热风炉使用说明书

热风炉使用说明书
热风炉使用说明书

一、性能规范

二、型号解释

“L”为链条炉排,链的汉语拼音字首;

“R”为热风炉,热的汉语拼音字首;

“F”为风的汉语拼音字首;

“2.8”、“4.2”、“5.6”、“7”、“10.5”、分别代表该炉的热功率为2.8兆瓦(折热量240万大卡/时),4.2兆瓦(折热量360万大卡/时),5.6兆瓦(折热量480万大卡/时),7兆瓦(折热量600万大卡/时),10.5兆瓦(折热量900万大卡/时),“AⅡ”代表适应煤种为Ⅱ类烟煤。

该型炉为轻型链带式层燃热风炉,炉内设有节能的前后拱,炉后部设有旋风燃尽室,能保证在运行时燃料的充分燃烧,尤其是旋风燃尽室的设置,使烟气不完全燃烧热损失很低,使热风烟气黑度低于“林格曼Ⅱ”,能保证所生产的复合肥颜色美观。

三、烘炉

1、烘炉前的准备工作

当热风炉安装完毕,进行烘炉时,应对炉排进行调整并试运行,炉排应松紧适度,不跑偏,无卡阻,无异常响声,运行平衡正常,并作48小时冷态试运行试验,对上煤机、炉排减速机、出渣机、风机加注润滑油,做手动试验,灵敏无异常,再做通电试验。

2、各项工作准备完毕后进行烘炉,烘炉分二个阶段进行

第一阶段使用木柴烘炉,一般需要4-6天,每天温度升高560℃,第二阶段使用烟煤烘炉,一般需要3-5天,每天温度升高不超过60-70℃,烘炉至炉墙排气孔无蒸汽排出,且排气孔干燥后2天即为烘炉合格。

3、烘炉结束后,应使炉缓慢冷却,一般冷却时间不少于3天,且不可冷却过快,冷却时所有门孔应关闭严密,不可使冷空气漏入炉内,冷却过快会使炉墙裂纹损坏,;尤其是耐火混凝土。切不可使炉通风冷却。

等炉冷却至环境温度后,将炉排上面的灰渣清除干净,打开炉门,对炉排和炉门,对炉排和炉墙进行检查,并对上煤机、炉排减速机、出渣机、鼓风机等情况进行检查,并对其进行调整、紧固、润滑。

四、正常运行

烘炉合格后,可正常运行

1、调节煤渣板离炉排上平面高度在100毫米左右,将煤加入炉斗,使煤层运转到点火门后边300毫米处,加入木柴点火运行,点火后应

缓慢升温,一般需要24小时升温时间方可。

2、风机的操作顺序,第一开启尾气风机,第二开热风机,第三开鼓风机,停机则顺序相反。

3、温度的控制

根据炉内燃烧情况调整各风室的送风量和炉排运转速度以控制烟气温度。

4、 LRF2.8-AII型热风炉不设出渣机,应每半小时出渣一次,每2小时出灰一次,出渣结束后应将出渣门关闭严密。

5、炉排前轴每班加油一次,后轴每两天加油一次,并经常对上煤机、减速机、出渣机加油润滑。

6、运行时应尽量少打开炉门,如需看火,用炉门上的小孔看火即可。如需提高温度,可加大送风量和炉排速度即可。且不可打开炉门向炉内

撒煤。

7、风室清灰,风室清灰时应使炉排正常运转,不可停止炉排运转,关闭所清风室的风门,将清灰手把推拉5-8次,各风室逐个清理,清灰

结束将把手推到底再打开风门,风室清灰每2小时进行一次。

8、煤闸板用水冷却,应接入自来水冷却。

五、停炉保养检修

因需停炉,关闭所有门孔,使炉缓慢冷却,冷却时间不少于3天,停炉后对所有设备进行一次检查保养。切不可使炉通风冷却。

六、压火

短时间停炉,可使用压火的办法停炉,视其停炉情况而定,打开炉门,撒入一定量的煤压火即可。此时需打开旁路烟道,关闭主烟道。

七、煤种的要求

该炉设计煤种为II\III类烟煤,且不可使用易结焦的煤种,防止炉内结焦,煤的粒度最大不超过80毫米,煤的挥发份不底于20%。

煤粉热风炉说明书

秦冶煤粉热风炉技术说明书

一.炉子设计计算 1.原始设计参数 (1)干燥能力:50t/h,含水率从33%降为18%。蒸发水分为7.5t/h。(2)混合风温:350℃ (3)燃料:褐煤干燥后成品煤粉作为煤粉炉燃料, 褐煤的地位发热值:3300kcal/kg (4)助燃空气温度:20℃ (5)所兑冷风温度:20℃/50℃(20℃是冷空气,50℃是烟气)2.设计参数 (1)蒸发物料中水分所需热量Q Q=60×104 kcal/t×7.5t/h=4.5×106 kcal/h 注:每蒸发一吨水需要60万kcal的热量。 (2)燃料消耗量B B=Q÷Q低=4.5×106÷3300=1363.6kg/h 为设回转窑及热风炉系统综合热效率为65%,则热风炉燃耗B 实B实=1363.6÷65%=2098kg/h (3)烧嘴能力的选择 根据燃料用量,选择普通煤粉烧嘴1个,烧嘴燃烧能力为3000kg/h。 MFP3000可调旋流煤粉烧嘴性能如下 最大燃烧煤量: 3000kg/h 调节比:1:2 一次风压: ≥980Pa 二次风压: ≥1960Pa 一次风量: 4130Nm3/h 二次风量: 12380Nm3/h 火炬射程: 4~6m 火炬张角: 40~60° (4)燃烧理论空气需要量L0及实际需要量L n L o=2.42×10-4Q低+0.5=2.42×3300×4.186÷10000+0.5 =3.843Nm3/kg L n=n×L0=1.2×3.843=4.612Nm3/kg

