丁二烯抽提二装置工艺流程简述(最终版)

丁二烯抽提二装置工艺流程简述(最终版)
丁二烯抽提二装置工艺流程简述(最终版)

第一萃取蒸馏部分

在DMF存在的情况下,凡与丁二烯相比其相对挥发度高于1.0的组分,都在这部分除去。这部分设备有:原料汽化罐,第一萃取蒸馏塔(分为两个塔,共有238块塔板)以及装有14层塔板的第一汽提塔。

C4原料从乙烯装置A单元进入原料储罐后用泵送来经流量控制进入原料汽化罐。原料汽化罐的热源由第一、第二汽提塔底的热溶剂提供。

汽化的C4原料送至第一萃取蒸馏塔的中部(进料板104层,114层,125层)。DMF溶剂经流量控制进入T -1101A顶部第230层塔板上,溶剂进料温度约40℃,蒸汽压约9毫米汞柱。塔顶8层塔板用于丁烷丁烯馏分中完全脱除溶剂的精馏段。塔的操作压力约为0.38MPa(表压),塔顶操作温度约为43.5℃。根据进料组成的变化,适当调节溶剂进料量和回流量,以控制丁二烯的损失量和塔釜液的组成,丁烷丁烯馏出液的1,3-丁二烯含量保持在0.3%(重量)以下。塔顶丁烷丁烯抽余液直接送至MTBE装置或A单元罐区。

萃取蒸馏必要的回流经流量调节,经过上述8层塔板的精馏段,向下流至溶剂进料塔板。

顺2-丁烯是比1,3-丁二烯难溶解的一种组分,在第一萃取蒸馏塔中它是最难于分离出来的。按GPB工艺,通常第一萃取蒸馏塔底的顺2-丁烯含量约为总烃的2.5%,而反2-丁烯含量约为总烃的0.05%。

顺2-丁烯在第二分馏塔(T-1302)随塔底物料脱除,但反2-丁烯不易在直接蒸馏部分脱除。

因此,第一萃取蒸馏塔的分离效果对最终丁二烯产品的纯度有影响。在GPB工艺中提纯丁二烯的经济方法是在第一萃取蒸馏部分脱除全部反2-丁烯,随之脱除部分顺2-丁烯。而在第二分馏塔脱除剩余的顺2-丁烯。

在第一萃取蒸馏塔(T-1101B)的C-3层塔板上,含烃(主要是含丁二烯和易溶组分)的溶剂被预热到86℃。这些溶剂先通过第一萃取蒸馏塔的第一、第二溶剂再沸器,被来自汽提塔底的热溶剂加热到120℃。然后,在第一萃取塔蒸汽再沸器中把它进一步加热到大约130℃。调整蒸汽量使塔底温度保持恒定。塔底操作温度应保持低于145℃,以避免丁二烯聚合,而引起结垢事故。

在这样的条件下,溶剂溶解的丁二烯量比原料中含的丁二烯要多。因此,多出来的那部分(第一汽提塔T-1102汽提蒸汽的一部分)应该在压缩后返回第一萃取蒸馏塔底,以保持第一萃取蒸馏塔的物料平衡。

第一汽提塔T-1102在常压下操作。汽提塔底压力由于塔的压力降而比塔顶压力稍有增加。塔釜温度也升高至163℃,这是塔釜压力下溶剂的沸点。

来自第一萃取蒸馏塔底的富溶剂经流量控制,靠压差送入第一汽提塔,将烃类(主要是丁二烯和较易溶的组分)从溶剂中汽提出来。被汽提出的烃通过串联的两个冷凝器冷却至40℃,同时溶剂蒸汽在冷凝器中被冷凝。第一冷凝器以蒸汽冷凝液作为冷介质,回收烃的显热和溶剂的冷凝热。在第二冷凝器中,用冷却水进一步将烃从85℃冷却到40℃。冷凝下来的溶剂主要部分作为回流返回到第一汽提塔顶,剩余的送到溶剂净化部分(T-1401)脱除低沸点杂质如:水和丁二烯二聚物。

第一汽提塔底热溶剂,首先作为第一萃取蒸馏塔的热源,然后依次作为第二分馏塔溶剂再沸器、C4原料汽化器和第一分馏塔溶剂再沸器的热源,回收其热量。

被冷却的烃经丁二烯气体压缩机压缩,送到第二萃取蒸馏塔(T-1201)。如上所述,其中一部分由出口压力控制返回第一萃取塔底,其余部分回到压缩机入口以维持入口压力。为使压缩气温度低于80℃,防止丁二烯聚合,使用一台二段螺杆压缩机。由上述相同理由,出口压力应保持低于0.600MPa(表压)。

第二萃取蒸馏部分

这部分由有64层塔板的第二萃取蒸馏塔(T-1201),有10层塔板的丁二烯回收塔(T-1202)和有20层塔板的第二汽提塔(T-1203)组成。

在第二萃取塔的进料气体中,主要含有丁二烯和比丁二烯更易溶于DMF的组分,如:乙烯基乙炔、乙基乙炔、1,2-丁二烯、碳五及甲基乙炔。

在DMF溶剂中,甲基乙炔的相对挥发度与1,3-丁二烯相近。大部分甲基乙炔没有在这部分脱除,而进入下一部分(直接蒸馏部分)脱除。

乙烯基乙炔在直接蒸馏部分与顺2-丁烯形成共沸物。因此,应在直接蒸馏部分前全部脱除乙烯基乙炔。而在第二萃取蒸馏部分恰好可以很容易地将其脱除。所有剩余的易溶组分可以在直接蒸馏部分被容易地脱除。

与第一萃取蒸馏塔一样,溶剂通过流量调节,由泵送入第二萃取蒸馏塔顶第54层塔板。同样,该塔顶部的10层塔板也与第一萃取蒸馏部分一样,是为了将馏出物中的溶剂全部脱除。

塔顶气体中,主要含丁二烯和萃取部分没被除掉的一小部分杂质。它的冷凝液一部分打回流,剩余部分进入直接蒸馏部分,进行进一步的蒸馏。

来自T-1201塔底的富溶剂(其操作温度130℃,操作压力0.38MPa表压)仍然含有相当数量的1,3-丁二烯。为了回收丁二烯,将这部分溶剂送至丁二烯回收塔(T-1202)。

第二萃取蒸馏塔底的热溶剂,首先与该塔低温物流换热,以提供一部分塔底所需热量。塔底溶剂靠T-1201和T-1202之间的压差输送。

丁二烯回收塔塔顶气体(主要含有1,3-丁二烯和一些烃)返回压缩机入口,以保持第二萃取蒸馏部分的物料平衡。

来自丁二烯回收塔底的溶剂用泵送至第二汽提塔第11层塔板,在塔里汽提出溶剂中的烃。第二汽提塔再沸器的热源是水蒸汽,而塔底溶剂用泵循环,该溶剂热量与第一萃取蒸馏部分的溶剂一起被用作再沸器的热源。

第二汽提塔顶气体是由来自界区的甲烷气稀释,这一措施是为了降低塔顶气体中乙烯基乙炔的浓度,因为乙烯基乙炔含量不稳定,且冬季时期容易冻凝。

二甲胺(DMA)脱除部分

为保证产品中DMA含量低于1ppm(重量),第二萃取蒸馏塔的馏出物通过装有拉西环的二甲胺抽提塔,然后送至丁二烯分离罐,完全除去该物流中的悬浮水。

以冷却到40℃以下的蒸汽冷凝液为溶剂,与塔底来的丁二烯逆流接触,含有二甲胺及烃的蒸汽冷凝液,在丁二烯被闪蒸后,气相去尾气排出系统,废水经P-1205A/B送出装置处理。

直接蒸馏部分

通过第一和第二萃取蒸馏部分后,大部分杂质被脱除了,但仍剩下一些在DMF溶剂中与1,3-丁二烯的相对挥发度接近于1.0的杂质。这些杂质在有70层塔板的第一分馏塔(T-1301)和有85层塔板的第二分馏塔(T -1302)中脱除。

丁二烯中的甲基乙炔和饱和水在第一分馏塔被脱除。该塔塔顶操作压力(随着馏出物中甲基乙炔的含量和冷却水的温度变化)大约是0.41MPa(表压)。塔顶操作温度为39℃。C4原料中甲基乙炔的含量越多,在塔顶气体中丁二烯损失就越大。

