于对象,对象变量,实例变量 B:内存位置不同 静态变量:方法区的静态区 成员变量:堆内存 C:生命周期不同 静态变量:静态变量是随着类的加载而加载,随着类的消失而消失 成员变量:成员变量是随着对象的创建而存在,随着对象的消失而消失D:调用不同 静态变量:可以通过对象名调用,也可以通过类名调用 成员变量:只能通过对象名调用

字节对齐

字节对齐 Andrew Huang 内容提要 ●字节对齐概念 ●字节对齐测试 ?offsetof ?缺省情况的字节对齐 ?double 型字节对齐 ?改变字节对齐设置 ●不同环境下的字节对齐 ?GCC字节对齐 ?ADS 字节对齐 ●字节对齐练习 字节对齐是一个很隐含的概念,平时可能你没有留意,但是如果你在编写网络通讯程序或者用结构去操作文件或硬件通讯结构,这个问题就会浮出水面。我记得第一次导致我去看字节对齐概念资料的原因就是ARP通讯,ARP包头是一个31Byte包头。当你用一个认为是31Byte结构去处理数据包时,却总是处理不对。这一篇文章详细讨论了字节对齐要领和各种情况. 字节对齐概念 ●现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但为了CPU访问数据的快速,通常都要求数据存放的地址是有一定规律的. ●比如在32位CPU上,一般要求变量地址都是基于4位,这样可以保证CPU用一次的读写周期就可以读取变量.不按4位对齐,如果变量刚好跨4位编码,这样需要CPU两个读写周期.效率自然低下.因此,在现代的编译器都会自动把复合数据定义按4位对齐,以保证CPU以最快速度读取,这就是字节对齐(byte Alignment)产生的背景 ●字节对齐是一种典型,以空间换时间的策略的,在现代计算机拥有较大的内存的情况,这个策略是相当成功的. 为什么要字节对齐? ●加快程序访问速度 ●很多CPU对访问地址有严格要求,这时编译器必须要这个CPU的规范来实现,X86较为宽松,不对齐结构可能只 影响效率,如ARM,访问地址必须基于偶地址,MIPS和Sparc也类似,这样不对齐的地址访问会造成错误. 关于字节对齐的实现 在不同的CPU对地址对齐有不同要求,各个编译器也会采用不同策略来实现字节对齐,在随后的例子,可以对比PC下的Windows,和Linux,以有ARM下的字节对齐策略.

keil错误总结

KEIL编译错误信息表 错误代码及错误信息错误释义 error 1: Out of memory 内存溢出 error 2: Identifier expected 缺标识符 error 3: Unknown identifier 未定义的标识符 error 4: Duplicate identifier 重复定义的标识符 error 5: Syntax error 语法错误 error 6: Error in real constant 实型常量错误 error 7: Error in integer constant 整型常量错误 error 8: String constant exceeds line 字符串常量超过一行 error 10: Unexpected end of file 文件非正常结束 error 11: Line too long 行太长 error 12: Type identifier expected 未定义的类型标识符 error 13: Too many open files 打开文件太多 error 14: Invalid file name 无效的文件名 error 15: File not found 文件未找到 error 16: Disk full 磁盘满 error 17: Invalid compiler directive 无效的编译命令 error 18: Too many files 文件太多 error 19: Undefined type in pointer def 指针定义中未定义类型 error 20: Variable identifier expected 缺变量标识符 error 21: Error in type 类型错误 error 22: Structure too large 结构类型太长 error 23: Set base type out of range 集合基类型越界 error 24: File components may not be files or objectsfile分量不能是文件或对象error 25: Invalid string length 无效的字符串长度 error 26: Type mismatch 类型不匹配 error 27:error 27:Invalid subrange base type 无效的子界基类型 error 28:Lower bound greater than upper bound 下界超过上界 error 29:Ordinal type expected 缺有序类型 error 30:Integer constant expected 缺整型常量 error 31:Constant expected 缺常量 error 32:Integer or real constant expected 缺整型或实型常量 error 33:Pointer Type identifier expected 缺指针类型标识符 error 34:Invalid function result type 无效的函数结果类型 error 35:Label identifier expected 缺标号标识符 error 36:BEGIN expected 缺BEGIN error 37:END expected 缺END error 38:Integer expression expected 缺整型表达式

