几何概型

几何概型
几何概型

紧扣“等可能”,突破几何概型教学的难点

前一阵在《中学数学教学参考》上看到这样一个例子:

1.等腰RtΔABC中,在斜边AB上任取一点M,求AM小于AC的概率

2.等腰RtΔABC中,过直角顶点C在∠ACB内部任作一条射线CM,与线段AB交于点M,求AM小于AC的概率

前者的概率是,后者的概率是

这两个看上去很相近的问题,答案为什么会不同呢?这个问题引起学生的很多的困惑.其实,要解决它,还得回到几何概型的定义.

几何概型的定义是:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域Ω内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件A的发生则理解为恰好取到上述区域内的某个指定区域D中的点,这里的区域可以是线段,平面图形,立体图形等.用这样的方法处理随机试验,称为几何概型.

从几何概型的定义我们可以看出:解决几何概型问题的基本步骤是:(1)找出等可能基本事件;(2)对应几何图形(所有等可能基本事件所在的区域Ω和随机事件中等可能基本事件所在的区域A);(3)由区域确定测度.

第一个事件所对应的等可能基本事件应该是在线段AB上随机取一点,这一点落在这个线段上是等可能的.

第二个事件所对应的等可能基本事件应该是在直角区域内任取一条射线,显然若射线等可能出现在直角区域内,则点M就不可能等可能出现在线段AB上.

如何确定等可能基本事件?

抓住“任意”、“随机”等词,确定等可能的基本事件空间.

贝特朗悖论:

几何概率是十九世纪末新发展起来的一门学科,使很多概率问题的解决变得简单而不用运用微积分的知识.然而,1899年,法国学者贝特朗提出了所谓“贝特朗悖论”,矛头直指几何概率概念本身:

在一个圆内随机地画一条弦,它的长度大于该圆内接等边三角形边长的概率是多少?

从不同方面考虑,可得不同结果:

(1)由于对称性,可预先指定弦的方向.作垂直于此方向的直径,只有交直径于1/4 点与 3/4 点间的弦,其长才大于内接正三角形边长.所有交点是等可能的,则所求概率为

1/2 .

(2)由于对称性,可预先固定弦的一端.仅当弦与过此端点的切线的交角在60°~120°之间,其长才合乎要求.所有方向是等可能的,则所求概率为1/3 .

(3)弦被其中点位置唯一确定.只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求.中点位置都是等可能的,则所求概率为1/4.

这导致同一事件有不同概率,因此为悖论.

得到三种不同的结果,是因为在取弦时采用了不同的等可能性假设:在第一种解法中则假定弦的中点在直径上均匀分布;在第二种解法中假定端点在圆周上均匀分布,而第三种解法中又假定弦的中点在圆内均匀分布.这三种答案是针对三种不同的随机试验,对于各自的随机试验而言,它们都是正确的.

三个结果都正确!——这就是让老师和学生感到迷惑不解的原因.

这一悖论揭示了几何概率在19世纪刚兴盛时期存在着其逻辑基础的脆弱性,也反映出古典概率有着相当的局限.这也推动了20世纪概率论公理化工作的早日到来.

关于这个悖论有很多种讨论,在此不一一赘述.老师们只需明白的是确定“等可能基本事件”的重要性,在解决几何概型问题时,必须找准观察角度、明确随机选择的意义、判断好基本事件的等可能性.

如何对应几何图形?

有的问题,几何特征较为明显,能迅速找到相应的几何图形,计算其测度.但有的问题中,找到相应的几何图形较为困难.如:

例.一家快递公司的投递员承诺在上午9:00—10:00之间将一份文件送到某单位.

(Ⅰ)如果这家单位的接收人员在上午9:45离开单位,写出他在离开单位前能拿到文件的概率;

(Ⅱ)如果这家单位的接收人员将在上午9:30—11:00之间离开单位,那么他在离开单位前能拿到文件的概率是多少?

解:(Ⅰ)所求事件的概率为.

(Ⅱ)设为投递员到达该单位的时间,为接受人员离开单位的时间.可以看成平面中的点,试验的全部结果所构成的区域为

这是一个长方形区域,面积为.

设事件表示“接受人员在离开单位之前能拿到文件”,则事件所构成的区域为

面积为.

这是一个几何概型,所以.

即接受人员在离开单位之前能拿到文件的概率为.