该塔大部分塔顶气体冷凝作回流,同时抽出一部分,将这部分含有甲基乙炔的气体和T-1203顶释放出的浓度较高的炔烃一起送到装置外做燃料用。

来自汽提塔底的热溶剂经过第一和第二次热回收后,被用于第一分馏塔再沸器。

第一分馏塔塔底物料由液面控制,用泵送入第二分馏塔。

第一分馏塔进料中的饱和水作为与丁二烯的共沸物也被脱除。在进料中大约有1200PPm(重量)的水,塔底产品含水量可降至20PPm(重量)以下。馏出的水应在有足够体积的第一分馏塔回流罐(V-1301)里保证停留时间,以避免回流带悬浮水。然后这部分水送至丁二烯清洗罐(V-1203)。

将第一和第二萃取蒸馏部分没脱除的顺2-丁烯,1,2-丁二烯,乙基乙炔及碳五烃在第二分馏塔脱除。此塔塔顶操作条件约为0.39MPa(表压),44℃,而塔底操作条件约为0.45MPa(表压),60℃。

塔顶气体冷凝作为回流和丁二烯产品。然后丁二烯产品在丁二烯产品冷却器再次冷却至27℃。在第二分馏塔冷凝器前的塔顶气体中应加入新鲜TBC,以防止聚合物生成。

塔底物料由塔底温度控制排入热火炬,以保证产品质量。

作为T-1302塔底二个再沸器所需的热源,除了热溶剂用于第二分馏塔溶剂再沸器外,还有蒸汽冷凝液,这些蒸汽冷凝液从所有蒸汽再沸器及来自T-1102塔顶冷凝器回收热量后的蒸汽冷凝液一起汇集到蒸汽冷凝液罐(V-1303)中,此蒸汽冷凝液及进入蒸汽冷凝液喷射器的蒸汽一起,作为第二分馏塔蒸汽冷凝液再沸器的热源。

塔底液面是通过蒸汽冷凝液流量调节器来调整的,而去蒸汽喷射器的新鲜蒸汽作为塔底再沸器的补充蒸汽。

溶剂净化部分

萃取蒸馏部分的循环溶剂在这部分进行精制。这部分也可以从作为工艺排液中收集起来的污溶剂中提纯出DMF。

这样,这些溶剂要通过高沸点或低沸点物的脱除,或两种脱除都通过。这要根据溶剂中含有的杂质来决定,这些溶剂的处理原则上分类如下:

在溶剂再生釜(H-1405A/B)脱除高沸物,它的进料约为萃取蒸馏部分循环溶剂的0.5%。

通过溶剂精制塔(T-1401)进行脱除低沸物。这部分溶剂是循环溶剂的0.7%,是第一和第二汽提塔回流中抽出的一部分。

由工艺排污受槽所收集的溶剂,通过以上两种或其中一种处理。

有40层塔板的溶剂精制塔在常压下操作,以脱除丁二烯二聚物及随粗原料带入的水。冷凝液进入冷凝液罐

的沉降器部分,在那里分离为油(二聚物)和水。然后水被送至废水处理装置,而油(二聚物)作为燃料。由于除了工艺排液进料的情况以外,塔底不存在聚合物,所以将塔底物料送至精制溶剂受槽,做为泵密封溶剂。

脱除高沸物时,DMF在减压下回收,含焦油的DMF在一定时间内随着再生釜的定量进料而被逐渐提浓,停止溶剂进料后用间歇的方法进一步回收DMF。

这样,回收的溶剂送至精制溶剂受槽,也作机械密封用或输送至溶剂贮槽作为循环溶剂。焦油状物质排放至焦油槽中,做燃料使用。

洗涤水处理部分

每年停车时排出含有溶剂的设备洗涤水,首先将其贮存在废水罐中,然后在溶剂精制塔以100kg/h的速度逐渐处理这些水。将塔顶含DMF较少的水用泵打到装置外,再进行处理。

主、副、中间产品生产原理:

裂解碳四进入BT-101A/B(在DMF存在下,将混合C4中比1,3丁二烯难溶于DMF的组分从塔顶排出(主要成分为丁烷丁烯)BS-4116丁二烯≤0.3%。易溶组分BD-1,3、BD-1,2、EA等与溶剂一起进入BT-102塔。塔底反丁烯含量低于0.03%以确保丁二烯纯度,经BT-102、BC-101去BT-201,主要成分为丁二烯(BS-4118),反丁烯-2≤0.05%,顺丁烯-2≤2.5%;BT-201的作用主要是脱除易溶组分乙烯基乙炔等(从粗丁烯中分离出类似VA、EA、及C5这样的难溶组分,VA在该塔中完全从粗丁烯中脱除(VA不合格原因在此塔),粗丁二烯(BS-4205)VA≤5PPM从塔顶经BT-204去BT-301;乙烯基乙炔随溶剂经BT-202去BT-203,BT-203塔顶加入甲烷稀释气(因为塔顶馏出气中含有大量的VA,VA活性高,不稳定,在一定的浓度和压力下,易引起爆炸.因此在塔顶馏出线上加入甲烷稀释气,目的是降低尾气中VA的浓度和分压,确保在安全范围内操作.),BS-4209(甲烷:35% VA≤25%);BT-301主要作用是在塔顶脱除轻组分甲基乙炔等(采用横沸精馏原理,利用进料中的饱和水和MA等形成低沸点的共沸物,使MA从塔顶蒸出而脱除(BS-4305)。水值、MA不合格原因在此),BS-4305甲基乙炔44%丁二烯35%;粗丁二烯从BT-301塔底去BT-302,BT-302主要作用是在塔底脱除重组分(采用普通精馏原理。利用混合液中各组分具有不同挥发度在塔顶得到浓缩的轻组分,丁二烯产品在塔底得到重组分。使顺丁烯、1,2丁烯、EA及C5等从塔底脱除。顺丁烯EA不合格原因在此.措施:加大回流量和釜液排放量),塔底BS-4306(丁二烯含量10%,顺丁烯≥70%)塔顶为丁二烯产品,BS-4310丁二烯≥99.5%、总炔≤20PPM、VA≤5PPM,水值≤50PPM、TBC(20~70PPM)。循环溶剂BS-4102中焦油含量3~5%。

各塔工作原理:BT-101AB萃取塔脱除难溶组分;BT-102汽提塔;BT-201萃取塔脱除易溶组分;BT-202丁二烯回收塔;BT-203汽提塔;BT-204二甲胺脱除塔;BT-301精馏塔脱除轻组分;BT-302精馏塔脱除重组分。

检修开停工注意事项:

1.抽提开车之前,整个系统氧含量要置换到0.01~0.05%之间。是因为一定量氧的存在,在精馏部分易行成丁二烯的过氧化物,形成聚合物影响生产。

2.正常停车倒空后BT-301、BT-302要用NANO3水溶液洗涤(5% 60~70℃洗涤24小时),目的是在于破坏丁二烯过氧化物。以保障进入设备内清理的安全。

3.大检修过后开车时,产品水值易不合格。次要原因BT-301塔底水值一时降不下来;主要原因是BT-302塔附属设备、管线死角存有积水,开车前排放不全面、不彻底。

8

9

10

丁二烯4104采样点分析全组成,频率按1次/8h,,采BS-4104点上两套原始记录和报表。

11

丁二烯抽提二装置工艺流程简述

15

丁二烯工艺设计讲解

目录 1 引言 (37) 2 工艺路线 (37) 2.1 生产的基本原理 (37) 2. 2 工艺路线的对比与选择 (37) 2. 3 DMF法碳四抽提丁二烯装置的特点 (38) 2. 4 物料衡算 (39) 2. 5 装置工艺流程图 (40) 2. 6 工艺流程说明 (40) 2.6.1 第一萃取精馏部分 (40) 2.6.2 第二萃取精馏部分 (42) 2.6.3 丁二烯净化部分 (43) 2.6.4 溶剂净化部分 (44) 2. 7 工艺控制 (44) 2.7.1 原料质量变化对产品的影响及调节方法 (45) 2.7.2 主要工艺条件的变化对产品质量的影响 (46) 结论 (49) 参考文献 (50) 致谢 (51)