内存字节对齐

1.内存字节对齐和小端模式: /* 本程序是关于:编译器内存的字节对齐方式和存储时的小端对齐模式(win7 32bit) #pragma pack(n) 默认为8字节对齐,(即n=8)其中n的取值为1,2,4,8,16,32等 内存字节对齐大小和方式: 1)结构体内变量对齐: 每个变量的对齐字节数大小argAlignsize=min(#pragma pack(n),sizeof(变量)); 方式:结构体的第一个变量的初始偏移地址为0,其它变量的偏移地址(当前变量的起始地址)必须是argAlignsize的整数倍,不够整数倍的补空,不添加任何数据 2)结构体对齐: 结构体的对齐字节数大小strAlignsize=min(#pragma pack(n),sizeof(所有变量中最大字节的变量)) 方式: A.对于单独的结构体来说,结构体本身按照strAlignsize大小来对齐 B.结构体B在结构体A中时,结构体B的起始地址是结构体B的 strAlignsize大小的整数倍 小端对齐模式: 指针指着一个存储空间,存储空间地址由低到高的存储内容为:0x78,0x67,0x33,0x45 若指针为char,则获取的数据为0x78 若指针为short,则获取的数据为0x6778 若指针为long,则获取的数据为0x45336778 */ #include using namespace std; /*更改C编译器内存的缺省字节对齐方式,由默认的n=4字节,变为n字节对齐,其中n的取值为1,2,4,8,16,32等*/ #pragma pack(2) struct A { unsigned char a; unsigned short b; }; struct B { unsigned char c; unsigned int d;

寄存器sse2指令集

sse2指令集 1移动指令: 1. Movaps movaps XMM,XMM/m128 movaps XMM/128,XMM 把源存储器内容值送入目的寄存器,当有m128时,必须对齐内存16字节,也就是内存地址低4位为0. 2. Movups movups XMM,XMM/m128 movaps XMM/128,XMM 把源存储器内容值送入目的寄存器,但不必对齐内存16字节 3. Movlps movlps XMM,m64 把源存储器64位内容送入目的寄存器低64位,高64位不变,内存变量不必对齐内存16字节4. Movhps movhps XMM,m64 把源存储器64位内容送入目的寄存器高64位,低64位不变,内存变量不必对齐内存16字节. 5. Movhlps movhlps XMM,XMM 把源寄存器高64位送入目的寄存器低64位,高64位不变. 6. Movlhps movlhps XMM,XMM 把源寄存器低64位送入目的寄存器高64位,低64位不变. 7. movss movss XMM,m32/XMM 原操作数为m32时:dest[31-00] <== m32 dest[127-32] <== 0 原操作数为XMM时: dest[31-00] <== src[31-00] dest[127-32]不变 8. movmskpd movmskpd r32,XMM 取64位操作数符号位 r32[0] <== XMM[63] r32[1] <== XMM[127] r32[31-2] <== 0

9. movmskps movmskps r32,XMM 取32位操作数符号位 r32[0] <== XMM[31] r32[1] <== XMM[63] r32[2] <== XMM[95] r32[3] <== XMM[127] r32[31-4] <== 0 10. pmovmskb pmovmskb r32,XMM 取16位操作数符号位具体操作同前 r[0] <== XMM[7] r[1] <== XMM[15] r[2] <== XMM[23] r[3] <== XMM[31] r[4] <== XMM[39] r[5] <== XMM[47] r[6] <== XMM[55] r[7] <== XMM[63] r[8] <== XMM[71] r[9] <== XMM[79] r[10] <== XMM[87] r[11] <== XMM[95] r[12] <== XMM[103] r[13] <== XMM[111] r[14] <== XMM[119] r[15] <== XMM[127] r[31-16] <== 0 11. movntps movntps m128,XMM m128 <== XMM 直接把XMM中的值送入m128,不经过cache,必须对齐16字节. 12. Movntpd movntpd m128,XMM m128 <== XMM 直接把XMM中的值送入m128,不经过cache,必须对齐16字节. 13. Movnti movnti m32,r32 m32 <== r32 把32寄存器的值送入m32,不经过cache. 14. Movapd movapd XMM,XMM/m128 movapd XMM/m128,XMM 把源存储器内容值送入目的寄存器,当有m128时,必须对齐内存16字节 15. Movupd movupd XMM,XMM/m128 movapd XMM/m128,XMM 把源存储器内容值送入目的寄存器,但不必对齐内存16字节. 我感觉这两条指令同movaps 和movups 指令一样,不过又不确定. 16. Movlpd movlpd XMM,m64 movlpd m64,XMM 把源存储器64位内容送入目的寄存器低64位,高64位不变,内存变量不必对齐内存16字节

