高中数学构造法求数列通

高中数学构造法求数列通
高中数学构造法求数列通

构造法求数列通项例题分析

型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列

(1)f(n)= q (q 为常数) 一般地,递推关系式a n+1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与

)1(11p

q

a p p q a n n --=--

+,则{p q a n --1}为等比数列,从而可求n a .

例1、已知数列{}n a 满足11

2

a =,132n n a a --=(2n ≥),求通项n a .

解:由132n n a a --=

,得111(1)2n n a a --=--,又11

2

10a -=≠, 所以数列{1}n a -是首项为12,公比为1

2

-的等比数列, ∴1

111

1(1)()

1()2

2

n n n a a -=---=+-.

练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n n a .

(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++n

n

n n q a p q a q

, 令n

n

n

a b q =

,则可转化为b n+1=pb n +q 的形式求解. 例1、已知数列{a n }中,a 1=6

5

,1111()32n n n a a ++=+,求通项n a .

解:由条件,得2 n+1a n+1=3

2(2 n

a n )+1,令

b n =2 n a n , 则b n+1=32b n +1,b n+1-3=3

2

(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)3

2

(341+--n , ∴ a n =n

n 2332+-

. 练习、已知数列{}n a 满足1232n

n n a a +=+?,12a =,求通项n a .

答案:3

1()222

n

n a n =-.

(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)

例1、已知数列{}n a 满足11=a ,11

212

n n a a n -=+-(2n ≥),求

解:令n n b a An B =++,则n n a b An B =--, ∴11(1)n n a b A n B --=---,代入已知条件, 得11

[(1)]212n n b An B b A n B n ---=---+-,

即11111

(2)(1)2222

n n b b A n A B -=++++-,

202A +=,1022

A B

+-=,解得A =-4,B=6, 所以11

2

n n b b -=,且46n n b a n =-+,

∴{}n b 是以3为首项、以12

为公比的等比数列,

故1

32n n b -=

,故13

462

n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解.

练习:在数列{}a n 中,13

2

a =

,1263n n a a n --=-,求通项a n . 答案:a n n n

-+=69912

·().

解:由1263n n a a n --=-,得111

(63)22

n n a a n -=+-,

令11

[(1)]2

n n a An B a A n B -++=+-+,

比较系数可得:A =-6,B=9,令n n b a An B =++,则有112n n b b -=,又119

2

b a A B ==++,

∴{}n b 是首项为9

2

,公比为

12的等比数列,所以b n n =-92121(),故a n n n

-+=69912

·().

(4) f(n)为非等差数列,非等比数列 法一、构造等差数列法

例1、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.

解:由条件可得1

1

1221n n

n n

n n a a λλλλ+++????

-=-+ ?

???

??

, ∴数列2n n n a λλ????

??-?? ???????

是首项为0,公差为1的等差数列,故21n

n n a n λλ??-=- ???,

∴(1)2n n n a n λ=-+.

练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。 答案a n n n n =

+-1

2

141()(). 解:由条件可得:12(1)(2)(1)

n n

a a n n n n +=++++,

∴数列{

}(1)n a n n

+是首项为

13

(11)12a =+×、公差为2的等差数列。 法二、构造等比数列法

例1、⑴在数列}{n a 中,12a =,23a =,2132n n n a a a ++=?-?,求n a ;

⑵在数列{}n a 中,11a =,22a =,2121

33

n n n a a a ++=+,求n a .

解:⑴由条件,2312n n n a a a ?-?=++

∴),(2112n n n n a a a a -=-+++ 故1

212

n n n a a -++-=, 叠加法得:2222(12)

2112

n n n a a --=+=--;

⑵由条件可得2111

()3n n n n a a a a +++-=--(等比数列), 故n a =1)3

1(4347---n .

点拨:形如0),(12=++n n n a a a f ,的复合数列,可把复合数列转化为等差或等比数列,再用初等方法求得n a .

例2、已知数列{}n a 满足11a =,13524n

n n a a +=+?+,求数列{}n a 的通项公式.