1 引言 丁二烯来源:从油田气、炼厂气和烃类裂解制乙烯的副产品中都可获得碳四馏分。碳四系列的基本有机化工产品主要有丁二烯、顺丁烯二酸酐、聚丁烯、二异丁烯、仲丁醇、甲乙酮等,它们是有机化学工业的重要原料。无论是裂解气深冷分离得到的碳四馏分,还是经丁烯氧化脱氢得到的粗丁二烯,均是以碳四各组分为主的烃类混合物,主要含有丁烷、正丁烯、异丁烯、丁二烯,它们都是重要的有机化工原料[1,2]。 C4的分离与C2、C3馏分相比,其最大的特点是各组分之间的相对挥发度很小,使分离变得更加困难,采用普通精馏方法在通常条件下将其分离是不可能的。为此工业生产中常用在碳四馏分中加入一种溶剂进行萃取的特殊精馏来实现对C4馏分的分离[3-5]。 2 工艺路线 2.1 生产的基本原理 由于碳四原料中大部分组分与丁二烯-1,3之间的沸点较为接近,而且相互之间有共沸物产生,这样采用一般的精馏方法很难进行分离开,所以为了得到目标产品(丁二烯)就必须采用特殊分离方法——萃取精馏。萃取精馏的原理就是:向被分离物料碳四原料中加入一种新的组分——萃取溶剂二甲基甲酰胺(DMF),它的加入使得原来物料中各组分之间的相对挥发度发生明显变化,从而使物料中难以用普通精馏方法分离的组分如:顺丁烯-2和反丁烯-2等组分在第一萃取精馏塔分离出来,乙基乙炔和乙烯基乙炔等组分在第二萃取精馏塔分离出来。 经过两段萃取精馏得到的粗丁二烯再经过两段普通精馏即得到产品丁二烯。普通精馏的原理是利用混合物中各组分在相同压力下相对挥发度不同的特点,使混合物处于气—液两相共存时各组分在液相和气相中的分配量不同从而将各组分分离开。 甲基乙炔和水等轻组分在第一精馏塔顶脱除,第二精馏塔则用于脱除在萃取精馏部分未能完全脱除的顺丁烯-2、丁二烯-1,2、乙基乙炔、碳五等重组分,塔顶得到产品丁二烯。 2. 2 工艺路线的对比与选择 目前世界上大规模工业化生产丁二烯-1,3的方法主要有三种:乙腈法(ACN)、二甲基甲酰胺法(DMF)和N-甲基砒硌烷酮法(BASF)。

叶黄素测定结果对比修改版

20120330叶黄素测定对比 叶黄素是饲料的非营养性添加剂,它有突出的生理着色作用。能用在家禽,水产动物和鸟的蛋黄、皮肤、羽毛以及肉的着色上,并有提高禽畜的免疫力的作用。中心实验室测定饲料中叶黄素含量的方法是使用有机溶剂提取叶黄素后,使用分光光度计测定提取液的吸光度,通过比色法计算得到叶黄素的含量。 分析的简洁步骤如下:称取试样3克左右于100mL干燥棕色容量瓶中,精确到0.1mg,加入30mL有正己烷、无水乙醇、甲苯、丙酮配成的混合溶剂和2mL40%氢氧化钾乙醇溶液,在56℃水浴20分钟,冷清后30ml正己烷,再用10%硫酸钠溶液定容,摇匀后放在暗处定容1小时;移取上清液5mL于50mL棕色容量瓶中,用正己烷定容,在474nm比色计算。 不同实验室检测结果对比如下: 从以上数据可以看出,此次对比测定结果是在允许误差范围内的。虽然如此,差值也体现了部分问题的存在。首先,差值有高也有低,不是同一相对偏高或者相对偏低,很可能是由于测定人操作稳定性造成的;其次,测定方法也会造成结果偏差,测定过程中使用的有机溶剂均是易挥发的液体,在操作过程在(56℃水浴20分钟)中随机挥

发的体积是不确定的,此外,加入30mL正己烷,没有标明是精确加入,造成计算时会有偏差;为什么会造成计算偏差呢?原因在于在定容时,加入30mL正己烷后,用10%硫酸钠溶液定容的,我们都知道抽提剂+正己烷,其中正己烷、甲苯等溶剂是不溶于硫酸钠的,加入硫酸钠(作用是除去醇溶性杂质)后抽提剂+正己烷就与硫酸钠分层,抽提剂+正己烷在上层,硫酸钠在下层,最后我们是从抽提剂+正己烷中抽取5毫升再用正己烷定容至50毫升后测定吸光度的。所以我们 说在56℃水浴20分钟,冷清后30ml正己烷,这时加入正己烷的量 很关键,加多了吸光度会偏低,加少了吸光度会偏高。 而且,我们用的是分光光度法测量的,分光光度法有一个缺陷就是准确度不高,也就是说对474nm波长下有吸收的物质不一定是叶 黄素还有别的黄色物质。再次,叶黄素对光很敏感,测定的整个过程都应该在避光条件下操作为好。这样可能是造成差值逐渐减小的原因。

硝酸工艺流程简介

1. 双加压法稀硝酸生产工艺流程 1.1工艺流程示意图如图1-1: 1、2—液氨蒸发器,3—辅助蒸发器,4—氨过热器,5—氨过滤器,6—空气过滤室,7—空压机,8—混合器,9—氧化炉、过热器、废热锅炉,10—高温气气换热器,11—省煤器,12—低压反应水冷器,13—氧化氮分离器,14—氧化氮压缩机,15—尾气预热器,16—高压反应水冷器,17—吸收塔,18—尾气分离器,19—二次空气冷却器,20—尾气透平,21—蒸汽透平,22—蒸汽分离器,23—汽包,24—蒸汽冷凝器。 图1-1 工艺流程示意图 1.2流程简述: 合成氨厂来的液氨进入有液位控制的A、B两台氨蒸发器中,氨在其中蒸发,正常操作时,大部分液氨被A台蒸发器中来至吸收塔的冷却水所蒸发(吸收塔上部冷却水与A蒸发器形成闭路循环),蒸发温度11.5 ℃;其余的液氨被冷却水在B台蒸发器中蒸发,蒸发温度为14 ℃,两台氨蒸发器的蒸发压力均维持在0.52 Mpa;其中的油和水在辅助蒸发器中被分离,蒸发出的气氨进入氨过热器,气氨温度由TV31022控制,温度为110 ℃,然后再经氨过滤器进入氨─空气混合器。 空气从大气中吸入,经过三级过滤进入空气压缩机入口(冬季在经过空气过滤器前由空气预热器预热),经过空气压缩机加压至0.35 Mpa后分为一次空气和二次空气两股气流,一次空气进入氨─空混合器,二次空气进入漂白塔。 氨和空气在氨─空混合器中混合以后,进入氧化炉,经过铂网催化剂氧化生成NO等混合气体,铂网氧化温度为860 ℃,然后经过蒸汽过热器、废热锅炉,再经高温气─气换热器、省煤器、低压反应水冷器,再进入氧化氮分离器,在此将稀酸分离下来,气体则与漂白塔来的二次空气混合后进入氧化氮压缩机,进气温度为60 ℃,压力为0.3 Mpa;出口温度为200 ℃,压力为1.0 Mpa。再经尾气预热器、高压反应水冷却器进入吸收塔,进入吸收塔时的氮氧化物气体温度为40℃,氮氧化物气体从吸收塔底部进入,工艺水从吸收塔顶部喷淋而下,二者逆流接触,生成58 %—60 %的硝酸,塔底酸温度为40 ℃,从吸收塔出来的硝酸进入漂白塔,用来自二次空气冷却器的约120 ℃的二次空气在漂白塔中逆流接触,以提出溶解在稀酸中的低价氮氧化物气体,完成漂白过程,漂白后的成品酸经酸冷却器冷却到40 ℃,进入成品酸贮罐,再用成品酸泵送往硝铵和间硝装置。 从吸收塔顶部出来的尾气先后经过尾气分离器、二次空气冷却器、尾气预热器、高温气—气换热器,温度升至360 ℃,进尾气透平,回收约60 %的总压缩功,出尾气透平的