软件测试总结

一、软件测试流程 整体流程:测试需求分析,测试计划编写,测试用例编写,测试执行,缺陷记录,回归测试,判断测试结束,测试报告提交。 测试流程依次如下: 1.需求:阅读需求,理解需求,与客户、开发、架构多方交流,深入了解需求。--testing team。一般而言, 需求分析包括软件功能需求分析、测试环境需求分析等 2.测试计划: 根据需求估算测试所需资源(人力、设备等)、所需时间、功能点划分、如何合理分配安排资 源等。---testing leader or testing manager。测试目的、测试环境、测试方法、测试用例、测试工具 3.用例设计:根据测试计划、任务分配、功能点划分,设计合理的测试用例。---testing leader, senior tester 4.执行测试:根据测试用例的详细步骤,执行测试用例。--every tester(主要是初级测试人员) 5.执行结果记录和bug记录:对每个case记录测试的结果,有bug的在测试管理工具中编写bug记录。--every tester(主要是初级测试人员) 6.defect tracking(缺陷跟踪):追踪leader分配给你追踪的bug.直到 bug fixed。--every tester 7.测试报告:通过不断测试、追踪,直到被测软件达到测试需求要求,并没有重大bug. 8.用户体验、软件发布等…… 总结:项目立项后,开始写测试计划,根据需求编写测试需求,根据测试需求编写测试用例,根据测试用例执行测试,把没用通过的测试用例写成测试缺陷报告,进行回归测试,直到测试的结束编写测试总结,这每个步骤都需要审核通过。 二、软件测试方法 1、黑盒测试 概念:完全不考虑程序或软件的内部逻辑结构和处理过程的情况下,根据需求分析编写并执行测试用例,在程序或软件的界面上进行测试。 主要目的:(1)是否有不正确的或者遗漏的功能。(2)能都正确输入和输出结果。(3)是否有数据结构错误或外部信息访问错误。(4)性能上是否满足要求。(5)是否有初始化或终止行错误。 优点:(1)即使程序发生变化,之前的测试用例依然可以使用;(2)测试用例和软件开发可以同时进行,加快了测试和开发的速度。 局限性:(1)难以查找问题的原因和位置;(2)黑盒测试的依据是需求分析,所以无法发现需求分析上的错误。 测试方法: (1)等价类划分 包括有效等价类(符合需求规格说明)和无效等价类(违反需求规格说明)。 a)确定输入取值范围:可以确定一个有效等价类和两个无效等价类 b)确定输入某个值:可以确定一个有效等价类和两个无效等价类

内存对齐

C语言内存对齐 分类:C/C++2012-04-05 20:54 1070人阅读评论(1) 收藏举报语言c编译器平台oo 首先由一个程序引入话题: 1//环境:vc6 + windows sp2 2//程序1 3 #include 4 5using namespace std; 6 7struct st1 8 { 9char a ; 10int b ; 11short c ; 12 }; 13 14struct st2 15 { 16short c ; 17char a ; 18int b ; 19 }; 20 21int main() 22 { 23 cout<<"sizeof(st1) is "<

程序的输出结果为: sizeof(st1) is 12 sizeof(st2) is 8 问题出来了,这两个一样的结构体,为什么sizeof的时候大小不一样呢? 本文的主要目的就是解释明白这一问题。 内存对齐,正是因为内存对齐的影响,导致结果不同。 对于大多数的程序员来说,内存对齐基本上是透明的,这是编译器该干的活,编译器为程序中的每个数据单元安排在合适的位置上,从而导致了相同的变量,不同声明顺序的结构体大小的不同。 那么编译器为什么要进行内存对齐呢?程序1中结构体按常理来理解sizeof(st1)和sizeof(st2)结果都应该是7,4(int) + 2(short) + 1(char) = 7 。经过内存对齐后,结构体的空间反而增大了。 在解释内存对齐的作用前,先来看下内存对齐的规则: 1、对于结构的各个成员,第一个成员位于偏移为0的位置,以后每个数据成员的偏移量必须是min(#pragma pack()指定的数,这个数据成员的自身长度) 的倍数。 2、在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。 #pragma pack(n) 表示设置为n字节对齐。VC6默认8字节对齐 以程序1为例解释对齐的规则:

C语言内存字节对齐规则20180718

C语言内存字节对齐规则 在C语言面试和考试中经常会遇到内存字节对齐的问题。今天就来对字节对齐的知识进行小结一下。 首先说说为什么要对齐。为了提高效率,计算机从内存中取数据是按照一个固定长度的。以32位机为例,它每次取32个位,也就是4个字节(每字节8个位,计算机基础知识,别说不知道)。字节对齐有什么好处?以int型数据为例,如果它在内存中存放的位置按4字节对齐,也就是说1个int的数据全部落在计算机一次取数的区间内,那么只需要取一次就可以了。如图a-1。如果不对齐,很不巧,这个int数据刚好跨越了取数的边界,这样就需要取两次才能把这个int的数据全部取到,这样效率也就降低了。 图:a-1 图:a-2 内存对齐是会浪费一些空间的。但是这种空间上得浪费却可以减少取数的时间。这是典型的一种以空间换时间的做法。空间与时间孰优孰略这个每个人都有自己的看法,但是C 语言既然采取了这种以空间换时间的策略,就必然有它的道理。况且,在存储器越来越便宜的今天,这一点点的空间上的浪费就不算什么了。 需要说明的是,字节对齐不同的编译器可能会采用不同的优化策略,以下以GCC为例讲解结构体的对齐. 一、原则: 1.结构体内成员按自身按自身长度自对齐。

自身长度,如char=1,short=2,int=4,double=8,。所谓自对齐,指的是该成员的起始位置的内存地址必须是它自身长度的整数倍。如int只能以0,4,8这类的地址开始 2.结构体的总大小为结构体的有效对齐值的整数倍 结构体的有效对齐值的确定: 1)当未明确指定时,以结构体中最长的成员的长度为其有效值 2)当用#pragma pack(n)指定时,以n和结构体中最长的成员的长度中较小者为其值。 3)当用__attribute__ ((__packed__))指定长度时,强制按照此值为结构体的有效对齐值 二、例子 1) struct AA{ //结构体的有效对齐值为其中最大的成员即int的长度4 char a; int b; char c; }aa 结果,sizeof(aa)=12 何解?首先假设结构体内存起始地址为0,那么地址的分布如下 0 a 1 2 3 4 b 5 b 6 b 7 b 8 c 9 10 11 char的字对齐长度为1,所以可以在任何地址开始,但是,int自对齐长度为4,必须以4的倍数地址开始。所以,尽管1-3空着,但b也只能从4开始。再加上c后,整个结构体的总长度为9,结构体的有效对齐值为其中最大的成员即int的长度4,所以,结构体的大小向上扩展到12,即9-11的地址空着。 2) //结构体的有效对齐值为其中最大的成员即int的长度4 struct AA{ char a; char c; int b; }aa sizeof(aa)=8,为什么呢 0 a 1 c

stm32中使用#pragma pack(非常有用的字节对齐用法说明)