(5)助燃风机的选择 a.燃烧过程总的风量Q Q=L n×B=4.612×2098=9676m3/h b.风机的选择 扣除一次风量的25%,二次风占总需要的75%,所以风机实际所需风量为Q2=0.75×9676=7257m3/h 则所选风机为9-19系列N06.3A,其参数如下: 流量:7729 m3/h,全压:8208Pa, 功率:29.58kw,转速:2900r/min。 电机型号:Y200L1-2,电动机功率30KW。 ⑹燃烧产物生成量V n =3300kcal/kg,则空气过剩系数取n=1.2,燃烧发热量取Q 低 V n=2.13×10-4Q低+1.65+(n-1)L0 =2.13×10-4×3300×4.186+1.65+0.2×3.843 =5.36Nm3/kg 燃烧产物总体积V V=2098×5.36=11246 Nm3/h ⑺理论燃烧温度t理及实际炉温t炉 t理=(Q低+L n C空t空)÷(V n C产) =(3300×4.186+4.612×1.296×20)÷(5.36×1.592) =1633℃ 取炉子系数η=0.8则实际炉温t 为 炉 t炉=0.8×1633=1300℃ (8)烟气被兑到350℃所需掺的冷风量V2 烟气量V1:11246 Nm3/h 烟气温度t1:1300℃ 烟气比热容c1:1.56KJ/(Nm3?℃) 冷空气量/回兑烟气量V2:待求 冷空气/回兑烟气温度t2:20/50℃ 冷空气/回兑烟气比热容c2:1.296/1.43 KJ/(Nm3?℃) 掺冷风后烟气体积V:V1+V2 掺冷风后整个烟气温度t:350℃

德国狼牌内窥镜产品操作手册

产品简介 德国狼牌内窥镜WOLF公司是一家具近半个世纪历史的著名企业。以硬性内窥镜和手术器械及纤维软镜为主导的产品系列,已超过三万种,覆盖世界一百多个国家。其产品设计超前,工艺精湛,经久耐用等特点已经广为医院青眯。WOLF公司生产的内窥镜保持一贯德国技术的特点,精确,安全,耐用,合乎BF标准且操作简单,在最大程度上保证患者安全和满足临床的需要。 内窥镜发展史 内窥镜起源于100年前,主要经历了4个发展阶段,每个阶段都以当时所用器械的主要特征为标志。 硬式内镜阶段(1806-1932):硬式内镜由德国人Philipp Bozzini 首创,由一花瓶状光源、蜡烛和一系列镜片组成,主要用于膀胱和尿道检查。1895年Rosenhein研制的硬式内镜由3根管子呈同心圆状设置,中心管为光学结构,第二层管腔内装上铂丝圈制的灯泡和水冷结构,外层壁上刻有刻度反应进镜深度。1911年Elsner对Rosenhein式胃窥镜作了改进,在前端加上橡皮头做引导之用,但透镜脏污后便无法观察成为主要缺陷,尽管如此,Elsner式胃镜1932年以前仍处于统帅地位。 半屈式内镜阶段(1932—1957):Schindler从1928年与优秀的器械制作师Georg Wolf 合作研制胃镜,最终在1932年获得成功,定名为Wolf-Schinder式胃镜。之后,许多人对其进行了改造,使之功能更为齐全,更为实用。 光导纤维内镜阶段(1957年至今):1954年,英国的Hopkins和Kapany发明了光导纤维技术。1957年,Hirschowitz及助手在美国胃镜学会上展示了自行研制的光导纤维内镜。60年代初,日本Olympas厂在光导纤维胃镜基础上,加装了活检装置及照相机,有效地显示了胃照相术。1966年Olympas厂首创前端弯角机构,1967年Machida厂采用外部冷光源,使光量度大增,可发现小病灶,视野进一步扩大,可以观察到十二指肠。近10年随着附属装置的不断改进,如手术器械、摄像系统的发展,使纤维内镜不但可用于诊断,且可用于手术治疗。 电视内镜时代(1983年以后):1983年Welch Allyn公司研制成功了电子摄像式内镜。该镜前端装有高敏感度微型摄像机,将所记录下的图像以电讯号方式传至电视信息处理系统,然后把信号转变成为电视显像机上可看到的图像。 影像质量评价 内窥镜在200年里结构发生了4次大的改进,从最初的硬管式内镜、半曲式内镜到纤维内镜,又到如今的电子内镜。随着科技的进步,影像质量也发生了一次次的质的飞跃。最初Bozzine研制的第一台硬管内镜以烛光为光源,后来必为灯泡作光源,而当今从内镜获得的是彩色相片或彩色电视图像。这图像不再是组织器官的普通影像,而是如同在显微镜下观察到的微观像,微小病变清晰可辨,可见其影像质量已达到了较高的水平。 医用内窥镜分类 按其发展及成像构造分类:可大体分为3大类:硬管式内镜、光学纤维(软管式)内镜和电子内镜。

热风炉作用

热风炉———高炉高风温的重要载体 来源:中国钢铁新闻网作者:毛庆武张福明发布时间:2008.04.29 高风温是现代高炉的重要技术特征。提高风温是增加喷煤量、降低焦比、降低生产成本的主要技术措施。近几年,国内钢铁企业高炉的热风温度逐年升高,2007年重点企业热风温度比上年提高25℃。特别是新建设的一批大高炉(大于2000立方米)热风温度均超过1200℃,达到国际先进水平。如2002年后,首钢技术改造或新建高炉的热风温度均实现高于1200℃的目标。 热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。 高风温有赖热风炉的结构优化 20世纪50年代,我国高炉主要采用传统的内燃式热风炉。这种热风炉存在着诸多技术缺陷,且随着风温的提高而暴露得更加明显。为克服传统内燃式热风炉的技术缺陷,20世纪60年代,外燃式热风炉应运而生。该设备将燃烧室与蓄热室分开,显著地提高了风温,延长了热风炉寿命。20世纪70年代,荷兰霍戈文公司(现达涅利公司)对传统的内燃式热风炉进行优化和改进,开发了改造型内燃式热风炉,在欧美等地区得到应用并获得成功。与此同时,我国炼铁工作者开发成功了顶燃式热风炉,并于上世纪70年代末在首钢2号高炉(1327立方米)上成功应用。自上世纪90年代KALUGIN顶燃式热风炉(小拱顶)投入运行,迄今为止在世界上已有80多座KALUGIN(卡鲁金)顶燃式热风炉投入使用。 截至目前,顶燃式热风炉由于具有结构稳定性好、气流分布均匀、布置紧凑、占地面积小、投资省、热效率高、寿命长等优势,已在国内几十座高炉上应用。首钢第5代顶燃式热风炉自投产以来,已正常工作22年3个月,曾取得月平均风温≥1200℃的业绩。生产实践证实,顶燃式热风炉是一种长寿型的热风炉,完全可以满足两代高炉炉龄寿命的要求。然而,由于国内有的企业高炉煤气含水量高、煤气质量差,致使顶燃式热风炉燃烧口出现过早破损;而且采用的大功率短焰燃烧器在适应助燃空气高温预热(助燃空气预热温度≥600℃)方面还存在一些技术难题。因此,国内钢铁企业进行了技术改造,Corus(康力斯)高风温内燃式热风炉也因此得到应用。 合理的热风炉配置保持高炉稳定 根据实践,现代大型高炉配置3~4座热风炉比较合理。大型高炉如果配置4座热风炉,可以实现交错并联送风,能提高风温20℃~40℃,在炉役的中后期,还可以在1座热风炉检修的情况下,采用另外3座热风炉工作,使高炉生产不会出现过大的波动。目前,国内外许多大型高炉都配套建设了4座热风炉,但采用3座热风炉可以大幅度降低建设投资,减少占地面积,也同样具有非常大的吸引力。随着设计和安装大直径热风炉条件的改进,热风炉设计的日趋合理,热风炉使用的耐火材料质量也得到提高,设备更经久耐用,控制系统也日益成熟可靠,形成了多种多样的热风炉高风温和长寿技术,使得热风炉操作可以更加平稳可靠,从而保证了高炉稳定操作。以此为基础,现代热风炉的发展方向转变为减少热风炉座数、延长热风炉寿命、强化燃烧能力、缩短送风时间、减少蓄热面积、回收废气热量、提高总热效率上。另外,尽量缩短送风时间的操作方式也得到重视,基于新设计理念和完备的技术支撑,国内钢铁企业将热风炉数量由4座减少为3座,热风炉的操作模式改为“两烧一送”,风温的调节控制依靠混风实现,也同样达到了高风温的效果。 提高加热炉传热效率和寿命是可靠保证