解:设1

12

3(2)n n n n a x y a x y +++?+=+?+,将已知条件代入此式,整理后得

(52)24323n

n

x y x y +?++=?+,令52343x x

y y +=??

+=?

,解得52x y =??=?, ∴有115223(522)n n n n a a +++?+=+?+, 又11522112130a +?+=+=≠,

且5220n n a +?+≠,故数列{522}n n a +?+

是以1152211213a +?+=+=为首项,以3为公比的等比数列, ∴1522133n n n a -+?+=?,故1133522n n n a -=?-?-.

高中数学必修5 用构造法求数列的通项公式

用构造法求数列的通项公式 在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。下面给出几种我们常见的构造新数列的方法: 一.利用倒数关系构造数列。 例如:}{n a 数列中,若),(41 1, 21 1N n a a a n n ∈+= =+求a n n n n n b b a b == +1,1 则设+4, 即n n b b -+1=4, n b {∴}是等差数列。 可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。 练习:1)数列{ a n }中,a n ≠0,且满足),(,311 ,2 111N n a a a n n ∈+==+求a n 2)数列{ a n }中,,2 2,111+= =+n n n a a a a 求a n 通项公式。 3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-?+≠=--且求a n . 二.构造形如2 n n a b =的数列。 例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52 2 11∈-==+ 解:设4,4,112 -=--==++n n n n n n b b b b a b 即则 ) ,71(,429429429)4()1(25254}{2 2 11N n n n a n a n n b a b b n n n n ∈≤≤-=∴-=-=-?-+=∴==-即,是等差数列,公差是数列 练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-, 求数列{ a n }的通项公式。 三.构造形如n n a b lg =的数列。 例:正数数列{ a n }中,若a 1=10,且),,2(,lg 2 1 lg 1N n n a a n n ∈≥=-求a n . 解:由题意得: n n n n a b a a lg 2 1 lg lg 1=∴=-可设,, 即 ,2 1 1=-n n b b 110lg 2 1 1==∴b b n ,是等比数列,公比为 )(,)2 1 ()21(111N n b n n n ∈=?=∴--. 即1)21 (1 10,)2 1(lg -=∴=-n n n n a a 练习:(选自2002年高考上海卷) 数列{ a n }中,若a 1=3,2 1n n a a =+,n 是正整数,求数列{ a n }的通项公式。 四.构造形如m a b n n +=的数列。 例:数列{ a n }中,若a 1=6,a n+1=2a n +1, 求数列{ a n }的通项公式。 解:a n+1+1=2a n +2, 即a n+1+1=2(a n +1) 设 b n = a n +1, 则b n = 2 b n-1 则数列{ b n }是等比数列,公比是2,首项b 1= a 1+1=7, 11271,27--?=+?=∴n n n n a b 即 1271-?=∴-n n a ,)(N n ∈ 构造此种数列,往往它的递推公式形如: 的形式和2)1(,1+=+≠+?=+n a S c d a c a n n n n 。 如:a n+1=c a n +d,设可化成a n+1+x=c(a n +x), a n+1=c a n +(c-1)x 用待定系数法得: (c-1)x =d

