1.1 半导体材料的基本特性——半导体的电学性质

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

纳米材料电学性质的研究

纳米材料电学性质的研究 摘要:纳米体系中,电子波函数的相关长度与体系的特征尺寸相当,电子不再能够视为处于外场中运动的经典粒子,其波动性在电子输运过程中得到充分体现,因此表现出特殊的电子能态特性。文中主要对半导体的电学性质归纳总结,如自由载流子的浓度与温度的关系、掺杂对能带结构和载流子浓度的影响、半导体的电导率如何依赖于载流子的浓度和迁移率等,以及纳米半导体的介电行为(介电常数、介电损耗)及压电特性等。同时对硅纳米体系的电学性质做一些概况总结,并对其应用前景作进一步展望。 关键词:纳米材料、纳米半导体、电学性质、纳米硅体系 一、绪论 随着纳米科技的发展,高度集成化的要求及原件和材料微小化趋势下,纳米材料无疑将成为主角。纳米半导体更是展现出诱人的应用前景。纳米半导体粒子的高比表面、高活性、特殊的特性等使之成为应用于传感器方面最具前途的材料。它对温度、光、湿气等环境因素是相当敏感的。外界环境的改变会迅速引起表面或界面离子价态电子输运的变化;利用其电阻的显著变化可作成传感器,其特点是响应速度快、灵敏度高、选择性优良。目前,该领域的研究现况是:(i)在纳米半导体制备方面,追求获得量大、尺寸可控、表面清洁、制备方法趋于多样化、种类和品种繁多。(ii)在性质和微结构研究上着重探索普适规律。(iii)研究纳米尺度复合,发展新型纳米半导体复合材料。(iv)纳米半导体材料的光催化及光电转换研究。 二、纳米材料的电子能态特性 2.1 纳米材料的电子结构 纳米材料的尺寸在1nm~100nm之间,体系中只含有少数的电子,此时电子的结构与单个原子壳层结构十分类似,可以借助处理原子的电子结构模型粗略地求出。如果将这一体系看成是一个势阱,则电子被限制在此势阱中。显然电子可占据的能级与势阱的深度和宽度有关。在强限制的情况下,即势阱很深时,纳米材料具有类原子的特性,可称为类原子材料。它的基态与所包含的电子数目的奇偶性有关,从而影响到它的物理性质。另外,类原子材料内所包含的

半导体材料的特性参数和要求

半导体材料的特性参数和要求有哪些? 半导体材料-特性参数 LED灯泡半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。 常用的半导体材料的特性参数有:禁带宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的电子和空穴)、非平衡载流子寿命、位错密度。 禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。 电阻率、载流子迁移率反映材料的导电能力。 非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部的载流子由非平衡状态向平衡状态过渡的弛豫特性。 位错是晶体中最常见的一类晶体缺陷。 位错密度可以用来衡量半导体单晶材料晶格完整性的程度。当然,对于非晶态半导体是没有这一反映晶格完整性的特性参数的。 半导体材料-特性要求 LED灯泡半导体材料的特性参数对于材料应用甚为重要。因为不同的特性决定不同的用途。 晶体管对材料特性的要求:根据晶体管的工作原理,要求材料有较大的非平衡载流子寿命和载流子迁移率。用载流子迁移率大的材料制成的晶体管可以工作于更高的频率(有较好的频率响应)。晶体缺陷会影响晶体管的特性甚至使其失效。晶体管的工作温度高温限决定于禁带宽度的大小。禁带宽度越大,晶体管正常工作的高温限也越高。 光电器件对材料特性的要求:利用半导体的光电导(光照后增加的电导)性能的辐射探测器所适用的辐射频率范围与材料的禁带宽度有关。材料的非平衡载流子寿命越大,则探测器的灵敏度越高,而从光作用于探测器到产生响应所需的时间(即探测器的弛豫时间)也越长。因此,高的灵敏度和短的弛豫时间二者难于兼顾。对于太阳电池来说,为了得到高的转