关于生物质燃料和生物质锅炉

关于生物质燃料和生物质锅炉 生物质燃料 生物质燃料多为茎状农作物经过加工产生的块装环保新能源,其直径一般为6~8厘米,长度为其直径的4~5倍,破碎率小于1.5%~2.0%,干基含水量小于10%~15%,灰分含量小于1.5%,硫含量和氯含量均小于0.07%,氮含量小于0.5%。若使用添加剂,则应为农林产物,并且应标明使用的种类和数量。欧盟标准对生物质燃料的热值没有提出具体的数值,但要求销售商应予以标注。瑞典标准要求生物质燃料的热值一般应在16.9 兆焦上。在我国河南,生物质燃料是政府重点扶持的08年新农村建设的项目之一,目前有河南开拓机械和探矿机械引进生物质燃料生产技术和概念,是我国的首批机械设备生产厂家。文档来自于网络搜索 关于生物质颗粒燃料 根据瑞典的以及欧盟的生物质颗粒分类标准,若以其中间分类值为例,则可以将生物质颗粒大致上描述为以下特性:生物质颗粒的直径一般为6~8毫米,长度为其直径的4~5倍,破碎率小于1.5%~2.0%,干基含水量小于10%~15%,灰分含量小于1.5%,硫含量和氯含量均小于0.07%,氮含量小于0.5%。若使用添加剂,则应为农林产物,并且应标明使用的种类和数量。欧盟标准对生物质颗粒的热值没有提出具体的数值,但要求销售商应予以标注。瑞典标准要求生物质颗粒的热值一般应在16.9 兆焦上。文档来自于网络搜索 目前,我国采用的制粒方法均为传统生产方法,木质颗粒的制粒原理见图 1,它与现有的饲料制粒方式相同,即原料从环模内部加入,经由压辊碾压挤出环模而成粒状。其工艺流程见图 2,包括原料烘干、压制、冷却、包装等。该工艺流程需要消耗大量能量,首先在颗粒压制成型过程中,压强达到50~100MPa,原料在高压下发生变形、升温,温度可达100℃~120℃,电动机的驱动需要消耗大量的电能;其次,原料的湿度要求在12%左右,湿度太高和太低都不能很好成粒,为了达到这个湿度,很多原料要烘干以后才能用于制粒;第三,压制出来的热颗粒(颗粒温度可达95℃~110℃)要冷却才能进行包装。后2项工艺消耗的能量在制粒全过程中占25%~35%,加之成型过程中对机器的磨损比较大,所以传统颗粒成型机的产品制造成本较高。文档来自于网络搜索 什么是生物质锅炉 生物质锅炉是专门燃烧生物质成型燃料的一种锅炉,他运行环保,节省燃料,是现在社会比较提倡使用的锅炉,生物质锅炉也分好多种有生物质采暖炉、生物质炊事采暖两用炉、生物质热水锅炉、生物质数控锅炉等等,生物质燃料就是用农林废弃物经过加工形成的密度很高的颗粒或块状燃料.文档来自于网络搜索 生物质锅炉 生物质锅炉是锅炉的一个种类就是以生物质能源做为燃料的锅炉叫生物质锅炉,分为生物质蒸汽锅炉、生物质热水锅炉、生物质热风炉、生物质导热油炉等。文档来自于网络搜索 生物质锅炉的好处 生物质燃料属于国家支持推广的新型燃料,生物质燃料是指以农村的玉米秸秆,小麦秸秆,棉花杆,稻草,稻壳,花生壳,玉米芯,树枝,树叶,锯末等农作物,固体废弃物为原料,

热风炉操作说明书

山东寿光巨能特钢12503 M高炉热风炉操作说明书 莱芜钢铁集团电子有限公司 2011.04

1、系统概述 热风炉控制室设有PLC一套,PLC采用西门子S7-400系列CPU 和ET200M远程站及图尔克现场总线远程站,上位机与PLC间通过以太网进行通讯,CPU与远程站通过PROFIBUS DP进行通讯,完成对三座热风炉的所有参数检测、控制及事故诊断。 2、工艺介绍 本控制系统主要完成本系统上各种开关、模拟量的检测与控制;利用热风炉烟气,设置热风炉助燃空气和高炉煤气双预热系统,以节省能源。并设助燃风机两台,以及各种切断阀和调节阀,以实现热风炉焖炉及燃烧、送风的控制要求。本控制系统设有微机两台及各阀现场操作箱,正常状况下三座热风炉的操作都通过微机实现,微机操作有单机和联锁两种操作模式,现场操作箱主要用于现场调试。微机操作和操作箱操作受联锁关系限制。 热风炉的工作状态有燃烧、焖炉、送风三种状态,状态的转换靠控制各阀门的动作,热风炉各阀门按照:燃烧→焖炉→送风→焖炉循环的工作过程,自动或手动进行换炉切换工作。其受控阀门及三种状态对应的阀门状态如下图所示:受控阀门内容及状态表(K=开,G=关)

3、监控功能 根据生产实际情况和操作需要,在监控站制作多幅监控画面,全部采用中文界面,具有极强的可操作性。具体的监控画面包括:热风炉主工艺画面、助燃风机监控画面、煤气空气调节画面、历史趋势画面。 在画面上可显示热风炉各部分的温度、压力、流量分布状况,采集的数据,历史趋势、报警闪烁画面,完成各阀门、设备的开启及操作,完成煤气、助燃空气的调节阀的操作及调节,各系统的自动调节与软手动调节、硬手动调节的无扰自动切换,各调节阀的操作及调节和保持各数据的动态显示。 主要画面及其功能如下: 热风炉主工艺画面:可显示热风炉的整个工艺生产流程及相关的主要参数值,报警闪烁,切入其他画面的功能按钮,热风炉的单机/联锁切换,单机模式下实现对每个阀的单独开关控制,联锁模式下实现焖炉、燃烧、送风三个状态的自动转换。 分画面:各调节系统的画面,包括参数设定的功能键、控制流程图、报警纪录,相关信息;历史趋势,相关的PID参数设定等等。切