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++

数列之 求通项公式之 构造新数列之 其他方法

数列之 求通项公式之 构造新数列之 其他方法 1.已知数列{}n a 满足n n n a a n n a a 求,1 ,3211+==+ 2.设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n =0(n ∈N *),则它的通项公式a n =_______________ 4.()n f pa a n n +=+1 ())(b kn n f +=。 解法(待定系数法):只需把原递推公式转化为:)1(1+++n g a n =p [)(n g a n +],其中s tn n g +=)(,再构造等比数列)}({n g a n +求解。 4.已知数列{}n a 中,11=a ,1231-+=+n a a n n ,求n a . 5.n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 解法:一般地,要先在原递推公式两边同除以1+n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 11+=+再待定系数法解决。 5.在数列{}n a 中,11a =,122n n n a a +=+,求n a 。 6.已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 7.已知数列{a n }满足a 1=1,且1n n a a +=1n n +,则a 2012=() A.2010 B.2011 C.2012 D.2013 8.已知各项均不为零的数列{}n a ,定义向量()1,+=n n n a a c ,()1,+=n n d n ,n ∈*N . 下列命题中真命题是( ) A .若n ?∈*N 总有n n d c ⊥成立,则数列{}n a 是等差数列 B .若n ?∈*N 总有n n d c ⊥成立,则数列{}n a 是等比数列 C .若n ?∈*N 总有n n d c //成立,则数列{}n a 是等差数列 D .若n ?∈*N 总有n n d c //成立,则数列{}n a 是等比数列 答案 1.解:由条件知,1 1+=+n n a a n n 分别令n=1,2,3, ……(n-1), 代入上式得(n-1) 个等式累乘之,即 n a a n n a a a a a a a a n n n 1143322111342312=?-??????????=????????- 又∵,321=a ∴n a n 32= 2.n 1

高中数学核心方法:构造法

高中数学核心方法:构造法 构造法,顾名思义是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵

活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。 下面,我们通过几个例题,来简单看一下高中阶段几种常见的构造法。 例1.(构造函数)已知三角形的三边长分别为,,a b c ,且m 为正数,求证:a b c a m b m c m +>+++ 解:构造函数()1x m f x x m x m = =-++,则()f x 在()0+∞,上是增函数。 0a b c +>> ,()()f a b f c ∴+>。 ()()()()a b a b a b f a f b f a b f c a m b m a b m a b m a b m ++= +>+==+>++++++++ a b c a m b m c m ∴+>+++ 例2.(构造距离)求函数 ()f x =的最小值。 解:()f x =其几何意义是平面内动点(),0P x 到两定点()()1,4,3,2M N --的距离之和,当 ,,P M N 三点共线时距离之和最小为MN ==即() f x 的最小值为。 例3.(构造直线斜率)求函数()sin cos 3x f x x =- 的值域。 解:构造动点()cos ,sin P x x 与定点()3,0Q 的连线的斜率,而动点P 的轨迹为单位圆。

构造法求数列通项公式

构造法求数列通项公式 求数列通项公式就是高考考察的重点与热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为 (1)()f n f n +-=A(其中A 为常数)形式,根据等差数列的定义知)(n f 就是等差数列,根据等 差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 12 ,1n a +=33n n a a +(n N + ∈),求数列{}n a 通项公式、 解析:由a n+1=33+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,= -+n n a a 11 13 1 , 设b n =n a 1 ,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }就是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为 A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求出n a 的通项公式。 例2 在数列{a n }中,S n 就是其前n 项与,且S n ≠0,a 1=1,a n =12 22-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1= 1 222-n n S S ,变形整理得S n -S n-1= S n S n-1两 边除以S n S n-1得,n S 1-11-n S =2,∴{ n S 1}就是首相为1,公差为2的等差数列 ∴ n S 1=1+2(n-1)=2n-1, ∴ S n = 121 -n (n ≥2),n=1 也适合,∴S n = 1 21-n (n ≥1) 当n ≥2时,a n =S n -S n-1= 1 21-n -321-n =- 3 8422+-n n ,n=1不满足此式, ∴a n = { 2 11 3 8422 ≥=+--n n n n 评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原