概率论基础讲义全

概率论基础知识 第一章随机事件及其概率 一随机事件 §1几个概念 1、随机实验:1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。 例如:E1:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况; E3:观察某电话交换台在某段时间内接到的呼唤次数。 2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件常记为A,B,C……例如,在E1中,A表示“掷出2点”,B表示“掷出偶数点”均为随机事件。 3、必然事件与不可能事件:记为Ω。每次试验都不 记为Φ。 例如,在E1中,“掷出不大于6点”的事件便是必然事件,而“掷出大于6点”的事件便是

不可能事件,以后 4、基本事件: 例如,在E1中,“掷出1点”,“掷出2点”,……,“掷出6点”均为此试验的基本事件。 例如,在E1中“掷出偶数点”便是复合事件。 5、样本空间:从集合观点看,常记为e. 例如,在E1中,用数字1,2,……,6表示掷出的点数,而由它们分别构成的单点集{1},{2},…{6}便是E1中的基本事件。在E2中,用H表示正面,T表示反面,此试验的样本点有(H,H),(H,T),(T,H),(T,T),其基本事件便是{(H,H)},{(H,T)},{(T,H)},{(T,T)}显然,任何事件均为某些样本点构成的集合。 例如,在E1中“掷出偶数点”的事件便可表为{2,4,6}。试验中所有样本点构成的集合称为样本空间。记为Ω。 例如, 在E1中,Ω={1,2,3,4,5,6} 在E2中,Ω={(H,H),(H,T),(T,H),(T,T)} 在E3中,Ω={0,1,2,……}

常州市西夏墅中学高二数学教学案几何概型1

几何概型1 一、学习目标 (1)能识别实际问题中概率模型是否为几何概型; (2)会利用几何概型公式对简单的几何概型问题进行计算。 二.过程导航 二、认识事物的特征 1.材料:有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌面上,现从中任意抽取一张,可能出现的每一个基本结果称为基本事件。 (1)请你说说这些基本事件的特征。 (2)你能求出抽到的牌为红心的概率吗? 三、如何计算下列问题中的概率: 问题1:射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑 色、蓝色、红色,靶心为金色.金色靶心叫“黄心”. 奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm ,(运动员在70m 外射.假设 射箭都能中靶,且射中靶面内任意一点都是等可能的)那么射中黄心的概率有多大? (1)试验中的基本事件是什么? (2)每个基本事件的发生是等可能的吗? ( 3)随机事件"射中黄心 "的取点区域有多大? 问题2:取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大? 问题:能用古典概型计算该事件 的概率吗?为什么? (1)试验中的基本事件是什么? (2)每个基本事件的发生是等可 能的吗? (3)随机事件"剪得两段的长都不小于1m"的取点区域在哪里? 问题3:在1升高产小麦种子中混入了一粒带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少? 3m

问题:能用古典概型计算该事件的概率吗?为什么? (1)试验中的基本事件是什么? (2)每个基本事件的发生是等可能的吗? (3)随机事件"在2ml 水中发现草履虫"的取点区域有多大? 三.理解几何概型的模型及其概率的算法 1.我们知道,在上述的三个问题中,基本事件都是在某个几何区域D 内随机的取点。 2.这个几何区域D 可以是哪些? 3.上述的随机事件均是从某个几何区域D 内随机的取点。 随机事件A 的发生则理解为恰好取到几何区域D 内的某个指定区域d 中的点.这时,随机事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关。我们把满足这样条件的概率模型称为几何概型. 4. 几何概型的概率计算公式: 事件A 发生的概率 P (A )= 的测度 的测度D d (d 、D 可表示长度,面积,体积) 四.尝试用几何概型解决问题 例题1: 如图所示,在等腰直角三角形ABC 中,在斜边AB 上随机地取一点M,求AM 小于AC 的概率. 1)这是什么概型,为什么? 2)在斜边AB 上任取一点M 的区域有多大? 3)满足AM 小于AC 的M 的区域有多大? 例2:在1升高产小麦种子中混入了一粒带麦锈病种子,从中随机 取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少? 例3.取一个边长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率. 五.小结与延伸 问题一:几种概率模型怎样构建? 问题二:今天我们所学的几何概型的计算公式是什么? 课后作业 一、填空题