#pragma pack(4) //按4字节对齐,但实际上由于结构体中单个成员的最大占用字节数为2字节,因此实际还是按2字节对齐 typedef struct { char buf[3];//buf[1]按1字节对齐,buf[2]按1字节对齐,由于buf[3]的下一成员word a是按两字节对齐,因此buf[3]按1字节对齐后,后面只需补一空字节 word a; //#pragma pack(4),取小值为2,按2字节对齐。 }kk; #pragma pack() //取消自定义字节对齐方式 对齐的原则是min(sizeof(word ),4)=2,因此是2字节对齐,而不是我们认为的4字节对齐。 这里有三点很重要: 1.每个成员分别按自己的方式对齐,并能最小化长度 2.复杂类型(如结构)的默认对齐方式是它最长的成员的对齐方式,这样在成员是复杂类型时,可以最小化长度 3.对齐后的结构体整体长度必须是成员中最大的对齐参数的整数倍,这样在处理数组时可以保证每一项都边界对齐 补充一下,对于数组,比如: char a[3];这种,它的对齐方式和分别写3个char是一样的.也就是说它还是按1个字节对齐. 如果写: typedef char Array3[3]; Array3这种类型的对齐方式还是按1个字节对齐,而不是按它的长度. 不论类型是什么,对齐的边界一定是1,2,4,8,16,32,64....中的一个. 声明: 整理自网络达人们的帖子,部分参照MSDN。 作用: 指定结构体、联合以及类成员的packing alignment; 语法: #pragma pack( [show] | [push | pop] [, identifier], n ) 说明: 1,pack提供数据声明级别的控制,对定义不起作用; 2,调用pack时不指定参数,n将被设成默认值; 3,一旦改变数据类型的alignment,直接效果就是占用memory的减少,但是performance会下降; 语法具体分析: 1,show:可选参数;显示当前packing aligment的字节数,以warning message的形式被显示; 2,push:可选参数;将当前指定的packing alignment数值进行压栈操作,这里的栈是the internal compiler stack,同时设置当前的packing alignment为n;如果n没有指定,则将当前的packing alignment数值压栈; 3,pop:可选参数;从internal compiler stack中删除最顶端的record;如果没有指定n,则当前栈顶record即为新的packing alignment 数值;如果指定了n,则n将成为新的packing aligment数值;如果指定了identifier,则internal compiler stack中的record都将被pop 直到identifier被找到,然后pop出identitier,同时设置packing alignment数值为当前栈顶的record;如果指定的identifier并不存在于internal compiler stack,则pop操作被忽略; 4,identifier:可选参数;当同push一起使用时,赋予当前被压入栈中的record一个名称;当同pop一起使用时,从internal compiler stack 中pop出所有的record直到identifier被pop出,如果identifier没有被找到,则忽略pop操作; 5,n:可选参数;指定packing的数值,以字节为单位;缺省数值是8,合法的数值分别是1、2、4、8、16。 重要规则: 1,复杂类型中各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个类型的地址相同; 2,每个成员分别对齐,即每个成员按自己的方式对齐,并最小化长度;规则就是每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数中较小的一个对齐; 3,结构体、联合体或者类的数据成员,第一个放在偏移为0的地方;以后每个数据成员的对齐,按照#pragma pack指定的数值和这个数据成员自身长度两个中比较小的那个进行;也就是说,当#pragma pack指定的值等于或者超过所有数据成员长度的时候,这个指定值的大小将不产生任何效果; 4,复杂类型(如结构体)整体的对齐是按照结构体中长度最大的数据成员和#pragma pack指定值之间较小的那个值进行;这样当数据成员为复杂类型(如结构体)时,可以最小化长度; 5,复杂类型(如结构体)整体长度的计算必须取所用过的所有对齐参数的整数倍,不够补空字节;也就是取所用过的所有对齐参数中最大的那个值的整数倍,因为对齐参数都是2的n次方;这样在处理数组时可以保证每一项都边界对齐; 对齐的算法:由于各个平台和编译器的不同,现以本人使用的gcc version 3.2.2编译器(32位x86平台)为例子,来讨论编译器对struct 数据结构中的各成员如何进行对齐的。 在相同的对齐方式下,结构体内部数据定义的顺序不同,结构体整体占据内存空间也不同,如下: 设结构体如下定义: struct A { int a; //a的自身对齐值为4,偏移地址为0x00~0x03,a的起始地址0x00满足0x00%4=0;

JAVA重点知识总结

CoreJava部分 1简述下java基本数据类型及所占位数,java基本数据类型:4类8种 整数类型:byte(1byte),short(2byte),int(4byte),long(8byte) 浮点类型:float(4byte),double(8byte) 字符类型:char(2byte) 逻辑类型:boolean(false/true1byte) 2说出5个启动时异常 ------RunTimeException ------NullPointerException ------ArrayIndexOutOfBoundsException ------ClassCastException ------NumberFormatException 3HashMap和HashTable的区别: 1HashMap允许空键值对,HashTable不允许 2HashMap不是线程安全的,HashTable是 3HashMap直接实现Map接口,HashTable继承Dictionary类 4.ArrayList,Vector,LinkedList存储性能和区别 它们都实现了List接口 ArrayList和Vector都是基于数组实现的 LinkedList基于双向循环链表(查找效率低,添加删除容易) ArrayList不是线程安全的而Vector是线程安全的,所有速度上ArrayList高于Vector 5.Collection和Collections的区别 Collection是集合类的上级接口,继承与他的接口主要有Set和List Collections是针对集合类的一个帮助类,他提供一系列静态方法实现对各种集合的搜索、排序、线程安全等操作。 6List、Map、Set三个接口,存取元素时,各有什么特点? List以特定次序来持有元素,可有重复元素。 Set无法持有重复元素,内部排序 Map保存key-value值,value可多值。 7final,finally,finalize的区别 Final用于声明属性,方法和类,分别表示属性不可变,方法不可覆盖,类不可继承Finally是异常处理语句结构的一部分,表示总是执行 Finalize是Object类的一个方法,在垃圾收集时的其他资源回收,例如关闭文件等。8Overload和Override的区别。Overload的方法是否可以改变返回值的类型? 方法的重写Override和重载Overload是Java多态的不同表现。 重写Overriding是父类与子类之间多态的一种表现,方法名,参数列表返回值类型都得与父类的方法一致。 重载Overloading是一种类中多态的一种表现。重载的方法是可以改变返回值类型的。9用一句话总结一下冒泡排序 依次比较相邻的两个数,将小数放在前面,大数放在后面。 10实现线程安全的两种方式 1)synchronized方法:通过在方法声明加入synchronized关键字来声明synchronized方法