(精选)构造法待定系数法求一类递推数列通项公式

构造法、待定系数法求一类递推数列通项公式 陕西省周至中学 尚向阳 邮编710400 摘要:求数学通项公式是学习数列时的一个难点,在教学过程中,笔者发现求解递推数列通项公式是学生学习的难点,这也是高考考查的重点、热点问题,如何来突破这个难点,很好的解决这个问题,其核心思想是构造新的数列,转化为学生熟悉的等差数列或等比数列来解决,下面笔者重点介绍用构造法和待定系数法来求下列六类递推数列模型通项公式的解决策略。 关键字:数列、数列通项、构造法、待定系数法、叠加法 由等差数列联想推广到的递推数列模型: 【模型一】b ka a n n +=+1 (0≠kb )。 (1) 当1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2) 当1≠k 时,采用待定系数法,构造新的数列---等比数列 }1{-+k b a n 解:由已知1≠k 时,可设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-=k b m ∴构造 新的数列 }1{-+k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n 例1:已知}{n a 满足31=a ,121+=+n n a a 求通项公式。 解:设)(21m a m a n n +=++ m a a n n +=+21 ∴ 1=m ∴ }1{1++n a 是以4为首项,2为公比为等比数列 ∴ 1241-?=+n n a ∴ 121-=+n n a 【模型二】叠加法(或迭代法)求解)(1n f a a n n =-+ 由已知)(1n f a a n n =-+,若)(n f 可求和,则可用叠加(或迭代法)消项的方法求解。 例2:已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式.

求数列通项公式的十种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--… …2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.(2006年全国卷I )设数列{}n a 的前n 项的和

求数列通项公式的方法教案例题习题定稿版

求数列通项公式的方法 教案例题习题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

求数列的通项公式的方法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 255a S =.求数列{}n a 的通项公式. 解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123 a a a =, 即)8()2(1121d a a d a +=+d a d 12=? ∵0≠d , ∴d a =1………………………………① ∵255a S = ∴211)4(2 455d a d a +=??+…………② 由①②得:531=a ,5 3=d ∴n n a n 5 353)1(53=?-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。 练一练:已知数列 ,32 19,1617,815,413试写出其一个通项公式:__________; 2.公式法:已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2) n n n S n a S S n -==-≥。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。 解:由1121111=?-==a a S a 当2≥n 时,有 ,)1(2)(211n n n n n n a a S S a -?+-=-=-- ,)1(22221----?+=n n n a a ……,.2212-=a a 经验证11=a 也满足上式,所以])1(2[3 212---+=n n n a 点评:利用公式???≥???????-=????????????????=-2 11n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能 合写时一定要合并. 练一练:①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a ; ②数列{}n a 满足11154,3 n n n a S S a ++=+=,求n a ; 3.作商法:已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =??=?≥?-?。 如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n = ,则=+53a a ______ ; 4.累加法: 若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-+ +-1a +(2)n ≥。 例3. 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

构造法求数列通项公式(完整资料).doc

【最新整理,下载后即可编辑】 构造法求数列通项公式 求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 1 2,1n a +=33n n a a +(n N +∈),求数列{}n a 通 项公式. 解析:由a n+1= 3 3+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131, 设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31 n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求 出n a 的通项公式。 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1 2 22-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1=1 2 22-n n S S , 变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-1 1-n S =2,∴{n S 1}是首相为1,公差为2的等差数列 ∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴

构造法求数列通项公式

构造法求数列通项公式 河南省三门峡市卢氏一高(472200)赵建文 E-mail:zhaojw1968@https://www.360docs.net/doc/4a4155572.html, 求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为 (1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据 等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 12,1n a +=33 n n a a +(n N + ∈),求数列{}n a 通项公式. 解析:由a n+1=33+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,= -+n n a a 11 13 1 , 设b n =n a 1 ,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为 A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求出n a 的通项公式。 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1 222-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1= 1 2 22-n n S S ,变形整理得S n -S n-1= S n S n-1 两边除以S n S n-1得,n S 1-1 1 -n S =2,∴{n S 1}是首相为1,公差为2的等差数列 ∴n 1=1+2(n-1)=2n-1, ∴ S n = 1 21 -n (n ≥2),n=1也适合,∴S n = 1 21 -n (n ≥1) 当n ≥2时,a n =S n -S n-1= 121 -n -321-n =-3 8422+-n n ,n=1不满足此式, ∴a n = { 2 11 3 842 2≥=+--n n n n