电学性能测试设备的制作方法

本技术新型公开了一种电学性能测试设备,包括加工装置、测试装置和分析装置,加工装置、测试装置和分析装置安装在基座上面并呈直线排布,加工装置在右侧,测试装置在中间,分析装置在左侧,传送带安装在加工装置与测试装置中间,线缆安装在电气设备连接处,支撑架安装在基座底部边缘;本电学性能测试设备,在使用时只需将所检测材料在加工装置加工成检测装置所需状态,通过传送带运输到检测装置,经检测后将数据传输到分析电脑中即可,本设备安装五种常用的检测装置,能够同时检测多种电学性能,并将数据统一传输到分析电脑,做到全方位系统的测试材料的电学性能。 技术要求

1.一种电学性能测试设备,包括加工装置(1)、测试装置(3)和分析装置(5),其特征在于:所述加工装置(1)、测试装置(3)和分析装置(5)安装在基座(6)上面并呈直线排布,加工装置(1)在右侧,测试装置(3)在中间,分析装置(5)在左侧,传送带(2)安装在加工装置(1)与测试装置(3)中间,线缆(4)安装在电气设备连接处,支撑架(7)安装在基座(6)底部边缘;所述加工装置(1)包括放料口(11)和加工台(12),放料口(11)放置在加工台(12)顶部中间,加工台(12)安装在基座(6)右侧,测试装置(3)包括介电强度检测装置(31)、介电常数检测装置(32)、介电损耗检测装置(33)、体积电阻系数和表面电阻系数检测装置(34)、耐电弧性检测装置(35)、检测架(36)、排污口(37)和废料盒(38),介电强度检测装置(31)、介电常数检测装置(32)、介电损耗检测装置(33)、体积电阻系数和表面电阻系数检测装置(34)、耐电弧性检测装置(35)安装在检测架(36)上面并且呈线性排布,从右到左以依次为介电强度检测装置(31)、介电常数检测装置(32)、介电损耗检测装置(33)、体积电阻系数和表面电阻系数检测装置(34)、耐电弧性检测装置(35),检测架(36)安装在基座(6)中部,排污口(37)安装在检测架(36)右侧下方,废料盒(38)放置在基座(6)之上并且在排污口(37)的下方,分析装置(5)包括分析电脑(51)和分析台(52),分析电脑(51)放置在分析台(52)上面,分析台(52)安装在基座(6)左侧。 2.根据权利要求1所述的一种电学性能测试设备,其特征在于:所述电气设备均用线缆(4)连接。 3.根据权利要求1所述的一种电学性能测试设备,其特征在于:所述检测装置均为标准设备。 4.根据权利要求1所述的一种电学性能测试设备,其特征在于:所述支撑架(7)共6个并均匀分布在基座(6)下方边缘。 技术说明书 一种电学性能测试设备 技术领域

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

半导体材料能带测试及计算

半导体材料能带测试及计算 对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置. 图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样:

背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试: 用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。

材料的电学性能测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

(整理)南昌大学材料性能学重点 材料电学性能.

第二章材料电学性能 内容概要:本章介绍金属的导电机理,以及影响金属导电的因素,导电率的测量方法及其它材料的电学性质。 具体内容和学时安排如下: 第一节导电性能及本质 要求学生掌握导电的三大理论:经典电子理论;电子的量子理论;能带理论。这三大理论的成功或不足点。理解自由电子、能级和能带、周期性势场、能带密度、K空间的概念。 第二节金属导电性能影响因素 理解温度、相变、应力和热处理(淬火和退火)对材料导电性能的影响。 第三节合金的导电性能 理解固溶体和化合物的导电性 第四节电阻率的测量 电阻率的测量方法有单电桥法;双电桥法;电子四探针法。重点要求掌握单电桥法。第五节电阻分析应用 根据电阻率与温度的线性关系,可来研究材料的相变,材料的组织结构变化。 第六节超导电性 掌握超导的两大性能:完全导电性和完全抗磁性。掌握超导态转变为正常态的三个条件:临界温度;临界电流;临界磁场。超导的本质-BCS理论。 第七节材料的热电性能 了解三大热电现象:第一热导效应、第二热电效应、第三热电效应。 第八节半导体导电性的敏感效应 了解半导体能带结构特点;半导体导电有本征导电和杂质导电;实现导电的条件。 第九节介电极化与介电性能 掌握电介质极化机理和介电常数的本质 第十节电介质的介电损耗 了解电介质的能量损耗。 (共12个学时) 第一节导电性能及本质