C语言内存对齐

解析C语言结构体对齐(内存对齐问题) C语言结构体对齐也是老生常谈的话题了。基本上是面试题的必考题。内容虽然很基础,但一不小心就会弄错。写出一个struct,然后sizeof,你会不会经常对结果感到奇怪?sizeof的结果往往都比你声明的变量总长度要大,这是怎么回事呢? 开始学的时候,也被此类问题困扰很久。其实相关的文章很多,感觉说清楚的不多。结构体到底怎样对齐? 有人给对齐原则做过总结,具体在哪里看到现在已记不起来,这里引用一下前人的经验(在没有#pragma pack宏的情况下): 原则1、数据成员对齐规则:结构(struct或联合union)的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员存储的起始位置要从该成员大小的整数倍开始(比如int在32位机为4字节,则要从4的整数倍地址开始存储)。 原则2、结构体作为成员:如果一个结构里有某些结构体成员,则结构体成员要从其内部最大元素大小的整数倍地址开始存储。(struct a里存有struct b,b里有char,int,double等元素,那b应该从8的整数倍开始存储。) 原则3、收尾工作:结构体的总大小,也就是sizeof的结果,必须是其内部最大成员的整数倍,不足的要补齐。 这三个原则具体怎样理解呢?我们看下面几个例子,通过实例来加深理解。 例1:struct { short a1; short a2; short a3; }A; struct{ long a1; short a2; }B; sizeof(A) = 6; 这个很好理解,三个short都为2。 sizeof(B) = 8; 这个比是不是比预想的大2个字节?long为4,short为2,整个为8,因为原则3。 例2:struct A{ int a; char b; short c; }; struct B{ char b; int a; short c; }; sizeof(A) = 8; int为4,char为1,short为2,这里用到了原则1和原则3。 sizeof(B) = 12; 是否超出预想范围?char为1,int为4,short为2,怎么会是12?还是原则1和原则3。

软件问题分析报告

问题分析报告

问题一:总台业务软件启动时出现kernelBase.dll错误问题 1、抓图 2、测试条件、方法及结果 1)测试一(win10企业环境测试) 条件:取消软件兼容模式 方法:经过多次运行关闭程序 结果:4次中就会出现一次该问题 2)测试二(win10企业环境测试) 条件:启动软件兼容模式 方法:经过多次运行关闭程序 结果:运行十几次也不见得会出现一次该问题 3)测试三(win10企业环境测试) 条件:关闭软件兼容模式且源码的工程文件中注释掉剪贴板代码 方法:经过多次运行关闭程序 结果:没有发现一次该问题。另外发现软件的启动前不用等待操作系统兼容某个操作系统所浪费的时间。 4)测试四(WINDOW Server 2008 R2企业版) 条件:关闭兼容模式

方法:多次运行 结果:一切正常 5)测试五(WINDOW Server 2008 R2企业版) 条件:打开兼容模式(win95,win98) 方法:运行一次 结果:每运行一次都会提示没有版本信息等提示。 6)测试六(WINDOW Server 2008 R2企业版) 条件:打开兼容模式(NT4.0 sp5及高版本) 方法:多次运行 结果:正常 7)测试七(WINDOW Server 2008 R2企业版) 条件:打开、关闭兼容模式 方法:同时打开软件两次 结果:不管是打开或是关闭模式,必定会引起剪贴板错误(kernelBase.dll问题) 8)测试八(WIN10企业版) 条件:打开、关闭兼容模式 方法:同时打开软件两次 结果:不管是打开或是关闭模式,必定会引起剪贴板错误(kernelBase.dll问题) 3、问题根源 1)问题出现在工程文件中使用的剪贴板功能处 2)兼容性变化的原因 1>文件兼容性的存储方式是以文字名为唯一的,所以在该文件改名后兼 容性就会被重置为取消状态。 2>生成是设置为了兼容模式,发给客户就没有兼容属性,是因为客户电 脑上从未设置过该属性,而文件被COPY过来后会重置,默认为取消兼容模式。3)不管是否开启兼容模式,只要在很短的时间打开两次程序,则会报剪贴板错

相关文档
最新文档