几何概型案例

《几何概型》教学案例 教学目标 一、知识与技能目标 (1)通过学生对几个几何概型的实验和观察,了解几何概型的两个特点。 (2)能识别实际问题中概率模型是否为几何概型。 (3)会利用几何概型公式对简单的几何概型问题进行计算。 二、过程与方法 让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。 教学重点 几何概型的特点,几何概型的识别,几何概型的概率公式。 教学难点 建立合理的几何模型求解概率。 教学过程 一、创设情境引入新课 师:上节课我们共同学习了概率当中的古典概型,请同学们回想一下其中所包含的主要内容,并依据此举一个生活当中的古典概型的例子。 生甲:掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。 师:请同学们判断这个例子是古典概型吗?你判断的依据是什么? 生乙:是古典概型,因为此试验包含的基本事件的个数是有限个,并且每个基本事件发生的 可能性相等。 师:非常好,下面允许老师也举一个例子,请同学们作以判断。 如图:把一块木板平均分成四部分,小球随机的掉到木板上,求小球掉在阴影区 域内的概率。 生丙:此试验不是古典概型,因为此试验包含的基本事件的个数有无数多个。 师:非常好,此试验不是古典概型,由此我们可以看到,在我们的生活中确实 存在着诸如这样的不是古典概型的实际问题,因此我们有必要对这样的问题作进一步更加深入的学习和研究。今天这节课我们在学习了古典概型的基础上再来学习几何概型。那到底什

么是几何概型,它和古典概型有联系吗?在数学里又是怎样定义的呢?为此,我们接着来看刚才这个试验。 试验一 师:请同学们根据我们的生活经验回答此试验发生的概率是多少? 生丁:四分之一 师:很好,那你是怎样得到这个答案的呢? 生丁:就是用阴影的面积比上总面积。 师:非常好,下面我们再来看图中的右边这种情形,现在阴影的面积仍是总面积的四分之一,只不过阴影的形状及其位置发生了变化,那么此时小球落在阴影区域内的概率又是多少? 生丁:仍是四分之一,还是用阴影的面积比上总面积。 师:非常好,请坐。我们梳理一下我们刚才的发现。首先此试验所包含的基本事件的个数为无数多个,并且每个基本事件发生的可能性相等,而所求的概率就是用阴影的面积比上总面积,所以此概率仅与阴影的面及有关系,而与阴影的形状和位置并无关系。 试验二 在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率. 师:首先请同学们观察这个试验跟刚才那个试验有没有共同本质的东西。 生戊:此试验所包含基本事件的个数仍是无限多个,每个基本事件发生的可能行都相等。师:所求的概率是多少?

高考一轮总复习-082.古典概型与几何概型(基础)-知识讲解

高考总复习:古典概型与几何概型 【考点梳理】 知识点一、古典概型 1. 定义 具有如下两个特点的概率模型称为古典概型: (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 2. 古典概型的基本特征 (1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事件。 (2)等可能性:每个基本事件发生的可能性是均等的。 3.古典概型的概率计算公式 由于古典概型中基本事件发生是等可能的,如果一次试验中共有n 种等可能的结果,那么每一个基本事件的概率都是 1n 。如果某个事件A 包含m 个基本事件,由于基本事件是互斥的,则事件A 发生的概率为其所含m 个基本事件的概率之和,即n m A P =)(。 所以古典概型计算事件A 的概率计算公式为: 试验的基本事件总数 包含的基本事件数事件A A P =)( 4.求古典概型的概率的一般步骤: (1)算出基本事件的总个数n ; (2)计算事件A 包含的基本事件的个数m ; (3)应用公式()m P A n =求值。 5.古典概型中求基本事件数的方法: (1)穷举法; (2)树形图; (3)排列组合法。利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏。 知识点二、几何概型

1. 定义: 事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。满足以上条件的试验称为几何概型。 2.几何概型的两个特点: (1)无限性,即在一次试验中基本事件的个数是无限的; (2)等可能性,即每一个基本事件发生的可能性是均等的。 3.几何概型的概率计算公式: 随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占总面积(体积、长度)”之比来表示。 所以几何概型计算事件A 的概率计算公式为:Ω=μμA A P )( 其中μΩ表示试验的全部结果构成的区域Ω的几何度量,A μ表示构成事件A 的区域的几何度量。 要点诠释:用几何概型的概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行相应的几何度量. 对于一些简单的几何概型问题,可以快捷的找到解决办法. 【典型例题】 类型一、古典概型 例1(2014 四川高考)一个盒子里装有三张卡片,分别标记有数字 错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,这三张卡片除标记的数字外完全相同.随机有放回地抽取 错误!未找到引用源。 次,每次抽取 错误!未找到引用源。 张,将抽取的卡片上的数字依次记为 错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。. (1) 求“抽取的卡片上的数字满足 错误!未找到引用源。 ”的概率; (2) 求“抽取的卡片上的数字 错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。 不完全相同”的概率. 【解析】 (1) 由题意,错误!未找到引用源。 的所有可能为 共 错误!未找到引用源。 种.