青霉素提取

青梅素的提炼工艺过程 青霉素提纯工艺流程简图: 青霉素不稳定,发酵液预处理、提取和精制过程要条件温和、快速,防止降解。 1.预处理 发酵液结束后,目标产物存在于发酵液中,而且浓度较低,如抗生素只有10-30Kg/m3,含有大量杂质,它们影响后续工艺的有效提取,因此必须对其进行的预处理,目的在于浓缩目的产物,去除大部分杂质,改变发酵液的流变学特征,利于后续的分离纯化过程。是进行分离纯化的一个工序。 2.过滤 发酵液在萃取之前需预处理,发酵液加少量絮凝剂沉淀蛋白,然后经真空转鼓过滤或板框过滤,除掉菌丝体及部分蛋白。青霉素易降解,发酵液及滤液应冷至10 ℃以下,过滤收率一般90%左右。 (1)菌丝体粗长10μm,采用鼓式真空过滤机过滤,滤渣形成紧密饼状,容易从滤布上刮下。滤液pH6.27-7.2,蛋白质含量0.05-0.2%。需要进一步除去蛋白质。 (2)改善过滤和除去蛋白质的措施:硫酸调节pH4.5-5.0,加入0.07%溴代十五烷吡啶PPB,0.7%硅藻土为助滤剂。再通过板框式过滤机。滤液澄清透明,进行萃取。 3.萃取 青霉素的提取采用溶媒萃取法。青霉素游离酸易溶于有机溶剂,而青霉素盐易溶于水。利用这一性质,在酸性条件下青霉素转入有机溶媒中,调节pH,再转入中性水相,反复几次萃取,即可提纯浓缩。选择对

青霉素分配系数高的有机溶剂。工业上通常用醋酸丁酯和戊酯。萃取2-3次。从发酵液萃取到乙酸丁酯时,pH选择1.8-2.0,从乙酸丁酯反萃到水相时,pH选择 6.8-7.4。发酵滤液与乙酸丁酯的体积比为1.5-2.1,即一次浓缩倍数为1.5-2.1。为了避免pH波动,采用硫酸盐、碳酸盐缓冲液进行反萃。发酵液与溶剂比例为3-4。几次萃取后,浓缩10倍,浓度几乎达到结晶要求。萃取总收率在85%左右。 所得滤液多采用二次萃取,用10%硫酸调pH2.0~3.0,加入醋酸丁酯,用量为滤液体积的三分之一,反萃取时常用碳酸氢钠溶液调pH7.0~8.0。在一次丁酯萃取时,由于滤液含有大量蛋白,通常加入破乳剂防止乳化。第一次萃取,存在蛋白质,加0.05-0.1%乳化剂PPB。 萃取条件:为减少青霉素降解,整个萃取过程应在低温下进行(10 ℃以下)。萃取罐冷冻盐水冷却。 4.脱色 萃取液中添加活性炭,除去色素、热源,过滤,除去活性炭。 5.结晶 萃取液一般通过结晶提纯。青霉素钾盐在醋酸丁酯中溶解度很小,在二次丁酯萃取液中加入醋酸钾-乙醇溶液,青霉素钾盐就结晶析出。然后采用重结晶方法,进一步提高纯度,将钾盐溶于KOH溶液,调pH 至中性,加无水丁醇,在真空条件下,共沸蒸馏结晶得纯品。 直接结晶:在2次乙酸丁酯萃取液中加醋酸钠-乙醇溶液反应,得到结晶钠盐。加醋酸钾-乙醇溶液,得到青霉素钾盐。 共沸蒸馏结晶:萃取液,再用0.5 M NaOH萃取,pH6.4-4.8下得到钠盐水浓缩液。加2.5倍体积丁醇,16-26℃,0.67-1.3KPa下蒸馏。水和丁醇形成共沸物而蒸出。钠盐结晶析出。结晶经过洗涤、干燥后,得到青霉素产品。

喷煤工艺流程图及概述

炼铁一厂喷煤系统工艺流程图及概述 山西中阳钢铁有限公司一体系升级改造项目高炉工程制粉喷吹系统,制粉、收粉系统全部利旧;干燥系统除热风炉废气管道需改造外,其她设施利旧;对喷吹系统进行局部改造。 制粉喷吹系统主要工艺现状:制粉喷吹站厂房为混凝土结构,全封闭。煤粉制备系统采用单系列全负压制粉工艺,喷吹系统采用1个煤粉仓、下部六罐并列(每三罐分别对应405m3高炉)。整个系统即1套干燥气发生炉系统、1套磨煤机制粉系统、1套煤粉收集系统、2套喷吹系统(一个煤粉仓,下部六罐并列)。 新建1780m3高炉投产后,2座405m3高炉拟全部拆除,现有制粉喷吹站只为新1780m3高炉供给煤粉。新建1780m3高炉主管及分配器设置方案为:2根喷吹主管(一个主管对应一个分配器)及2个炉前分配器(1#分配器对应奇数风口,2#分配器对应偶数风口)的直接喷吹工艺。 喷吹系统与原系统的交接界面为:喷吹罐输煤阀后的喷吹主管起点。喷吹煤粉主管及分配器平台为本工程设计范围。 1、工艺条件及要求 1) 原煤条件 单一煤种与混合煤均可喷吹,通常使用三种煤组成混合煤,安全措施上按强爆炸性烟煤设计。原煤的理化指标见表2、10-1。 表1 原煤的理化指标表 2) 煤粉条件

煤粉质量要求见表2、10-2。 表2 煤粉质量要求表 3) 制粉喷吹能力 按高炉正常日产铁水量4005吨,正常喷吹能力为160kg/t铁计,高炉正常喷吹所需煤粉量为26、7t/h;按高炉正常日产铁水量4005吨,喷吹能力为200kg/t铁计,高炉最大喷吹所需煤粉量为33、4t/h。 2、主要工艺参数 制粉喷吹系统主要工艺参数见表2、10-3。 表3 喷吹系统工艺参数

丁二烯的精馏工艺设计

化工与材料工程学院毕业设计年产1.6万吨丁二烯的精馏工艺设计 学生学号 学生姓名 专业班级 指导教师金朝晖副教授 联合指导教师高华晶副教授 完成日期2011-8-29 化工学院 Chemical Technology

摘要 丁二烯是一种重要的石油化工基础有机原料和合成橡胶单体,是C4馏分中最重要的组分之一,在石油化工烯烃原料中的地位仅次于乙烯和丙烯。由于其分子中含有共轭二烯,可以发生取代、加成、环化和聚合等反应,使得其在合成橡胶和有机合成等方面具有广泛的用途,可以合成顺丁橡胶(BR)、丁苯橡胶(SBR)、丁腈橡胶、苯乙烯-丁二烯-苯乙烯弹性体(SBS)、丙烯腈-丁二烯-苯乙烯(ABS)树脂等多种橡胶产品,此外还可用于生产己二腈、己二胺、尼龙66、1,4-丁二醇等有机化工产品以及用作粘接剂、汽油添加剂等,用途十分广泛。 目前,世界丁二烯的来源主要有两种,一种是从炼油厂C4馏分脱氢得到,该方法目前只在一些丁烷、丁烯资源丰富的少数几个国家采用。另外一种是从乙烯裂解装置副产的混合C4馏分中抽提得到,这种方法价格低廉,经济上占优势,是目前世界上丁二烯的主要来源。根据所用溶剂的不同,该生产方法又可分为乙睛法(ACN法)、二甲基甲酰胺法(DMF法)和N-甲基吡咯烷酮法(NMP法)3种。 乙腈法,该法最早由美国Shell公司开发成功,并于1956年实现工业化生产。它以含水10%的乙腈(ACN)为溶剂,由萃取、闪蒸、压缩、高压解吸、低压解吸和溶剂回收等工艺单元组成。目前,该方法以意大利SIR工艺和日本JSR工艺为代表。二甲基甲酰胺法,二甲基甲酰胺法(DMF法)又名GPB法,由日本瑞翁N-甲基吡咯烷酮法(NMP法)由德国BASF公司开发成功,并于1968年实现工业化生产,建成一套7.5万吨/年生产装置。公司于1965年实现工业化生产,并建成一套4.5万吨/年生产装置。N-甲基吡咯烷酮法,N-甲基吡咯烷酮法(NMP法)由德国BASF公司开发成功,并于1968年实现工业化生产,建成一套7.5万吨/年生产装置。也是目前国内主要生产方法。 本次毕业设计结合吉林化工有机合成厂采用乙腈法(CAN法)年产14万吨丁二烯工艺,通过已给出的数据进行物料衡算,热量横算,设备计算和换热器等计算完成年产12000吨丁二烯的精馏工艺设计,并进行工艺流程图,设备布置图,设备配管图等设计与绘制,将所学系统知识与实际相联系。 关键词:丁二烯,乙腈法,C4馏分,物料衡算