讲课内容,国内高炉热风炉现状,高炉热风炉设计思路

我们能不能干得比外国人更好一些 ——中冶京城吴启常大师于2015年4月,做客于山东慧敏科技公司,讲授热风炉的相关知识,同时对目前钢铁行业热风炉的情况进行讲解,受益匪浅,仅此上传吴大师的讲授资料,大家共同学习,向吴大师致敬! 1. 格子砖热工特性: 对于没有影响热交换过程横向凸台和水平通道的格子砖,都可以通过两个基本参数——格子砖的水力学直径d Э和相应的活面积f ——来表述,即: 单位加热面积(m 2/m 3) 4f H d = 1m 3格子砖中砖的容积(m 3/m 3) k 1V =-f 烟气辐射的厚度(cm ) 3.41004 d S =ЭЭФ 砖的半当量厚度(mm ) (1)4f d R f -=ЭЭ 格孔间最小壁厚(mm ) m i n 1d f ?=-??? Эδ 2.高炉风温有没有上限? 上一世纪70年代,西方国家的高炉设计纷纷高喊要使用1350℃以上的高风温,试图获得提高风温给高炉带来的最大好处。但实际的结果是热风炉拱顶钢壳 出现了大量裂纹,给高炉生产带 来了极大的困难。欧洲人深入研 究了此问题之后认为:这是高炉 采用高风温高压操作之后,燃烧 产物中出现了大量的NO X 和SO X 造成钢壳出现晶间应力腐蚀的缘 故。 尤其是炉壳在高应力状态下 工作时,晶粒之间的腐蚀更为严重。此外,NO X 和SO X 对于环境污染也是极大的

挑战。它们是PM2.5指标的重要组成部分。 NO X 生成量与拱顶温度之间关系 欧洲人从防止热风炉炉壳出现晶间应力腐蚀以及保护大气环境的角度出发,他们以热风炉的拱顶温度水平来对热风炉进行分类(详见图2)。按欧洲人的观念,拱顶温度范围:>1420℃属超高风温热风炉;1350~1420℃属高温热风炉;1250~1350℃属中温热风炉;1100~1250℃属低温热风炉。 晶间应力腐蚀是怎么回事? 晶间应力腐蚀的定义:在腐蚀介质和应力的双重作用下,没有产生变形而出现沿晶间方向的开裂,最终导致材料的破坏。热风炉出现晶间应力腐蚀开裂破坏的主要部位在拱顶的焊缝附近,并且工地焊缝比工厂焊缝出现开裂的频率要高。可见焊接产生的残余应力对于腐蚀开裂有很大的影响。 晶间应力腐蚀产生的原因:在高温条件下,N 2和O 2分解成单体的N 和O 并生成NO x 。NO x 产生的化学反应式如下: N 2 + xO 2 = 2NO x x 22111N O +O =N O x 2x x 如果热风炉炉壳没有特殊的隔热层,炉壳的温度会低于100℃,其内表面会形成冷凝水。氧化氮与这些冷凝水接触便会生成硝酸根离子水溶液,这样,腐蚀介质就形成了。其反应式如下: 2NO 2 + H 2O = HNO 2 + HNO 3 2NO 2 + H 2O + 0.5O 2 = 2HNO 3 硝酸对钢板产生化学侵蚀破坏,反应式如下: 2Fe + 6HNO 3 =Fe 2O 3 + 3N 2O 4 + 3H 2O 研究还表明,在有SO 2介质的存在条件下,应力腐蚀的速度将加快。 为了防止热风炉高温区炉壳出现晶间应力腐蚀,人们曾经采用过一些技术措施: 1)拱顶温度控制在1420℃的水平上; 2)拱顶外壳内表面喷砂除锈后涂刷耐酸高温漆并喷涂耐酸耐火材料; 3)适当加厚拱顶外壳钢板,采用‘低应力设计’,并选用细晶粒耐龟裂钢板作为炉壳材料;

热风炉设计说明书

目录 第一章热风炉热工计算 (1) 1.1热风炉燃烧计算 (1) 1.2热风炉热平衡计算 (6) 1.3热风炉设计参数确定 (9) 第二章热风炉结构设计 (10) 2.1设计原则 (10) 2.2 工程设计内容及技术特点 (11) 2.2.1设计内容 (11) 2.2.2 技术特点 (11) 2.3结构性能参数确定 (12) 2.4蓄热室格子砖选择 (13) 2.5热风炉管道系统及烟囱 (15) 2.5.1顶燃式热风炉煤气主管包括: (15) 2.5.2顶燃式热风炉空气主管包括: (16) 2.5.3顶燃式热风炉烟气主管包括: (16) 2.5.4顶燃式热风炉冷风主管道包括: (17) 2.5.5顶燃式热风炉热风主管道包括: (17) 2.6 热风炉附属设备和设施 (18) 2.7热风炉基础设计 (21) 2.7.1 热风炉炉壳 (21) 2.7.2 热风炉区框架及平台(包括吊车梁) (21) 第三章热风炉用耐火材料的选择 (22) 3.1耐火材料的定义与性能 (22) 3.2热风炉耐火材料的选择 (22) 参考文献 (25)

第一章热风炉热工计算 1.1热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表1.1。 表1.1 煤气成分表

热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为 2.3t/m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=2.25h,送风期T f=0.75h,燃烧期Tr=1.4h,换炉时间ΔT=0.1h,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下: CO:126.36KJ , H2:107.85KJ, CH4:358.81KJ, C2H4:594.4KJ。则煤气低发热量: Q DW=126.36×30.3+107.85×12.7+258.81×1.7+594.4×0.4=6046.14 KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=1.1。燃烧计算见表2.13。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=25.9/21=1.23 m3。 (3)实际空气需要量La=1.1×1.23=1.353 m3。