北师大版高中数学必修51.1数列用构造法求数列的通项公式

用构造法求数列的通项公式 求数列的通项公式是高考重点考查的内容,作为两类特殊数列----等差数列·等比数列可直接根据它们的通项公式求解,但也有一些数列要通过构造转化为等差数列或等比数列,之后再应用各自的通项公式求解,体现化归思想在数列中的具体应用 例1:(06年福建高考题)数列{}=+==+n n n n a a a a a 则中12,1,11 ( ) A .n 2 B .12+n C .12-n D .12+n 解法1:121+=+n n a a )1(22211+=+=+∴+n n n a a a 又211=+a 21 11=++∴+n n a a {}1+n a 是首项为2公比为2的等比数列 12,22211-=∴=?=+-n n n n n a a ,所以选C 解法2 归纳总结:若数列{}n a 满足q p q pa a n n ,1(1≠+=+为常数),则令)(1λλ+=++n n a p a 来构造等比数列,并利用对应项相等求λ的值,求通项公式。 例2:数列{}n a 中,n n n a a a a a 23,3,11221-===++,则=n a 。 解:)(2112n n n n a a a a -=-+++ 212=-a a {}1--∴n n a a 为首项为2公比也为2的等比数列。 112--=-n n n a a ,(n>1) n>1时 122 1211 222)()()(211 12211-=--=++++=+-++-+-=-----n n n n n n n n n a a a a a a a a

显然n=1时满足上式 ∴=n a 12-n 小结:先构造{}n n a a --1等比数列,再用叠加法,等比数列求和求出通项公式, 例3:已知数列{}n a 中)3(,32,2,52121≥+===--n a a a a a n n n 求这个数列的通项公式。 解:2132--+=n n n a a a )(3211---+=+∴n n n n a a a a 又{}121,7-+=+n n a a a a 形成首项为7,公比为3的等比数列, 则2137--?=+n n n a a ………………………① 又)3(3211-----=-n n n n a a a a , 13312-=-a a ,{}13--n n a a 形成了一个首项为—13,公比为—1的等比数列 则21)1()13(3---?-=-n n n a a ………………………② ①+?3② 11)1(13374---?+?=n n n a 11)1(4 13347---+?=∴n n n a 小结:本题是两次构造等比数列,属于构造方面比较级,最终用加减消元的方法确定出数列的通项公式。 例4:设数列{}n a 的前项和为n n n n S a S =-22,若成立,(1)求证: {} 12-?-n n n a 是等比数列。(2) 求这个数列的通项公式 证明:(1)当 2,)1(2,1111=∴-=-?=a a b a b n 又n n n S b a b ?-=-?)1(2 ………………………① 111)1(2 +++?-=-?∴n n n S b a b ………………………② ②—① 11)1(2++?-=-?-?n n n n a b a b a b n n n a b a 21+?=∴+ 当2=b 时,有n n n a a 221+=+ )2(22)1(222)1(11-+?-?=?+-+=?+-∴n n n n n n n n a n a n a

(完整版)用构造法求数列的通项公式汇总.docx

用构造法求数列的通项公式 上海外国语大学嘉定外国语实验学校徐红洁 在高中数学教材中,有很多已知等差数列的首项、公比或公差 (或者通过计算 可以求出数列的首项,公比),来求数列的通项公式。但实际上有些数列并不是等差、等比数列 ,给出数列的首项和递推公式 ,要求出数列的通项公式。而这些题目往往可 以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列 的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同的 类型的新数列。下面给出几种我们常见的构造新数列的方法: 一.利用倒数关系构造数列。 例如:数列 { a n} 中,若 a12, 1 14(n N ), 求a n a n 1a n 设 b n1,则 b n 1 b n+4, a n 即 b n 1b n=4, { b n}是等差数列。 可以通过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。 练习: 1)数列 { a n}n1, a n 11, (n n 中, a ≠ 0,且满足 a1 21N ), 求a 3 a n 2)数列 { a n } 中,a11,a n 12a n, 求a n通项公式。 a n2 3)数列 { a n } 中, a11, a n 0, 且 a n2a n a n1 a n10(n2,n N ), 求 a n. 二.构造形如 b n a n2 的数列。 例:正数数列 { a n } 中,若 a15, a n12a n24(n N ),求 a n 解:设 b n a n2,则b n1b n4,即 b n1b n4 数列 { b n } 是等差数列,公差是4, b1 2 25 a1 b n25( n1)(4)294n 即 a n 2 4n 29 a n294n , (1n7, n N ) 练习:已知正数数列 { a n } 中, a12, a n2a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。 三.构造形如 b n lg a n的数列。 例:正数数列 { a n }中,若 11 lg a n 1 ,( n2, n N ), 求 a n . a =10,且lg a n2 解:由题意得: lg a n1 ,可设 b n lg a n,lg a n2 1 即b n 1 , b n 12 1