万寿菊提取叶黄素新技术

万寿菊提取叶黄素新技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

万寿菊提取叶黄素技术 河南省亚临界生物有限公司杨倩 摘要:叶黄素是从万寿菊中提取的一种天然色素,属于类胡萝卜素,其主要成分为黄体素,具有色泽鲜艳、抗氧化、稳定性强、无毒害、安全性高等特点,被广泛应用于食品添加剂、饲料添加剂、化妆品、医药保健品等领域。采用四号溶剂亚临界低温浸出工艺技术,常温下从万寿菊中提取叶黄素,低温浸出脱溶,叶黄素不被破坏。 关键字:叶黄素亚临界萃取低温萃取低温脱溶 叶黄素(xanthophy)是从万寿菊花中提取的一种天然色素,是一种无维生素A活性的类胡萝卜素,其用途非常广泛,主要性能在于它的着色性和抗氧化性。它具有色泽鲜艳、抗氧化、稳定性强、无毒害、安全性高等特点,能够延缓老年人因黄斑退化而引起的视力退化和失明症,以及因机体衰老引发的心血管硬化、冠心病和肿瘤等疾病。叶黄素作为一种天然抗氧化剂既起到一般抗氧化剂的作用又有其独特的生理功能,在防止自由基损害、心血管病,以及癌症方面带来不少创新的功能价值,是极具诱惑力的食品营养保健剂。此外,叶黄素还可以应用在化妆品、饲料、医药、水产品等行业中。叶黄素的高使用价值使众多研究人员致力于它的开发。近年来越来越趋向于从天然植物中直接提取叶黄素。 万寿菊(marigold)--菊科万寿菊属 , 原产墨西哥,为一年生草本植物,含有丰富的叶黄素,是一个极好的叶黄素来源,是生产开发叶黄素的理想原料。采用物理方法从天然植物万寿菊中提取叶黄素,安全无毒,完全符合FAO/WHO有关标准,具备有效性、科学性、安全性、稳定性。 1. 预处理工艺技术

硝酸工艺流程简介电子版本

硝酸工艺流程简介

1. 双加压法稀硝酸生产工艺流程 1.1工艺流程示意图如图1-1: 空 1、2—液氨蒸发器,3—辅助蒸发器,4—氨过热器,5—氨过滤器,6—空气过滤室,7—空压机,8—混合器,9—氧化炉、过热器、废热锅炉,10—高温气气换热器,11—省煤器,12—低压反应水冷器,13—氧化氮分离器,14—氧化氮压缩机,15—尾气预热器,16—高压反应水冷器,17—吸收塔,18—尾气分离器,19—二次空气冷却器,20—尾气透平,21—蒸汽透平,22—蒸汽分离器,23—汽包,24—蒸汽冷凝器。 图1-1 工艺流程示意图 1.2流程简述: 合成氨厂来的液氨进入有液位控制的A、B两台氨蒸发器中,氨在其中蒸发,正常操作时,大部分液氨被A台蒸发器中来至吸收塔的冷却水所蒸发(吸收塔上部冷却水与A蒸发器形成闭路循环),蒸发温度11.5 ℃;其余的液氨被冷却水在B台蒸发器中蒸发,蒸发温度为14 ℃,两台氨蒸发器的蒸发压力均维持在0.52 Mpa;其中的油和水在辅助蒸发器中被分离,蒸发出的气氨进入氨过热器,气氨温度由TV31022控制,温度为110 ℃,然后再经氨过滤器进入氨─空气混合器。 空气从大气中吸入,经过三级过滤进入空气压缩机入口(冬季在经过空气过滤器前由空气预热器预热),经过空气压缩机加压至

0.35 Mpa后分为一次空气和二次空气两股气流,一次空气进入氨─空混合器,二次空气进入漂白塔。 氨和空气在氨─空混合器中混合以后,进入氧化炉,经过铂网催化剂氧化生成NO等混合气体,铂网氧化温度为860 ℃,然后经过蒸汽过热器、废热锅炉,再经高温气─气换热器、省煤器、低压反应水冷器,再进入氧化氮分离器,在此将稀酸分离下来,气体则与漂白塔来的二次空气混合后进入氧化氮压缩机,进气温度为 60 ℃,压力为0.3 Mpa;出口温度为200 ℃,压力为1.0 Mpa。再经尾气预热器、高压反应水冷却器进入吸收塔,进入吸收塔时的氮氧化物气体温度为40℃,氮氧化物气体从吸收塔底部进入,工艺水从吸收塔顶部喷淋而下,二者逆流接触,生成58 %—60 %的硝酸,塔底酸温度为40 ℃,从吸收塔出来的硝酸进入漂白塔,用来自二次空气冷却器的约120 ℃的二次空气在漂白塔中逆流接触,以提出溶解在稀酸中的低价氮氧化物气体,完成漂白过程,漂白后的成品酸经酸冷却器冷却到40 ℃,进入成品酸贮罐,再用成品酸泵送往硝铵和间硝装置。 从吸收塔顶部出来的尾气先后经过尾气分离器、二次空气冷却器、尾气预热器、高温气—气换热器,温度升至360 ℃,进尾气透平,回收约60 %的总压缩功,出尾气透平的气体温度为140 ℃左右,NO 含量≤200 ppm,经排气筒排入大气。 X 在废热锅炉中产生4.0MPa的湿饱和蒸汽,经蒸汽过热器加热到温度440 ℃、压力为3.9 Mpa过热蒸汽进入蒸汽分离器,过热蒸汽用于驱动蒸汽透平,蒸汽过剩送至外界蒸汽管网。 锅炉系统采用强制循环,用锅炉水循环泵(J31002/A/B)使锅炉水在汽包和锅炉间循环。 1.3流程特点: 1.氧化压力为0.45 MPa(A),吸收压力为1.1 MPa(A)。 2.氨的氧化率高达96 %以上,铂耗较低,为120 mg/t100%HNO3 (回收前)。二氧化氮吸收率高,硝酸浓度可达60 %,排放的尾气的含量在200 ppm以下。 中NO X 3.采用中温(360 ℃)回收装置尾气能量,使压缩机组的蒸汽透平和尾气膨胀透平之间达到经济匹配,与高温回收相比不必采用耐高温的尾气透平和尾气加热器,工作条件不苛刻,操作稳定可靠。

银杏叶黄素的提取及紫外光谱表征

浙江农林大学 开放性实验论文 项目名称银杏叶黄素的提取及紫外光谱表征学院班级理学院 姓名王卉殊 学期 2012-2013年第一学期

银杏叶黄素的提取及紫外光谱表征 班级:应用化学112班姓名:王卉殊 摘要:本实验用乙醇提取,通过氧化铝柱层析,用正己烷洗脱,得到的叶黄素。即可除去银杏叶中大量的醇溶性杂质,又可得到了纯净的叶黄素。将叶黄素用紫外分光光度计表征,确定其最大吸收波长。 关键词:银杏叶,叶黄素,提取,柱层析,紫外分光光度计 1文献综述 1.1银杏叶的概述 银杏叶(Ginkgo Leaf)是近年来国内外药物开发和研究的热点之一,其脂溶性提取物主要成分为黄酮和内酯类化合物,已被广泛应用于心脑血管疾病的治疗。银杏叶,性味苦甘涩平,内含双黄酮,经实验和临床证明,它具有降低血清胆固醇、扩张冠状动脉的作用,对于冠心病、高血压有一定的辅助治疗作用.[1] 叶黄素是一种无维生素A活性的类胡萝卜素,属纯天然色素,无毒副作用,不溶于水,溶于油脂、乙醇等。叶黄素有八种异构体,以全反式为主,一般从植物中提取。叶黄素广泛存在于蔬菜、花卉、水果与某些藻类生物中,属于“类胡萝卜素”族物质,而类胡萝卜素是国际公认的具有防病抗病生理功能的天然物质,其主要功能是单线态氧的有效淬灭剂,能消除羟自由基,是脂类过氧化反应的断链抗氧化剂,在细胞和细胞膜中和脂类结合而有效的抑制脂类的氧化,对于人体疾病的预防发挥重要的作用。开发利用银杏叶黄素对于丰富叶黄素来源,提高银杏叶的价值具有重大意义。[1] 抗氧化剂是一种在植物中广泛存在的化学物质,能够和体内的自由基广泛结合,发挥抗氧化作用。自由基可以提高机体的氧化作用,杀死体内的有害菌并产生能量,但过量的自由基将损害细胞,危害健康。随着对抗氧化剂研究的不断深入,人们认识到不同的抗氧化剂在体内执行不同的生物学功能。叶黄素(Xanthophylls)是一种性能优异的抗氧化剂,是构成玉米、蔬菜、水果、花卉等植物色素的主要组分之一,叶黄素在甘蓝、羽衣甘蓝、菠菜等深绿色叶菜以及金盏花、万寿菊等花卉中含量最高。在南瓜、桃子、辣椒、芒果、柑橘、蛋黄中则含丰富的叶黄素前体-叶黄素酯。人类的眼睛黄斑区含有高浓度的叶黄素,是构成人眼视网膜黄斑区域的主要色素[2],但在人体内无法制造,必须靠含叶黄素的食物来补充,若严重缺乏这种色素,眼睛就会失明。 1.2叶黄素化合物的研究进展 国外对叶黄素的研究已有10 多年的历史, 在开发应用叶黄素方面, 美国Kem in 公司、瑞士Roche 公司处于研究的前沿。除了美国和瑞士的公司外, 日本和德国的一些公司也均