热风炉

前言 通过长时间的生产实践,人们已经认识到,只有利用热风作为介质和载体才能更大地提高热利用率和热工作效果。传统 电热源和蒸汽热动力在输送过程中往往配置多台循环风机,使之最终还是间接形成热风进行烘干或供暖操作。这种过程显然存在大量浪费能源及造成附属设备过多、工艺过程复杂等诸多缺点。而更大的问题是,这种热源对于那种需要较高温度干燥或烘烤作业的要求,则束手无策。针对这些实际问题经过多年潜心研究,终于研制出深受国内外用户欢迎的JDC系列螺旋翅片管换热间接式热风炉和JDC系列高净化。 热风炉作用 炼铁高炉热风炉作用是把鼓风加热到要求的温度,用以提高高炉的效益和效率;它是按“蓄热”原理工作的。在燃烧室里燃烧煤气,高温废气通过格子砖并使之蓄热,当格子砖充分加热后,热风炉就可改为送风,此时有关燃烧各阀关闭,送风各阀打开,冷风经格子砖而被加热并送出。高炉装有3-4座热风炉/…单炉送风”时,两或三座加热,一座送风;轮流更换/…并联送风”时,两座加热。 热风炉工作原理 热风炉直接式高净化热风炉 就是采用燃料直接燃烧,经高净化处理形成热风,而和物料直接接触加热干燥或烘烤。该种方法燃料的消耗热风炉量约比用蒸汽式或其他间接加热器减少一半左右。因此,在不影响烘干产品品质的情况下,完全可以使用直接式高净化热风。 燃料可分为: ①固体燃料,如煤、焦炭。 ②液体燃料,如柴油、重油、醇基燃料 ③气体燃料,如煤气、天然气、液体气。

燃料经燃烧反应后得到的高温燃烧气体进一步与外界空气接触,混合到某一温度后直接进入干燥室或烘烤房,与被干燥物料相接触,加热、蒸发水分,从而获得干燥产品。为了利用这些燃料的燃烧反应热,必须增设一套燃料燃烧装置。如:燃煤燃烧器、燃油燃烧器、煤气烧嘴等。 常用:这种直接加热式热风炉不可用于养殖等取暖。 热风炉间接式热风炉 主要适用于被干燥物料不允许被污染,或应用于温度较低的热敏性物料干燥。如:奶粉、制药、合成树脂、精细化工等。此种加热装置,即是将蒸气、导热油、烟道气等做载体,通过多种形式的热交换器来加热空气。 间接式热风炉的最本质问题就是热交换。热交换面积越大,热转换率越高,热风炉的节能效果越好,炉体及换热器的寿命越长。反之,热交换面积的大小也可以从烟气温度上加以识别。烟温越低,热转换率越高,热交换面积就越大。 经过燃料和加热源的分离,可用于人类取暖。 工作原理可分为蓄热式和换热式两种 蓄热式,按热风炉内部的蓄热体分球式热风炉(简称球炉)和采用格子砖的热风炉,按燃烧方式可以分为顶燃式,内燃式,外燃式等几种。如何提高风温,是业内人士长期研究的方向。常用的办法是混烧高热值燃气,或增加热风炉格子砖的换热面积,或改变格子砖的材质、密度,或改变蓄热体的形状(如蓄热球),以及通过种种方法将煤气和助燃空气预热。 热风炉系统 优点:换热温度高,热利用率高。 缺点:体积大,占地面积大,热风温度不稳定,切换机构多,容易出问题,蓄热体寿命短,维修成本高,购置成本极高。

热风炉技术方案

山西安龙重工有限公司热风炉系统设备 技 术 方 案 湖北神雾热能技术有限公司 2009.12.02

一、前言 该项目是遵循山西安龙重工有限公司所提技术要求设计,所采用的技术核心主要是目前国内外先进的燃气半预混双旋流燃烧技术等。 二、设计基础 1、原始参数及现场条件 1).处理原料 待定 2).处理能力:待定 2 热风炉工况参数 1).最大热负荷:2000×104Kcal/h 2).热风炉出口热风温度:50~300℃ 3).热风炉出口热风流量:187000 Nm3/h(在300℃工况下) 4).燃料参数 煤气(具体种类待定):热值约1000 Kcal/Nm3 压力:6~8 kPa 5).液化气或其它高热值燃气(启炉和长明火燃料) 热值:20000 kcal/Nm3 压力:10kPa 6).煤气吹扫气参数 氮气:压力:~0.2 MPa 三、方案内容

2、耐火材料选型参数 低水泥高铝浇注料:用于炉膛耐火内衬 容重~2.3kg/m3 烧后抗压强度110℃×24h ≥15MPa 1000℃×3h ≥25MPa 烧后线变化率1000℃×2h 0~-0.2% 耐火度>1700℃ 3、热风炉设备特点综述 热风炉是根据终端设备对温度的要求,输出适合温度和一定流量热烟气的设备,在满足此基本要求的基础之上,我们重点考虑了如下方面: a)热风炉在运行过程中对炉内温度实现检测,满足终端设备所 需要风温及风量。燃烧器调节范围大,火焰长度、扩散角均 能和炉子合理匹配,且配有自动点火和火检,保证安全稳定 运行; b)炉子采用合理的钢结构来支撑本体;选用性能良好的耐火材 料砌筑,采用二次风冷却的方式,确保炉体表面温度符合技 术要求; c)合理配置炉子检修口、观察孔,结构设计做到开启灵活,关 闭严密,减少炉气外溢和冷风吸入的现象; d)配备完善的热工控制系统设备,自动化程度高。确保严格的 空燃比和合理的炉压等控制,使热损失减少到最小; e)满足低耗、节能的工艺要求; f)在环保方面,烟气中有害成分游离碳和NO X通过强化燃料

热风炉燃烧温度控制系统的设计

工号:JG-0054889 酒钢炼铁保障作业区 论文设计 题目热风炉燃烧温度控制系统设计 厂区炼铁厂 作业区保障作业区 班组维护班 姓名陈现伟 2011 年05 月08 日

论文设计任务书 职工姓名:陈现伟工种:维护电工 题目: 热风炉燃烧温度控制系统的设计 初始条件:炼铁高炉采用内燃式热风炉,燃烧所采用的燃料为高炉煤气和转炉 煤气。两种燃料混合后进入热风炉燃烧室,再与助燃空气一起燃烧,要求向高炉送风温度达到1350℃,则炉顶温度必须达到1400℃±10℃。 要求完成的主要任务: 1、了解内燃式热风炉工艺设备 2、绘制内燃式热风炉温度控制系统方案图 3、确定系统所需检测元件、执行元件、调节仪表技术参数 4、撰写系统调节原理及调节过程说明书 时间安排 4月29-30日选题、理解设计任务,工艺要求。 5月1-3日方案设计 5月4-7日参数计算撰写说明书 5月8日整理修改 主管领导签字:年月日