材料的电学性能是指材料的导电性能,与材料的结构、组织、成分等因素有关。 一、电阻与导电的概念 R=U/I R 不仅与材料的性质有关,还与材料的几何形状有关 。 S L R ρ= L 与材料的长度,s与材料的横截面积,ρ为电阻率,单位为 m Ω? ρ σ1 = 值越小,a 值越大。 ρ 值愈小,σ值愈大。 纯金属:e 为10-8~10-7 合金: 10-7~10-5 半导体:10-3~10 9 绝缘体:﹥10 9 导电性能最好的金属是银、铜、金,其电阻率分别为1.5×10-8Ω?m 、1.73×10-8Ω?m 、等 二、导电机理及能带理论 关于材料的导电机理有三大理论:经典电子理论;电子的量子理论;能带理论。 1 金属及半导体的导电机理 1〉经典电子理论 经典电子理论认为(以Drude 和Lorentz 为代表):在金属晶体中,离子构成晶格点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此称为“电子气”。它们的运动遵循经典气体分子的运动规律,自由电子之间以及自由电子与正离子之间仅仅是机械碰撞而已。在没有外加电场时,金属中的自由电子沿各个方向的运动几率相同,因此不产生电流。当对金属施加外电场,自由电子沿电场方向加速运动,从而产生电流。在自由电子定向运动时,要与正离子发生碰撞,使电子受阻,这就是电阻。 设电子两次碰撞之间所经历的时间为τ 2* 2n e m τσ*= m*为电子的有效质量(考虑了晶体场对电子的相互作用) τ为电子在两次碰撞之间的时间间隔,τ为时间自由程. v 为电子运动的平均速度。 在T=0K 时,电子不受到散射.p=0.σ→∞。理想晶体。 T ≠0K 时,晶体的阵热振动或经典电子理论成功计算了电导率以及电导率与热导率的关系;但经典电子理论不能解释以下几种现象:电子的长平均自由程;材料导电性能差异;金属电子比热小。 2〉量子自由电子理论 量子自由电子理论认为:金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,且为整个金属所有,可以在整个金属中自由运动。但这一理论认为:金属中每个原子的内层电子基本保持单个原子时的能量状态,而所有的价电子却按量子规律具有不同的能量状态,即具有不同的能级。 量子电子理论认为:电子具有波粒二象性。运动着的电子作为物质波,其频率与电子的运动速

共轭聚合物的电学性质

共轭聚合物的电学性质 姓名:周宇班级:10级高分子材料与工程1班学号:201015014021 摘要:共轭导电聚合物是一种极有应用前景的功能高分子材料,简单了解共轭导电聚合 物的导电特性、应用以及共轭导电聚合物在制作二次电池、新型电子器件等方面具有独特的特性和优点。 关键词:共轭聚合物电学性质应用及发展 前言 导电高分子的研究和应用是近年来高分子科学最重要的成就之一。1974年日本白川英树等偶然发现一种制备聚乙炔自支撑膜的方法,得到聚乙炔薄膜不仅力学性能优良,且有明亮金属光泽。而后MacDiarmid、Hedger、白川英树等合作发现聚乙炔膜经过AsF5、I2等掺杂后电导率提高13个数量级,达到103S?cm-1,成为导电材料。这一结果突破了传统的认为高分子材料只是良好绝缘体的认识,引起广泛关注。 由于共轭导电聚合物同时具有聚合物、无机半导体和金属导体的特性,因而具有巨大的潜在的商业应用价值。在这里就聚合物的导电性及共轭聚合物材料的特性及其应用作一扼要介绍。 正文 一.聚合物的电学性质 高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。 (一)聚合物的介电性能 聚合物在外电场作用下贮存和损耗电能的性质称介电性,这是由于聚合物分子在电场作 tg表示. 用下发生极化引起的,通常用介电系数ε和介电损耗 1.介电损耗 电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。介电损耗产生的原因有两方面:一为电导损耗,是指电介质所含的微量导电载流子在电场作用下流动时,因克服电阻所消耗的电能;二为极化损耗,这是由于分子偶极子的取向极化造成的.对非极性聚合物而言,电导损耗可能是主要的.对极性聚合物的介电损耗而言,其主要部分为