叶黄素

叶黄素:又名“植物黄体素”,在自然界中与玉米黄素共同存在,是一种重要的抗氧化剂。是构成玉米、蔬菜、水果、花卉等植物色素的主要组分,含于叶子的叶绿体中,可将吸收的光能传递给叶绿素a,推测对光氧化、光破'坏具有保护作用,也是构成'人眼视网膜黄斑区域的主要色素。 1、视网膜的主要色素成分:人类的眼睛含有高量的叶黄素,这种元素是人'体无法'制'造的,必须靠摄入叶黄素来补充,若缺乏这种元素,眼睛就会失明。 2、保护眼睛不受光线损害,延缓眼睛的老化及防止病变:太阳光中的紫外线及蓝光进'入眼睛会产生大量自'由基,导致白内障,黄斑区退化,甚至癌症。紫外线一般能被眼角膜及晶状体过滤掉,但蓝光却可穿透眼球直达视网膜及黄斑,黄斑中的叶黄素则能过滤掉蓝光,避免蓝光对眼睛的损害。黄斑区的脂肪外层特别容易受到太阳光的氧化伤'害,因此这个区域极易发生退化。 3、保护视力:叶黄素作为抗氧化剂和光保护作用,可促进视网膜细胞中视紫质(Rhodopsin)的再生成,可预防重度近视及视网膜剥离,并可增进视力、保护视力。特别适合学'生、司机等人食用 除了紫外线外,其实皮肤会变黑还有很多原因: 1、洗澡太用力 有些人洗澡时喜欢用力揉搓皮肤,意在洗得更干净一些,殊不知用力过大或反复进行揉搓,亦可导致皮肤变黑,谓之“摩擦黑变病”。摩擦黑变病的奥秘尚未完全揭开,但与用力搓澡不当的关系已被专家确认,主要是由于局部皮肤受到强大摩擦压迫等机械刺激所致,多发生在洗澡用浴巾或化纤类搓澡巾用力摩擦的人。表现为淡褐色到暗褐色的色素沉着,呈弥漫网状,高发于锁骨、肋骨、肩胛、肘、膝部等骨骼隆起处。 2、食物 某些食物也是皮肤黑变的祸根,富含铜、铁、锌等金属元素的食物有此弊端。这是因为这些金属元素可直接或间接地增加与黑色素生成有关的酪氨、酪氨酸酶以及多巴胺酉昆等物质的数量与活性。这些食物主要有动物肝、动物肾、牡蛎、虾、蟹、豆类、核桃、黑芝麻、葡萄干等。 3、药物 不少药物能改变正常肤色,服用奎宁者约10%的病人面部出现蓝色色素斑。在镇静药中,氯丙口秦对肤色的威胁最大,长时间服用者面、颈部出现蝴蝶斑,手臂等处则呈棕灰、浅蓝色或浅紫色。此外,反复使用含汞软膏,也可在病患处

年产1000吨青霉素工厂工艺设计.

设计说明书 —年产1000吨青霉素生产工厂工艺设计 学院:生物与农业工程学院 专业:生物工程 姓名: 学号: 日期:2014年6月23日

摘要 本设计以注射用青霉素为背景,青霉素是一种治疗革兰氏阳性菌引起的各种疾病的常用药物,生产方法主要有化学合成法、半合成法、微生物发酵法。来进行年产1000吨青霉素发酵工段工艺的设计,包括以下几部分内容:青霉素的背景知识及发酵生产工艺过程的简介;物料衡算和热量衡算;环境要求及废物处理和。另外,此设计还绘制了发酵车间布置图、发酵工艺流程图以及对生产过程中产生的废水、废气、废渣的处理作了简单的介绍。 关键词:青霉素;发酵;工艺流程;生产

目录 摘要 (2) 1前言 (5) 1.1青霉素的发现 (5) 1.2青霉素分子结构及分类 (6) 1.3青霉素的单位 (6) 1.4作用机理 (6) 1.5青霉素的应用 (7) 2生产工艺总述 (8) 2.1 生产方法 (8) 2.2 工艺流程图 (8) 2.3 发酵工艺特点 (9) 2.3.1菌种介绍 (9) 2.3.2菌种的保藏 (9) 2.3.3孢子的制备 (10) 2.3.4种子制备 (10) 2.3.5发酵培养基介绍 (10) 2.3.6灭菌 (10) 2.3.7发酵 (11) 2.4 提炼工艺过程 (11) 2.4.1发酵液预处理 (11) 2.4.2提取 (12) 2.4.3精制 (12) 2.4.4成品鉴定 (12) 3工艺条件计算 (13) 3.1物料衡算 (13) 3.1.1工艺技术指标及基础数据 (13) 3.1.2发酵车间的物料衡算 (14) 3.1.3 1000t/a青霉素发酵车间物料衡算 (15) 3.2 能量衡算 (16) 3.2.1发酵热的计算 (16) 3.2.2换热面积的计算 (17) 3.2.3冷却水用量计算 (18) 3.2.4蒸汽消耗量计算 (18) 3.2.5无菌空气消耗计算 (19) 4工厂设计 (20) 4.1厂址选择.......................................................................................... 错误!未定义书签。 4.1.1地理位置.............................................................................. 错误!未定义书签。 4.1.2周边环境.............................................................................. 错误!未定义书签。 4.1.3气候条件.............................................................................. 错误!未定义书签。 4.1.4厂址区域.............................................................................. 错误!未定义书签。 4.2工厂平面图...................................................................................... 错误!未定义书签。 4.2.1工厂总平面布置图.............................................................. 错误!未定义书签。 4.2.2主要建构筑物 (20)