目录 摘要.............................................................. I 1内燃式热风炉工艺概述. (1) 2热风炉温度串级控制总体方案 (2) 2.1内燃式热风炉送风温度控制方案选择... (2) 2.2内燃式热风炉温度串级控制系统框图 (4) 3系统元器件选择 (4) 3.1温度变送器 (5) 3.2温度传感器 (5) 3.3控制器及调节阀 (6) 3.3.1调节阀的选择 (6) 3.3.2控制器即调节器的选择 (6) 4参数整定及调节过程说明 (7) 4.1参数整定 (7) 4.2调节过程说明 (8) 学习心得及体会 (10) 参考文献 (11)

HY-F 系列热风炉说明书

操作前请仔细阅读使用说明书

前言 HY-F 热风炉是保定市恒宇机械电器制造有限公司开发研制,主要用于棉花等物料烘干的专用供热设备。该炉以煤为燃料,采用机械化给煤燃烧方式,使燃煤得以充分燃烧,是一种新型的高效、节能、低污染的供热设备。可替代现行的燃油、燃气及电加热设备。产品投放市场以来深受广大用户的欢迎,在国内成为广大棉花加工厂的首选产品,部分产品出口到非洲一些国家和地区。 一、结构说明 HY-F系列热风炉分四部分构成,分别为换热器、高效燃烧系统、除尘系统和电气系统。其中高效燃烧系统由炉排总成、燃烧室、上煤机三部分组成。 换热器为列管式换热器,合理的分布辐射和对流换热面;炉体两侧设有清理换热通道灰尘的清灰门及清灰通道。在换热器上部有检修门。 除尘系统采用的是水膜除尘,锅炉燃烧产生的烟气,先经过一次水膜除尘,去掉火星和烟尘,最后将不会产生火灾隐患的烟气排入大气中。 燃烧室内腔由耐火材料预制而成,分引燃区、燃烧区和燃尽区。炉排采用链条式炉排。炉排总成设有分风室、调风门和调风杆,用来调节各风室的供风量;炉体侧面设有点火门、看火门,炉排采用的是除渣机自动除渣。煤仓内有闸板,通过调节煤闸板的高度来控制煤层厚度,用来控制热温度。 上煤机由煤斗车、导轨架、支撑平台、提升电机和减速箱等构成(见图1),位于主机前方。燃煤由此机构提升送至煤仓,为燃烧用煤储备燃料。 二、工作原理 通过上煤机由煤斗车将煤送至煤仓,煤随炉排的缓慢运动经煤闸板刮成一定厚度的煤层进入燃烧室引燃区,迅速起火燃烧。燃烧所需的空气由炉排离心通风机提供,通过炉排分风室分配到燃烧室各区。燃烧后所形成的灰渣通过炉排的循环运动落至尾部的除渣机中。 利用锅炉离心引风机,将烟气均匀的引入换热器外表面,使鼓入换热器内

内窥镜使用说明书(v4.6)

目录 第一部分:内窥镜工作站的运行环境,特点及安装方法 一、内窥镜工作站软件的运行境 (3) 二、软件的特点 (3) 三、软件安装方法 (5) 四、软件运行 (5) 第二部分:软件功能按钮介绍与教程 一.软件主窗口 (6) 二、程序操作区各按钮功能 1、建新病历 (6) 2、保存病历 (6) 3、采集图片 (6) 4、图像处理窗口 (7) 5、冻结 (9) 6、生成报告 (9) 7、系统设置 (12) 7-1、报告格式设置 (12) 7-2、报告格式编辑窗口 (13) 7-3、伪彩设置 (17) 7-4、系统设置 (18) 7-5、术语设置 (19) 8、病历管理窗口 (20) 8-1、备份功能 (21) 8-2、查询功能区 (22)

8-3、排序功能区 (23) 8-4、设置功能区 (24) 8-5、病历操作控制区 (25) 2-8-1、打开病历 (25) 2-8-2、删除病历 (25) 2-8-3、工作量统计 (25) 9、退出系统 (26) 10、诊断图库 (26) 11、视频动态回放功能区 (27) 12、亮度、对比度和饱和度调整 (28) 13、全屏显示 (28) 三、病人主要信息输入区功能窗口 (28) 1、选择内容设置窗口 (28)

第一部分内窥镜工作站的运行环境、特点及安装方法 一.软件的运行环境 .Microsoft Windows98/2000/XP操作系统 .MMX奔腾II级PC;32MB以上内存 .3000MB可用硬盘空间 .支持24-bit(真彩色),显示器分辨率为1024*768 .支持直接写屏显卡 .CD-ROM驱动器 .医疗专用视频采集卡 .720dpi分辨率以上的彩色喷墨打印机 二.软件的特点 我们在开发过程中从用户使用的角度出发,设计了方便简精的界面风格,多功能全方位的实时编辑,安全可靠的运行环境,使您的操作倍感流畅、轻松、快捷!以下是本软件的部分特点: ■方便快捷的病历内容输入 在填写病历资料时,很多内容相对固定,变化不大。对于检查所见和诊断结果,我们为您内置了比较常用的模板,您只需根据提示选择即可。并且模板内还可设置选择项,如镜检所见中,同一种病可能回声,象限位置有些变化,通过模板内设置选择项,无需编辑,直接选择即可,节省您生成报告的时间。可方便您进行模板管理中有回声很多工作人员在汉字输入方面不太熟练,为了减少工作人员的文字输入工作量,针对病历中一些内容比较固定的输入项(如临床所见、检查所见等),我们设置了内容快捷选择方式,通过对预置内容的选择和取消即可快速完成病历报告的填写,提高工作人员的工作效率。同时可设置默认输入法,光标停在需要输入汉字的文本输入框内,将自动切换至默认输入法。 ■输入法自动切换 通过设置默认输入法,当您将光标指向姓名、病人主诉等需要输入汉字的地方,将自动切换到默认的输入法。 ■在编辑当前病人报告时,可对下一个病人进行图像采集,提高效率 ■报告各输入项可选择 软件提供的输入项比较全,很多医院报告上并不需要体现这么多内容,可通过设置将多余的输入项删去,简化操作提高效率。 ■图文并茂的多功能报告格式即时编辑 用户可根据自己的需要,对报告格式的输入项、纸张大小等进行调整和设置。