几何概型是高中概率部分的一个难点,高考中

几何概型“一网打尽” 姜堰市溱潼中学 刘华荣 几何概型是概率考查中的重点,在高考的填空题中考查的频率也较高,下面就所学几何概型的知识点与常见题型做一梳理. 一、知识回忆与剖析 1.几何概型的定义 设D 是一个可度量的区域(例如线段、平面图形、立体图形等).每个基本事件可以视为从区域D 内随机地取一点,区域D 内的每一点被取到的机会都一样;随机事件A 的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.这时,事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关,我们把满足这样的概率模型称为几何概型. 2.几何概型的基本特点 基本事件无限个;每个基本事件出现的可能性相等. 3.几何概型的概率 一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发 生的概率()d P A D =的测度 的测度 .(“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测 度"分别是长度,面积和体积). 二、常见题型梳理 1.长度之比类型 例1 某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是随机的,求一个乘客等候的时间不超过7分钟的概率(停车时间不计). 分析 每个乘客可在相邻两班车之间的任何一个时刻到达车站,因此每个乘客到达车站的时刻t 可看成是均匀落在长为10分钟的时间区间(]0,10上的一个随机点,等待时间不超过7分钟则是指落在区间(]3,10上. 解 记“乘客等候的时间不超过7分钟”为事件A ,如下图: 可设上辆汽车在时刻A 到达,而下辆汽车在时刻D 到达,线段AD 长度为10,设BD 长度为7,则乘客等候的时间不超过7分钟的时刻点必须在BD 之间,所以概率为()710 P A = 例2 在区间[]1,1-上随机取一个数x ,求cos 2x π的值介于0到1 2 之间的概率. 分析 本题涉及三角函数的值域和几何概型,几何概型测度为区间长度,D 的测度为2,d 的测度需要由 10cos 22 x π≤≤解出x 的范围. 解 记“cos 2x π的值介于0到12之间”为事件A ,由 223x πππ-≤ ≤-或322x πππ≤≤解得2 13 x -≤≤-或213x ≤≤,此时区间长度为23,则()2 1323 P A ==. 评注 长度之比的类型在几何概型中比较常见,一般常见长度模型有线段的长度、时间的长度、数轴上区间的长度、圆弧的长度等,解题时要注意识别. 2.角度之比型 例3 如图所示,在等腰直角ABC △中,过直角顶点C 在ACB ∠内部做一条射线CM ,与线段AB 交于点M ,求AM AC <的概率. 分析 当AM AC =时,有ACM AMC ∠=∠,故欲使 AM AC <,应有ACM AMC ∠<∠,即所作的射线应落在ACM AMC ∠=∠时ACM ∠的内部. 解 记“AM AC <”为事件A ,在AB 上取AD AC =,连接CD ,则 A D

古典概型与几何概型基础复习习题练习

课题:古典概型与几何概率 考纲要求: ① 理解古典概型及其概率计算公式;② 会计算一些随机事件所含的基本事件数及事件 发生的概率;③了解随机数的意义,能运用模拟方法估计概率;④了解几何概型的意义. 教材复习 1.古典概型:把同时具有: “()1每一次试验中所有可能出现的结果都是有限的,每次试验只出现其中一个结果;()2每一个结果出现的可能性相同”的两个特征的随机试验的数 学模型称为古典概型: 基本步骤:①计算一次试验中基本事件的总数n ;②事件A 包含的基本事件的个数m ; ③由公式n m A P = )(计算. 注:必须在解题过程中指出等可能的.. 2.几何概型:如果每个事件发生的概率只与构成事件的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 特性:每一次试验中所有可能出现的结果都是无限的,每一个结果出现的可能性都是相等的. 基本步骤:(1)构设变量(2)集合表示(3)作出区域(4)计算求解. 几何概型的计算:()P A = 积)的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A 3.随机数:是在一定范围内随机产生的数,并且在这个范围内得到每一个数的机会相等. 随机数的一个重要应用就是用计算机产生随机数来模拟设计实验. 模拟是利用模型来研究某些现象的性质的一种有效方法,可以节约大量的人力、物力. 典例分析: 考点一 古典概型的概念 问题1.判断下列命题正确与否: ()1 掷两枚硬币,可能出现“两个正面” ,“两个反面”,“一正一反”3种结果;()2某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能行相同;()3从4,3,2,1,0,1,2----中任取一数,取到的数小于0和不小于0的可能性相同; ()4分别从3名男同学,4名女同学中各选一名做代表,那么每个同学当选的可能性相同; ()55人抽签,甲先抽,乙后抽,那么乙与甲抽到某中奖签的可能性肯定不同.