叶黄素

叶黄素 叶黄素:血浆中几种主要类胡萝卜素之一,平均分布在高密度脂蛋白和低密度脂蛋白之中。食物中的叶黄素酯在小肠中经胆汁和胰脂酶的共同作用而生成叶黄素,被小肠黏膜吸收。叶黄素又名“植物黄体素”,在自然界中与玉米黄素共同存在。是构成玉米、蔬菜、水果、花卉等植物色素的主要组分,含于叶子的叶绿体中,可将吸收的光能传递给叶绿素a,推测对光氧化、光破坏具有保护作用。也是构成人眼视网膜黄 斑区域的主要色素。 人体所需叶黄素补充量: 由于光的照射,短光(蓝光)对人体的伤害很大,每天大量消耗叶黄素,而叶黄素在人体内不能合成,所以必须补充每天18mg可满足叶黄素的流失。叶黄素是一种广泛存在于蔬菜、花卉、水果等植物中的天然物质,居于“类胡萝卜类”族物质,目前已知在自然界中存在着600多种类胡萝卜素其中只有约20种存在于人的血液和组织中.在人体中发现的类胡萝卜素主要包括d一胡萝卜素,P一胡萝卜类,隐黄素、叶黄素、番茄红素和正未黄素.医学实验证明植物中所含的天然叶黄素是一种性能优异的抗氧化剂,在食品中加入一定量的叶黄素可预防细胞衰老和机体器官衰老,同时还可预防老年性眼球视网膜黄斑退化引起的视力下降与失明,通过一系列的医学研究,类胡萝卜素已被建议用作癌症预防剂,生命延长剂,溃疡抵制剂,心脏病发作与冠状动脉疾病的抵制剂.同时,叶黄素还可作为饲料添加剂用于家禽肉蛋的着色,同时也已在食品工业中用作着色与营养保健剂。 叶黄素作用 叶黄素是一种重要的抗氧化剂,为类胡萝卜素家族(一组植物中发现的天然的脂溶性色素)的一员,又名“植物黄体素”,在自然界中与玉米黄素共同存在。 (1)视网膜的主要色素成分:叶黄素与玉米黄素构成了蔬菜、水果、花卉等植物色素的主要组分,也是人眼视网膜黄斑区域*的主要色素。人类的眼睛含有高量的叶黄素,这种元素是人体无法制造的,必须靠摄入叶黄素来补充,若缺乏这种元素,眼睛就会失明。 (2)保护眼睛不受光线损害,延缓眼睛的老化及防止病变:太阳光中的紫外线及蓝光进入眼睛会产生大量自由基,导致白内障,黄斑区退化,甚至癌症。紫外线一般能被眼角膜及晶状体过滤掉,但蓝光却可穿透眼球直达视网膜及黄斑,黄斑中的叶黄素则能过滤掉蓝光,避免蓝光对眼睛的损害。黄斑区的脂肪外层特别容易受到太阳光的氧化伤害,因此这个区域极易发生退化。 (3)抗氧化,有助于预防机体衰老引发的心血管硬化、冠心病和肿瘤疾病。 (4)保护视力:叶黄素作为抗氧化剂和光保护作用,可促进视网膜细胞中视紫质(Rhodopsin)的再生成,可预防重度近视及视网膜剥离,并可增进视力、保护视力。特别适合学生、司机等人食用。 (5)缓解视疲劳症状;(视物模糊、眼干涩、眼胀、眼痛、畏光等) (6)提高黄斑色素密度,保护黄斑,促进黄斑发育; (7)预防黄斑变性及视网膜色素变性; (8)减少玻璃膜疣的产生,预防AMD的发生;[1] 叶黄素加工工艺 目前,市场上所售叶黄素主要来源于万寿菊鲜花的深加工, 加工工艺如下: 万寿菊鲜花采收-酶解-脱水-烘干-造粒-低温浸出-叶黄素浸膏-包装。

青霉素工艺流程

青霉素生产工艺 班级:生工(2)姓名:学号:0802012040 【摘要】:青霉素是指分子中含有青霉烷,能破坏细菌的细胞壁并在细菌细 胞的繁殖期起杀菌作用的一类抗生素。青霉素对溶血性链球菌等链球菌属,肺炎链球菌和不产青霉素酶的葡萄球菌具有良好抗菌作用。对肠球菌有中等度抗菌作用,淋病奈瑟菌、脑膜炎奈瑟菌、白喉棒状杆菌、炭疽芽孢杆菌、牛型放线菌、念珠状链杆菌、李斯特菌、钩端螺旋体和梅毒螺旋体对本品敏感。本品对流感嗜血杆菌和百日咳鲍特氏菌亦具一定抗菌活性,其他革兰阴性需氧或兼性厌氧菌对本品敏感性差.本品对梭状芽孢杆菌属、消化链球菌厌氧菌以及产黑色素拟杆菌等具良好抗菌作用,对脆弱拟杆菌的抗菌作用差。青霉素通过抑制细菌细胞壁四肽则链和五肽交连桥的结合而阻碍细胞壁合成而发挥杀菌作用。对革兰阳性菌有效,由于革兰阴性菌缺乏五肽交连桥而青霉素对其作用不大。 【关键词】:青霉素;生产工艺 【正文】: 抗生素的工业生产包括发酵和提取两部分。工艺流程大致如下:菌种的保藏、孢子制备、种子制备、发酵、提取和精制。种子和发酵培养基的常用碳源有:葡萄糖、淀粉、蔗糖、油脂、有机酸等,主要为菌体生长代谢提供能源,为合成菌体细胞和目的产物提供碳元素。有机氮源多用玉米浆、黄豆饼粉、麸质粉、蛋白胨、酵母粉、鱼粉等,硫酸铵、尿素、氨水、硝酸钠、硝酸铵则是常用的无机氮源。另外,培养基中还得添加无机盐、微量元素以及消沫剂,部分抗生素还得加入特殊前体,如青霉素的前体是苯乙酸,大环内酯类抗生素的前体是丙酸盐。发酵过程普遍补加一种碳源、氮源物质,如葡萄糖和硫酸铵。pH值通过流加氨水进行调节,很多抗生素在发酵中后期流加前体,对提高产量非常有益。抗生素发酵绝大多数为好氧培养,必须连续通入大量无菌空气,全过程大功率搅拌。发酵液的预处理,一般加絮凝剂沉淀蛋白,过滤去除菌丝体,发酵滤液的提取常用溶媒萃取法、离子交换树脂法、沉淀法、吸附法等提纯浓缩,然后结晶干燥得纯品。 一、青霉素概述 青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。最初青霉素的生产菌是音符型青霉菌,生产能力只有几十个单位,不能满足工业需要。随后找到了适合于深层培养的橄榄型青霉菌,即产黄青霉。

丁二烯生产技术

丁二烯生产技术 收录: 2009-02-24 发布: 2009-02-24 丁二烯是一种重要的石油化工基础有机原料和合成橡胶单体,是C4馏分中最重要的组分之一,在石油化工烯烃原料中的地位仅次于乙烯和丙烯。由于其分子中含有共轭二烯,可以发生取代、加成、环化和聚合等反应,使得其在合成橡胶和有机合成等方面具有广泛的用途,可以合成顺丁橡胶(BR)、丁苯橡胶(SBR)、丁腈橡胶、苯乙烯-丁二烯-苯乙烯弹性体(SBS)、丙烯腈-丁二烯-苯乙烯(ABS)树脂等多种橡胶产品,此外还可用于生产己二腈、己二胺、尼龙66、1,4-丁二醇等有机化工产品以及用作粘接剂、汽油添加剂等,用途十分广泛。 丁二烯的生产方法 目前,世界丁二烯的来源主要有两种,一种是从炼油厂C4馏分脱氢得到,该方法目前只在一些丁烷、丁烯资源丰富的少数几个国家采用。另外一种是从乙烯裂解装置副产的混合C4馏分中抽提得到,这种方法价格低廉,经济上占优势,是目前世界上丁二烯的主要来源。根据所用溶剂的不同,该生产方法又可分为乙睛法(ACN法)、二甲基甲酰胺法(DMF法)和N-甲基吡咯烷酮法(NMP法)3种。 1 乙腈法 该法最早由美国Shell公司开发成功,并于1956年实现工业化生产。它以含水10%的乙腈(ACN)为溶剂,由萃取、闪蒸、压缩、高压解吸、低压解吸和溶剂回收等工艺单元组成。1977年Shell公司在改造中增加了冷凝器和水洗塔,并将闪蒸和低压解吸的气相合并压缩,其中约8%经冷凝送往水洗塔洗去溶剂,塔顶气相返回原料蒸馏塔,这样就除去了C4烃中的C5烃。其余气体一部分送往高压解吸塔,另一部分作为再沸气体送往萃取蒸馏塔塔底以提供热能,从而省去了一台再沸器,降低了蒸汽用量。水洗塔底溶剂的约1%送往溶剂回收精制系统,以保证循环溶剂的质量。对炔烃含量较高的原料需要进行加氢处理,或采用精密精馏、两段萃取才能得到纯度较高的丁二烯。目前,该方法以意大利SIR工艺和日本JSR工艺为代表。 意大利SIR工艺以含水5%的ACN为溶剂,采用5塔流程(氨洗塔、第一萃取精馏塔、第二萃取精馏塔、脱轻塔和脱重塔)。在第一萃取精馏塔前加一氨水洗涤塔,用以除去原料中0.04%-0.08%(质量百分数)的醛酮。炔烃由第二萃取蒸馏塔第75块塔板侧线采出,送往接触冷凝器。脱重塔塔底和接触冷凝器底部物料合并,其热能回收后用于原料蒸发器。该工艺不仅能使丁二烯收率达到96%-98%,还能使丁二烯与炔烃分离,丁二烯产品纯度可以达到99.5%以上。该技术的特点是流程简单,溶剂解吸在萃取精馏塔下段完成;第一萃取精馏塔采用两点进料,有利于改善塔内液相的浓度分布,减少该塔上段的液相负荷,降低能耗;在第一萃取精馏塔下部设置一台换热器,起中间再沸器的作用,可充分利用塔底热能提高烃类从溶剂中的分离效率;采用在第二萃取精馏塔第75块塔板侧线除炔烃的技术,使丁二烯与炔烃几