材料电学性能

高分子材料的电学性能 高分子092班学号:5701109061 姓名:林尤琳 摘要:种类繁多的高分子材料的电学性能是丰富多彩的。多数聚合物材料具有卓越 的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。 关键词:高分子材料电学性能静电导电介电常数 高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。电学性能是材料最基本的属性之一,这是因为构成材料的原子和分子都是由电子的相互作用形成的,电子相互作用是材料各种性能的根源。电子的微观相互作用同时是产生材料宏观性能,包括电学性能的微观基础。在电场作用下产生的电流、极化现象、静电现象、光发射和光吸收现象都与其材料内部的电子运动相关。深入、系统了解材料的电学性能在材料的制备、应用等方面都具有非常重要的意义。(1) 一、聚合物的介电性 介电性是指高聚物在电场作用下,表现出对静电能的储存和损耗的性质。通常用介电常数和介电损耗来表示。(2) 根据高聚物中各种基团的有效偶极距μ,可以把高聚物按极性的大小分成四类: 非极性(μ=0):聚乙烯、聚丙烯、聚丁二烯、聚四氟乙烯等 弱极性(μ≤0.5):聚苯乙烯、天然橡胶等 极性(μ>0.5):聚氯乙烯、尼龙、有机玻璃等 强极性(μ>0.7):聚乙烯醇、聚酯、聚丙烯腈、酚醛树脂、氨基塑料等 聚合物在电场下会发生以下几种极化:(1)电子极化,(2)原子极化,(3)偶极极化。聚合物的极化程度用介电常数ε表示 式中:V为直流电压;Qo、Q分别为真空电容器和介质电容器的两极板上产生的电荷;Q’为由于介质极化而在极板上感应的电荷。 非极性分子只有电子和原子极化,ε较小;极性分子除有上述两种极化外,还有偶极极化,ε较大。此外还有以下因素影响ε: (1)极性基团在分子链上的位置。在主链上的极性基团活动性小,影响小;在柔性侧基上的极性基团活动性大,影响大。 (2)分子结构的对称性。分子结构对称的,极性会相互抵消或部分抵消。 (3)分子间作用力。增加分子间作用力(交联、取向、结晶)会使ε较大;减少分子间作用力(如支化)会使ε较小。 (4)物理状态。高弹态比玻璃态的极性基团更易取向,所以ε较大。 聚合物在交变电场中取向极化时,伴随着能量损耗,使介质本身发热,这种现象称为聚合物的介电损耗。通常用介电损耗角正切tanδ来表示介电损耗。一般高聚物的介电损耗时非常小的,tanδ=10-3~10-4。 介电损耗主要是取向极化引起的,通常ε越大的因素也越会导致较大的介电损耗。非极性聚合物理论上讲没有取向极化,应当没有介电损耗,但实际上总是有杂质(水、增塑剂等)

(完整版)半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体: 四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC 和Ge-Si合金都具有闪锌矿的结构。②Ⅲ -Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In 和V族元素P、As、Sb组成,典型的代表 为GaAs。它们都具有闪锌矿结构,它们在 应用方面仅次于Ge、Si,有很大的发展前 途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和 Ⅵ族元素S、Se、Te形成的化合物,是一 些重要的光电材料。ZnS、CdTe、HgTe具 有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素C u、Ag、Au和Ⅶ族元素Cl、Br、I形成的 化合物,其中CuBr、CuI具有闪锌矿结构。 半导体材料 ⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族