构造法求数列通项解答题

1.设数列{}n a 满足11a =,121n n a a +=+. (1)求{}n a 的通项公式; (2)记()2log 1n n b a =+,求数列{}n n b a ?的前n 项和n S . 答案: (1) 21n n a =- ; (2)()()1 11222 n n n n ++-+- ? . 解答: (1) 11111 211211201021 n n n n n n n a a a a a a a a ++++=+∴+=++=≠∴+≠∴ =+,()(),,,, ∴{1}n a +是以2为公比、2为首项的等比数列,12n n a ∴+=, ∴21n n a -=; (2) 22211221()(2)n n n n n n n n n a b log a log n b a n n n -∴+?∴?-?-=,===,==, 记122112222212122n n n A n A n n +=?+?++?∴=?++-?+?,(), ()211121222222212212 n n n n n A A A n n n +++-∴-=-=++ +-?= -?=-?--(), 1122n A n +∴=-?+(), ()()()1 11212 22 n n n n S A n n ++=-+++-+- ?=. 2. 已知数列{}n a ,0n a >,其前n 项和n S 满足1 22n n n S a +=-,其中*n ∈N . (1) {}n b 是等差数列; (2)设2n n n c b -=?,n T 为数列{}n c 的前n 项和,求证:3n T ; (3)设1 4(1)2n b n n n d λ-=+-?(λ为非零整数,*n ∈N ) ,试确定λ的值,使得对任意*n ∈N ,都有n n d d >+1成立. 答案: (1)1n b n =+;

数列通项公式常用求法及构造法

数列通项公式的常用求法 构造法求数列通项公式 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a =1 2 ,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式. 解析:由31 3n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得, =-+n n a a 11 1 31 , 设b n =n a 1 ,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31n +35 ∴数列通项公式为a n =53 +n 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1 2 22-n n S S (n ≥2), 求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =12 22-n n S S 得,S n -S n-1=12 22-n n S S ,变形整理得S n -S n-1= S n S n-1?两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列 ∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={2 11 3 8422 ≥=+--n n n n 二、构造等比数列求数列通项公式

构造法求数列通项公式讲解学习

构造法求数列通项公 式

构造法求数列通项公式 求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为 (1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根 据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 12 ,1n a +=33n n a a +(n N + ∈),求数列{}n a 通项公式. 解析:由a n+1=33+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,= -+n n a a 11 13 1 , 设b n =n a 1 ,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为 A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求出n a 的通项公式。 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =12 22-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n = 1 222-n n S S 得,S n -S n-1= 1 222-n n S S ,变形整理得S n -S n-1= S n S n- 1两边除以 S n S n-1得, n S 1-11-n S =2,∴{ n S 1}是首相为1,公差为2的等差数列 ∴ n S 1=1+2(n-1)=2n-1, ∴ S n = 121 -n (n ≥2),n=1 也适合,∴S n = 121 -n (n ≥1) 当n ≥2时,a n =S n -S n-1= 121-n -3 21-n =- 3 8422+-n n ,n=1不满足此式, ∴a n = { 2 11 3 8422≥=+--n n n n

相关文档
最新文档