几何概型的经典题型及标准答案

几何概型的经典题型及答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

4 区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于 0到21之间,需使 223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三 等分,由于中间长度为30×3 1 =10米, ∴3 1 3010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。也就是说,样本空间所对应的区域G 是一维空 间(即直线)上的线段MN ,而有利场合所对 应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。 [解法1].设EF 与E 1F 1是长度等于R 的两条弦, K K K1图1-2图1-1 O O M N E F M N E F E1F1

概率(几何概型和条件概率)

高频考点3 概率(几何概型和条件概率) 【考情报告】 (知识点:几何概型、条件概率) 考查要点:(1)几何概型的定义和计算公式;(2)几何概型概率模型的构建及简单应用;(3)条件概率的定义和性质。 命题预测:预测主要为选择题和填空题形式,难度不大,注意与日常生活结合考查的应用型题型。考查分值:5分。 【热点典例】 热点一:与长度有关的几何概型的概率 例1、在半径为1的圆内一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是 热点二:与面积有关的几何概型的概率 例2、李明、王浩两人约定在下午6时到7时之间在图书馆会面,并约定先到者应等候一刻钟,过时即离去,求两人能会面的概率。 热点三:与体积有关的几何概型的概率 例3、在线段[0,1]上任意投三个点,问由0至三点的三线段,能构成三角形与不能构成三角形这两个事件中哪一个事件的概率大。 热点四:条件概率★★★☆☆ 例4、一台机床有1 3 时间加工零件A,其余时间加工零件B,加工零件A时,停机的概率为 0.3,加工零件B时,停机的概率为0.4,则这台机床停机的概率为。 热点五几何概型的生活应用 例5、某同学到公交车站等车上学,可乘116路和128路。116路公交车8分钟一班,128路公交车10分钟一班,求这位同学等车不超过6分钟的概率。

【抢分触击专题训练】 1、两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩灯,则彩灯与两端距离都大于1m 的概率为 ( ) A 、21 B 、31 C 、41 D 、3 2 2、ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为 ( ) A .4π B .14π- C .8π D .18π- 3、如图,已知正方形的面积为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积 为( ) A .5.3 B .4.3 C .4.7 D .5.7 4、在区间[]1,1-上随机取一个数x ,cos 2x π的值介于0到12之间的概率为( ) A .13 B .2π C . 12 D . 23 5、已知事件A 与B 互斥,且()0.3,()0.6P A P B ==,则(/)__________.P A B = 6、设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,则弦长超过半径2倍的概率为 。 7、一条河上有一个渡口,每隔一小时有一趟渡船,河的上游还有一座桥,某人到这个渡口等候渡船,他准备等候20分钟,如果20分钟渡船不到,他就要绕到上游从桥上过河。则他乘船过河的概率为 ? 8、如图所求,墙上挂有一长为2π,宽为2的矩形木板ABCD ,它的阴影部分是由函数y =cos x ,x ∈[0,2π]的图象和直线y =1围成的图形.某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是________. 9、(2011湖南省沅江市第一次质检)如图:矩形OABC 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形 OABC 内随机投掷一点,若落在阴影部分的概率为14 ,则a 的值是 A .712π B.23π C .34π D.56 π

几何概型习题

E D O B A C 3.3 几何概型 重难点:掌握几何概型中概率的计算公式并能将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题. 考纲要求:①了解几何概型的意义,并能正确应用几何概型的概率计算公式解决问题. ②了解随机数的意义,能运用模拟方法估计概率. 经典例题:如图,60AOB ∠= ,2OA =,5OB =,在线段OB 上任取一点C , 试求:(1)AOC ?为钝角三角形的概率; (2)AOC ?为锐角三角形的概率. 当堂练习: 1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( ) A .0.62 B .0.38 C .0.02 D .0.68 2.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2 与49 cm 2 之间的概率为( ) A . 310 B . 15 C . 25 D . 45 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( ) A .1 B . 216 C . 3 D . 14 4.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( ) A . 34 B . 38 C . 14 D . 18 5.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( ) A .13 B . 49 C . 59 D . 710 6如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ) A .2 π B . 1 π C . 23 D . 13