一、生物质锅炉资料

生物质锅炉 一、概念解释: 生物质锅炉:是锅炉的一个种类,以生物质能源做为燃料的锅炉叫生物质锅炉,分为生物质蒸汽锅炉、生物质热水锅炉、生物质热风炉、生物质导热油炉、立式生物质锅炉、卧式生物质锅炉等。 生物质燃料:是指将生物质材料燃烧作为燃料,依据来源的不同,可以将适合于能源利用的生物质能源分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。一般主要是农林废弃物(如秸秆、锯末、甘蔗渣、稻糠等)。主要区别于化石燃料。在目前的国家政策和环保标准中,直接燃烧生物质属于高污染燃料,只在农村的大灶中使用,不允许在城市中使用。生物质燃料的应用,实际主要是生物质成型燃料(BiomassMouldingFuel ,简称"BMF"),是将农林废物作为原材料,经过粉碎、混合、挤压、烘干等工艺,制成各种成型(如块状、颗粒状等)的,可直接燃烧的一种新型清洁燃料。 二、珠三角生物质成型燃料工业锅炉应用现状分析 (一)锅炉分布广、数量大 珠三角区域(包括广州、深圳、珠海、佛山、江门、东莞、中山、惠州和肇庆市[1]) 经济发达,2012 年经济总量达 47873 亿元,占广东省的 83.9%,第二产业总产值为 22141 亿元,占全省比例 79.6%,占本地区总量 46.2%[2],其中尤以轻工业为主。因此,在用锅炉数量大,分布广(如图 1),且中小型居多;此外,由于改革开放初期粗放型的经济发展历史原因,锅炉多采用煤、重油作燃料。 3500 3000 2500 2000 1500 1000 500 0 佛山 东莞 江门 惠州 中山 肇庆 珠海 数据来源:广东省质量技术监督局特种设备监察信息网 2983 2656 1908 1385 1407 682 669 锅炉总量(台)

向1500m3高炉送风的热风炉设计说明书

目录 1 热风炉本体结构设计 (1) 1.1炉基的设计 (2) 1.2炉壳的设计 (2) 1.3炉墙的设计 (3) 1.4拱顶的设计 (3) 1.5蓄热室的设计 (5) 1.6燃烧室的设计 (5) 1.7炉箅子与支柱的设计 (6) 2 燃烧器选择与设计 (7) 2.1金属燃烧器 (7) 2.2陶瓷燃烧器 (7) 3 格子砖的选择 (10) 4 管道与阀门的选择设计 (15) 4.1管道 (15) 4.2.阀门 (16) 5 热风炉用耐火材料 (18) 5.1 硅砖 (18) 5.2 高铝砖 (18) 5.3 粘土砖 (18) 5.4 隔热砖 (18) 5.5 不定形材料 (18) 6 热风炉的热工计算 (22) 6.1 燃烧计算 (22) 6.2简易计算 (26) 6.3砖量计算 (28) 7 参考文献 (30)

1 热风炉本体结构设计 热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。冷风被加热并通过热风管道送往高炉。 目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。 传统内燃式热风炉(如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。 图1-1 内燃式热风炉 我国实际的热风炉尺寸见表1-1。

表1-1我国设计的热风炉尺寸表 1.1炉基的设计 由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。地基的耐压力不小于2.0~2.5kg/2cm ,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm ,以防水浸基础由3A F 或16Mn 钢筋和325号水泥浇灌成钢筋混泥土结构。土壤承载力不足时,需打桩加固。 生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。 1.2炉壳的设计 热风炉的炉壳由8~20mm 厚的钢板焊成。对一般部位可取:δ=1.4D (mm )。开孔多的部位可取:δ=1.7D (mm ), δ为钢板厚度(mm ),D 为炉壳内径(m ),钢板厚度主要根据炉壳直径、内压、外壳温度、外部负荷而定。炉壳下部是圆柱体,顶部为半球体。为确保密封炉壳连同封板焊成一个不漏气的整体。由于炉内风压较高,加上炉壳耐火砖的膨胀,使热风炉底部承受到很大的压力,为防止底板向上抬起,热风炉炉壳用地脚螺栓固定在基础上,同时炉底封板与基础之间进行压力灌浆,保证板下密实,也可以把地脚螺栓改成锚固板,并在底封板上灌上混泥土。将炉壳固定使其不变形,或把平底封板加工成蝶形底,使热风炉成为一个手内压的气罐,减弱操作应力的影响。在施工过程中对焊接必须进行X 光探伤检验,要求炉壳椭圆度不大于直径的千分之二,整个中心线的倾斜(炉顶中心与炉底中心差)不大于30mm 。为了保证炉壳和炉内砌砖的密封性,在砌砖前后要试漏、试压,检查砌砖前试验压力为0.3~1.5kg/2cm ,砌砖后工作压力的1.5倍试压,每小时压力降<=1.5%.蓄热室、燃烧室的拱顶和连接管处采用(韧性耐龟 v 有效 100 250 620 1036 1200 1513 1800 2050 2516 4063 H 21068 28840 33500 37000 42000 44450 44470 54000 49660 54050 D 上 4346 5400 7300 8000 8500 9000 9330 99600 9000 10100 下 5200 6780 9000 9500 H/D 4.80 5.57 4.80 4.70 4.95 4.93 4.93 5.70 5.57 5.35

热风炉说明书

目录 一、公司简介 二、用途 三、设备主要技术参数 四、设备结构简介 五、安装 六、使用和安全 七、维护及保养 八、常见故障排除 九、安全注意事项 十、成套供应范围

一:公司简介 新乡市鼎升炉机科技有限公司(中国国防科工委定点企业)1972年成立于新乡胙城工业区,是一个开发设计制造综合公司。 我公司位于河南北部,与S307,S308,;新济高速,京深高速,京广铁路紧连,交通便利,运输方便。 我公司综合实力强,技术力量雄厚,专业工种齐全,工作经验丰富,技术装备先进,公司组建以来共完成580项大中型整体工程设计和总承包工程,项目遍及20多个省,市,自治区,自1995年以来 连年被新乡市授予“重合同守信用单位”称号,多次被新乡市工商局评为“消费者信得过单位”,并取得了中国工商行AAA企业信誉等级证书,2001年通过ISO9001:2000质量管理体系认证。树立了良好的形象。 我公司近十年来经营状况非常良好,在同行业中也处于领先地位,公司拥有厂房4180平方米,职工268人,工程技术人员26人,高级工程师7人,具有丰富的理论知识和实践经验,依靠雄厚的技术实力,运行新颖实用的设计理念,公司研发了一系列“高效、先进、可靠、环保、节能”的热处理自动生产线。并取得多项国家专利。在大型工业炉项目投标中,我公司取得了骄人的成绩。主要涉及的行业有军工,航空,机械,冶金,航海,铁路行业等。 近年来,企业本着“科技兴厂”的指导方针,公司积极与国内知名院校及专业科研机构广泛合作,使公司的创新能力有了一个质的飞跃。公司相继设计开发出各种高、中、低温箱式、台车式、井式、网带式、连续推杆式、盐浴式、滚筒式电阻炉等炉型,满足了气、固体渗碳、渗氮、