半导体FAB里基本的常识简介

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体? 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何 答:硅(Si)、锗(Ge)和砷化家(AsGa) 何谓VLSI 答:VLSI(Very Large Scale Integration)超大规模集成电路 在半导体工业中,作为绝缘层材料通常称什幺 答:介电质(Dielectric) 薄膜区机台主要的功能为何 答:沉积介电质层及金属层 何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程 CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线? 答:良好的导体仅次于铜 介电材料的作用为何? 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质 何谓IMD(Inter-Metal Dielectric) 答:金属层间介电质层。 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass) 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass) 何谓BPSG? 答:掺杂硼磷的硅玻璃(Borophosphosilicate glass) 何谓TEOS? 答:Tetraethoxysilane用途为沉积二氧化硅 TEOS在常温时是以何种形态存在? 答:液体 二氧化硅其K值为3.9表示何义 答:表示二氧化硅的介电质常数为真空的3.9倍 氟在CVD的工艺上,有何应用 答:作为清洁反应室(Chamber)用之化学气体 简述Endpoint detector之作用原理. 答:clean制程时,利用生成物或反应物浓度的变化,因其特定波长光线被detector 侦测到强度变强或变弱,当超过某一设定强度时,即定义制程结束而该点为endpoint.

电学性能

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

硅材料的电学及化学性质

硅的电学性质 半导体材料的电学性质特点:一是导电性介于导体和绝缘体之间,其电阻率约在10-4-1010Ω.cm范围内;二是电导率和导电型号对杂质和外界因素(光\热\磁)高度敏感。无缺陷半导体的导电性很差,称为本征半导体。当硅中掺入微量的电活性杂质,其电导率将会显著增加,例如,向硅中掺入亿分之一的硼,其电阻率就降为原来的千分之一。当硅中掺杂以施主杂质(Ⅴ族元素:磷、砷、锑等)为主时,以电子导电为主,成为N型硅;当硅中掺杂以受主杂质(Ⅲ族元素:硼、铝、镓等)为主时,以空穴导电为主,成为P型硅。硅中P型和N型之间的界面形成PN结,它是半导体器件的基本结构和工作基础。 硅也存在不足之处,硅的电子迁移率比锗小。尤其比GaAs小。所以简单的硅器件在高频下工作时其性能不如锗或GaAs高频器件。此外,GaAs等化合物半导体是直接禁带材料,光发射效率高,是光电子器件的重要材料,而硅是间接禁带材料,由于光发射效率很低,硅不能作为可见光器件材料。 硅的化学性质 硅在自然界以化合物状态存在。硅晶体在常温下化学性质十分稳定,但在高温下,硅几乎与所有物质发生化学反应。硅容易和氧、氮等物质发生作用,他可以在400℃与氧,在1000℃与氮进行反应。直拉法制备硅单晶时,要使用超纯石英坩锅。石英坩锅与硅熔体反应:

Si+ SiO2=2SiO(1400℃)反应产物SiO一部分从硅熔体中蒸发出来,另外一部分溶解在硅中,从而增加了熔硅中氧的浓度,是硅中氧的主要来源。硅的一些重要的化学性质如下: Si+O2=SiO2 Si+2H2O= SiO2+2H2↑ 这两个反应是硅平面工艺中在硅表面生成氧化层的热氧化反应。二氧化硅十分稳定,这一特点是二氧化硅膜在器件工艺中起着极为重要的作用。由于SiO2膜容易热氧化生成以及可以通过化学腐蚀选择性去除,因此,能够使用光刻方法实现器件小型化,是精密结构变为现实Si+2CL2= SiCL4 Si+3HCL= SiHCL3+H2↑ 这两个反应是制造高纯硅的基本反应及材料。 硅对多数酸是稳定的。硅不溶于盐酸、硫酸、硝酸、氢氟酸和王水。但硅却很容易被HF-HNO3的混酸所溶解。因此使用此类混酸作为硅的腐蚀液,反应式为: Si+4HNO3+6HF=H2SiF6+4NO2↑+4H2O 在此反应式中HNO3作为氧化剂,没有氧化剂存在,HF就不容易与硅反应。 HF加少量的镉酸酐CrO3的溶液是硅单晶缺陷的择优腐蚀显示剂。硅和稀碱溶液作用也能显示硅中缺陷。硅和NaOH或KOH能直接作用生成相应的硅酸盐而溶于水中: Si+2NaOH+H2O=Na2SiO3+2H2↑。 硅与金属作用生成多种硅化物。TiO2、WSi、MoSi2等化物具有良

半导体材料有哪些

半导体材料有哪些 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 什么是半导体材料_常见半导体材料有哪些 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。 硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~ 99.9999999%)的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种

热电材料的电学性能

1、实验目的 装订线 1. 通过实验了解热电材料的Seebeck系数和电阻率的测定方法; 2. 测量在特定温度范围内热电材料电学电学性能随温度的变化 关系; 3. 结合实验结果分析并热电材料电功率因子与温度的关系。2、实验原理 1. 塞贝克系数 塞贝克效应是材料的一个物理性能,是一种由电流引起的可逆热效应或者说是温度差引起的电效应,其示意图如下: 对于两种不同的导体串联组成的回路,在导体b的开路位置y和z之间,将会有一个电位差,称为热电动势,数值是:,当T不是很大时,为常数,定义为两种导体的相对Seebeck系 数,即 (1) Seebeck系数常用的单是uV/K, Seebeck系数的测量原理如下图所示,1、3和2、4分别是NiCr和NiSi热电偶臂。测量时两段温差保持10℃,S两端存在 温差时会产生热电势差Vs,相对于热电偶的其中一个电偶臂 1、3的Seebeck系数为

2. 电阻率 从原理上讲,对电阻为R,长度为L,截面积为A的样品,电导率=R(A/L)。然而,由于半导体热电材料通常电阻率较小,接触电阻相对较大,容易引入实验误差。实验中电阻率的测定采用下图所示的两探针原理以避免接触电阻的影响。电阻率测量在试样两端等温进行,当△T足够小时,才对样本施加测试电流,这是电阻 R=V R/I const, V R为样品两端电压探针的电压降,I const为恒流源电流,取一特定值。为消除附加的Seebeck电压影响,试验通过改变电流方向进行两次电压测量,取其平均值。得R值后,有公式=R(A/L)算出其电阻率。

3、实验设备与装备 测量装置温度由AI-708P智能控制器控制。样品两端电压利用Agilent970A数据采集仪输入微机。 所用电源为恒流源。测量时抽真空以防样品氧化。 4、实验方法与步骤 1. 实验样品的制备方法: 原料称量→悬浮熔炼→(快速凝固→)机械研磨→热压成型(获 得样品) 2. 实验样品的安装 双眼中先将被测样品两端抛光,并真空镀银或覆盖银浆,形成欧姆接触,以保证样品与纯铜夹具间的良好接触。 3. 热电性能的测定 夹好样品后抽真空,然后根据两个AI-708P控制仪中事先设定的升温程序程序升温至不同的温度,在每一个选定的温度,待温度稳定后才开始测量。 4. 数据处理得到的Seebeck系数和电阻率 5、实验结果处理 本次实验采用5#组数据。 1.以Seebeck系数对温度作图: 首先以直线拟合,获得结果为y=-52.1-0.176x 但是由图上各点位置看出,并非理想结果。误差较大。 再以二次曲线拟合,如图: 可见曲线精确度高了不少,此时方程为 y=-188.87+0.54x-0.000935x2 个人认为还是二次曲线比较理想一些。 电阻率对温度作图

相关文档
最新文档