金盏花中叶黄素提取工艺研究

金盏花中叶黄素提取工艺研究 摘要:文章研究了从金盏花中提取叶黄素的强化工艺条件,对提取剂、皂化液浓度及皂化时间进行了考察,并确定出以二氯甲烷作提取剂、皂化液浓度为4%,皂化时间为2 h的适宜工艺条件。粗提物经柱层析分离,重结晶,再经过超临界流体沉淀处理后,可提高叶黄素的纯度。 关键词:金盏花;叶黄素;超临界流体沉淀 中图分类号:S681.7 文献标识码:A 文章编号:1000-8136(2010)27-0011-02 金盏花又名金盏菊,为菊科金盏菊属植物。金盏菊植株矮生,花朵密集,花色鲜艳夺目,花期又长。金盏菊原产欧洲,我国金盏菊的栽培,是18世纪后从国外传入的,20世纪80年代后重瓣、大花和矮生金盏菊引入我国,金盏菊的面貌焕然一新,现已成为我国重要草本花卉之一。 金盏花主要成分是叶黄素和叶黄素酯,而叶黄素酯水解可得到叶黄素。叶黄素又称为黄体素,系统命名为3,3`-二羟基-β,α-胡萝卜素,是天然类胡萝卜素的一种。研究表明,它不仅是天然的着色剂,还具有保护视力,预防白内障(cataracts),防止动脉硬化及增强免疫力等重要作用。[1]但是,由于叶黄素有8种同分异构体,人工合成工艺复杂,至今尚未成功,工业上只能从天然植物金盏花等中提取得到。国内外对叶黄素的提取及检测方面研究比较多,[2]但对叶黄素纯化方面的报道相对少一些,[3]文章优化了从金盏花中提取叶黄素以及利用柱层析,重结晶和超临界流体沉淀技术进一步纯化叶黄素的工艺条件。 1实验部分 1.1原料、试剂和仪器 金盏花颗粒,正已烷、石油醚、二氯甲烷、苯、乙酸乙酯、四氢呋喃、甲醇均为分析纯试剂,CO2(纯度99.9%),索氏提取器、层析柱(50 cm×2 cm)、电子天平(上海天平仪器厂)、721型分光光度计、超临界流体沉淀设备。 1.2叶黄素的提取 取一定量金盏花颗粒装入滤纸筒,开口朝上放入索式提取器的提取筒内,纸筒开口端折回封口。然后将适量溶剂装入圆底烧瓶,冷凝管中通冷却水,加热到60 ℃回流提取,直至索式提取器中提取液为无色为止,收集提取液,用旋转蒸发仪减压浓缩除去溶剂。以氢氧化钾—甲醇为皂化液,对提取的浓缩液进行皂化。用水洗至中性,过滤,再经过柱层析分离,得到橙黄色固体粉末,重结晶处理,得到橙黄色且有金属光泽的叶黄素粗品。 1.3超临界流体沉淀技术纯化叶黄素

青霉素提取工艺

青霉素的提取工艺 青霉素(Benzylpenicillin / Penicillin)又被称为青霉素G、peillinG、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素。青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。 (图1.青霉素分子式) 化学特性 青霉素又称盐酸巴氨西林。其化学名为1-乙氧甲酰乙氧6-〔D(-)-2-氨基-2-乙酰氨基〕青霉烷酸盐酸盐。是一种有机酸,性质稳定,难溶于水。可与金属离子或有机碱结合成盐,临床常用的有钠盐、钾盐。 青霉素盐如青霉素钾或钠盐为白色结晶性粉末,无臭或微有特异性臭,有引湿性。干燥品性质稳定,可在室温保存数年而不失效,且耐热。遇酸、碱、重金属离子及氧化剂等即迅速失效。极易溶于水,微溶于乙醇,不溶于脂肪油或液状石蜡。其水溶液极不稳定,在室温中效价很快降低10%,水溶液pH为5.5~7.5。 青霉素价格较为便宜,因而也证明了生产并提取青霉素是有着较为成熟的工业方法的。 (图2青霉素的售价) 青霉素的提纯 青霉素提纯工艺流程简图:

(图3) 因为青霉素水溶液不稳定,故发酵液预处理、提取和精制过程要条件温和、快速,防止降解。在提炼过程中要遵循下面三个原则: 错误!时间短错误!温度低错误!pH适中 1.预处理 发酵结束后,目标产物存在于发酵液中,浓度较低,只有10-30kg/m3,并且含有大量杂质,如高价无机离子(Ca,Mg,Fe离子),菌丝,未用完的培养基,易污染杂菌,产生菌的代谢产物,蛋白质等。因此必须对其进行的预处理,其目的在于浓缩目的产物,去除大部分杂质,利于后续的分离纯化过程,是进行分离纯化的第一个工序。 2.过滤 发酵液在萃取之前需预处理,可在发酵液加少量絮凝剂沉淀蛋白(比如明矾),或者调解发酵液pH至蛋白质的等电点以沉淀蛋白,然后经真空转鼓过滤(以负压作过滤推动力)或板框过滤(浮液用泵送入滤机的每个密闭的滤室,在工作压力的作用下,滤液透过滤膜或其它滤材,经出液口排出,滤渣则留在框内形成滤饼,从而达到固液分离目的),除掉菌丝体及部分蛋白。青霉素在常温下易降解,因而发酵液及滤液应冷至10 ℃以下,过滤收率一般90%左右。 (1)菌丝体粗长10μm,采用鼓式真空过滤机过滤,滤渣形成紧密饼状,容易从滤布上刮下。滤液pH6.27-7.2,蛋白质含量0.05-0.2%。需要进一步除去蛋白质。 (2)改善过滤和除去蛋白质的措施:硫酸调节pH4.5-5.0,加入0.07%溴代十五烷吡啶PPB,0.7%硅藻土为助滤剂。再通过板框式过滤机。滤液澄清透明,进行萃取。 3.萃取 青霉素的提取采用溶媒萃取法。这是利用抗生素在不同的pH值条件下以不同的化学状态(游离态酸或盐)存在时,在水及水互不相溶的溶媒中溶解度不同的特性,使抗生素从一种液相(如发酵滤液)转移到另一种液相(如有机溶媒)中去,以达到浓缩和提纯的目的。青霉素分子结构中有一个酸性基团(羧基),青霉素的pKa=2.75,所以将青霉素G的水溶液酸化至pH2.0左右,青霉素即成游离酸。这种青霉素酸在水中溶解度很小,但易溶于醇类、酮类、醚类和酯类,利用这一特性,工业上可用溶媒萃取法从发酵液中分离并提纯青霉素。 在酸性条件下青霉素转入有机溶媒中,调节pH至2.0左右,再转入中性水相,反复几次萃取,即可提纯浓缩。选择对青霉素分配系数高的有机溶剂。工业上通常用醋酸丁酯和戊酯。萃取2-3次。从发酵液萃取到乙酸丁酯时,pH选择1.8-2.0,从乙酸丁酯反萃到水相时,pH选择6.8-7.4。发酵滤液与乙酸丁酯的体积比为 1.5-2.1,即一次浓缩倍数为1.5-2.1。为了避免pH波动,采用硫酸盐、碳酸盐缓冲液进行反萃。发酵液与溶剂比例为3-4。几次萃取后,浓缩10倍,浓度几乎达到结晶要求。萃取总收率在85%左右。 所得滤液多采用二次萃取,用10%硫酸调pH2.0~3.0,加入醋酸丁酯,用量为滤液体积的三分之一,反萃取时常用碳酸氢钠溶液调pH7.0~8.0。在一次丁酯萃取时,由于滤液含有

相关文档
最新文档