生物质热风炉

生物质热风炉是生物质锅炉中的一种,是一种以生物质为燃料的烘干设备,其主要的功能有:烘干(干燥)、供暖。下面就由生物质热风炉厂家铭诚炉业为大家详细介绍这种热风炉的相关常识,帮助大 家更好地使用该产品。 生物质热风炉的工作原理:是一种采用逆流燃烧方式(即燃烧火焰方向与进料方向相反),使热烟气流经过湿燃料表面,促进了燃料的干燥和水蒸气输送,达到促进燃料燃烧、减少黑烟产生、干燥物体目的的环保型设备。 生物质热风炉的设计原理: 1、在炉膛后部设置副燃烧室,使炉膛内未燃尽碳粒和可燃气体完全燃烧,减少了高温缺氧不完全燃烧所产生的黑烟。燃烧后的高温烟气在经过沉降室来进一步捕捉烟尘,降低了烟气中的含尘量。

2、在配风方面,由于热风炉后部配有引风机,炉膛燃烧方式为微负压燃烧,一次空气通过炉排下的炉渣室吸入,二次空气通过高压鼓风机沿两侧风管切向喷入炉膛。 3、利用逆流燃烧的原理,使燃料充分燃烧,减少废气排出。 生物质热风炉在使用过程中,我们需要注意以下6点: 1、操作锅炉的人员应经过专业培训并取得操作证。 2、锅炉安装必须经专业的安装公司并取得使用许可证。 3、锅炉在准备使用前,必须先单机试运行及详细了解锅炉的特性及操作使用说明书(含配套设备的独立说明书)。 4、锅炉禁止超过设计规范使用及强行限制安全保护装置的正常工作。 5、安装、使用、维修、保养等必须按国家相应的规定进行。 6、在未对设备的使用全部了解清楚的情况下,应详细查看说明书或者是电话咨询相关厂家了解清楚。

芜湖市铭诚炉业设备有限公司专业从事工业炉窑及其附件生产型企业,目前已经形成二十个系列近百种工业炉窑配套产品,其中多项产品通过了省(部)级或市级鉴定,并获得了省(部)、市级科技进步奖、国家级新产品、全国优秀节能产品等荣誉称号。公司主要产品有各种工业炉窑及其附件的设计、生产、安装、调试等;烟气炉;高炉煤气立卧式空煤气双预热炉;耐火预制块等等。 公司主要产品有:1、各种工业炉窑及其附件的设计、生产、安装、调试等;2、烟气炉;3、高炉煤气立卧式空煤气双预热炉;4、耐火预制块;5、烧结用各种燃气点火炉成套设备;6、系列煤气平焰烧嘴;7、烧结用系列幕帘式烧嘴;8、系列煤气亚高速烧嘴;9、常温、高温系列空气蝶阀;10、系列煤气低压涡流烧嘴;11、双偏心金属密封系列蝶阀;12、系列燃油烧嘴;13、空、煤气换热器;14、系 列环缝涡流烧嘴;15、燃油气二用系列烧嘴。更多详情请点击官网芜湖市铭诚炉业设备有限公司进行进一步咨询了解。

450立方米热风炉设计计算

450m3高炉自身空煤气双预热热风炉设计计算 热风炉的加热能力(1m3高炉有效容积所具有的加热面积) 一般为80~100m2/m3或更高。前苏联5000m3的高炉蓄热面积为104 m2/m3,设计风温1440℃,为目前最高设计风温水平。 蓄热体面积120×450=54000 m2,设计三座热风炉,每座蓄热面积为18000m2,蓄热体单位体积传热面积48 m2/m3,每座热风炉蓄热体体积为375 m3。 蓄热室设计中,烟气流速起主导作用。小于100 m3炉容,烟气流速1.1~1.3Nm/s。炉容255~620 m3,烟气流速1.2~1.5Nm/s。炉容大于1000 m3,烟气流速1.5~2.0Nm/s。 根据资料核算,参考以上烟气流速差异,设计时可采用:蓄热体高度L/蓄热体直径D的方法进行计算。炉容大于1000 m3,L/D=3.5~4;炉容255~620 m3,L/D=3~3.5。 热风炉结构计算实例 450m3高炉热风炉设计计算。为实现热风炉外送热风温度~1150℃,确定热风加热能力为120 m2/m3,如果设置三个热风炉,则每个热风炉的蓄热面积为18000 m2。 热风炉结构的确定:假设蓄热室高/径=3.5,则 3.14×r2×7r×48=18000,r=2.57m,蓄热室直径5.14m,蓄热体高度18m。 燃烧器计算实例 假设高炉利用系数为K=3.5t铁/m3·昼夜,年工作日按355天计算。450m3高炉年产铁量估算为3.5×355×450=559125t。 焦比1:0.5,则冶炼强度i=1.75t焦/m3·昼夜。 高炉入炉风量V 0=Vu·i·v/1440(V 高炉入炉风量,Nm3/min;Vu高炉有效容积, m3;i冶炼强度,t焦/m3·昼夜;v每吨干焦的耗风量,Nm3/ t焦)V =450×1.75×2450/1440=1340 Nm3/min(实际1400)。 热风平均温度1150℃,送风期间热风带走的热焓为:363×1340=486420kcal/ min。(1250时,431.15-46.73=384.42热焓为538188 kcal/ min,供热717584 kcal/ min) 热风炉一个工作周期2.25h,送风期0.75h,燃烧期1.5h。 热风炉效率为75%时,燃烧器每分钟的供热量为1/2×648560(717584)kcal/min,假设高炉煤气的热值为800 kcal/Nm3,则燃烧器每分钟的燃气量为405(448.5) Nm3/ min,燃烧器能力24300(26910) Nm3/h。 根据郝素菊等人编著的《高炉炼铁设计原理》所提供数据,金属套筒式燃烧器烟气在燃烧室内的流速为3~3.5Nm/s,陶瓷燃烧器烟气在燃烧室内的流速为6~7Nm/s。 根据郝素菊等人编著的《高炉炼铁设计原理》所提供数据,陶瓷燃烧器空气、煤气喷口以25~300角相交。一般空气出口速度为30~40m/s,煤气出口速度15~20 m/s。 燃烧器能力27000 Nm3/h,空气量21600 Nm3/h,烟气量48600 Nm3/h。 燃烧混合室直径φ2530mm,烟气流速2.62m/h。 喉口直径Φ1780mm,烟气流速5.3m/h。 由于增加了旁通烟道,燃烧器能力提高10%,29700 Nm3/h,空气20790 Nm3/h,烟气 量50490 Nm3/h, 燃烧混合室直径φ2300mm,面积4.15m2,烟气流速3.38m/h. 喉口直径Φ1736mm,面积2.37m2, 烟气流速5.92m/h。

相关文档
最新文档