几何概型_基础学案

几何概型 【学习目标】 1.了解几何概型的概念及基本特点; 2.熟练掌握几何概型中概率的计算公式; 3.会进行简单的几何概率计算; 4.能运用模拟的方法估计概率,掌握模拟估计面积的思想 【要点梳理】 要点一:几何概型 1.几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则 理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平 面图形,立体图形等.用这种方法处理随机试验,称为几何概型 2.几何概型的基本特点: (1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等. 3.几何概型的概率: 般地,在几何区域D中随机地取一点,记事件"该点落在其内部一个区域 d内"为事件A,贝y事件A发生的概率P(A) = D的测度. 说明: (1)D的测度不为0 ; ⑵ 其中"测度"的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积

(3)区域为"开区域"; (4)区域 D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在 任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关 要点诠释: 几种常见的几何概型 (1)设线段l是线段L的一部分,向线段L上任投一点,若落在线段l上的点 数与线段l的长度成正比,而与线段l在线段L上的相对位置无关,则点落在线段l上的概率为: P=的长度/L的长度 (2)设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区 域g上的点数与区域g的面积成正比,而与区域g在区域G上的相对位置无关, 则点落在区域g上概率为: P=g的面积/G的面积 (3)设空间区域上v是空间区域V的一部分,向区域V上任投一点,若落在 区域v上的点数与区域v的体积成正比,而与区域v在区域V上的相对位置无 关,则点落在区域v上的概率为: P=v的体积N的体积 要点二:均匀随机数的产生 1.随机数的概念 随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到降低成本,缩短时间的作用 2.随机数的产生方法 (1) 实例法. 包括掷骰子、掷硬币、抽签、转盘等.

统计概率 之古典、几何概型(答案)

第02讲 古典概型与几何概型 例1.(2007全国2 文19)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ; (2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B . 解析:(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故 01()()P A P A A =+212 012()()(1)C (1)1P A P A p p p p =+=-+-=- 于是2 0.961p =-.解得120.20.2p p ==-,(舍去). (2)记0B 表示事件“取出的2件产品中无二等品”,则0B B =. 若该批产品共100件,由(1)知其中二等品有1000.220?=件,故2 8002100C 316 ()C 495 P B ==. 00316179 ()()1()1495495 P B P B P B ==-=- = 例2.(2007全国1 文18)某商场经销某商品,顾客可采用一次性付款或分期付款购买。根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元。 (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率。 解析:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+. 30()0.60.216P B ==,1213()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=.

高中数学几何概型

第6讲几何概型 一、选择题 1.在区间[-2,3]上随机选取一个数x,即x≤1,故所求的概率为() A.4 5 B. 3 5 C. 2 5 D. 1 5 解析在区间[-2,3]上随机选取一个数x,且x≤1,即-2≤x≤1,故所求的 概率为P=3 5. 答案 B 2.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆 中随机扔一粒豆子,它落在阴影区域内的概率是1 3,则阴影部分的 面积是() A.π 3 B.π C.2π D.3π 解析设阴影部分的面积为S,且圆的面积S′=π·32=9π.由几何概型的概率, 得S S′= 1 3,则S=3π. 答案 D 3.(2015·山东卷)在区间[0,2]上随机地取一个数x,则事件“-1≤log1 2? ? ? ? ?x+ 1 2 ≤1”发生的概率为() A.3 4 B. 2 3 C. 1 3 D. 1 4 解析由-1≤log1 2? ? ? ? ? x+ 1 2≤1, 得1 2≤x+ 1 2≤2, 解得0≤x≤3 2,所以事件“-1≤log1 2 ? ? ? ? ? x+ 1 2≤1”发生的 概率为3 2 2= 3 4,故选A. 答案 A

4.(2017·东北师大附中检测)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( ) A.π2 B.π4 C.π6 D.π8 解析 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积 = 12π×121×2=π 4. 答案 B 5.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12 B.1-π12 C.π6 D.1-π6 解析 设“点P 到点O 的距离大于1”为事件A . 则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=2 3π.∴P (A )=23-23π2 3 =1-π12. 答案 B 6.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4 时,∠BAF 为直角,则点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角

人教版高中数学【必修三】[知识点整理及重点题型梳理]_几何概型_基础

人教版高中数学必修三 知识点梳理 重点题型(常考知识点)巩固练习 几何概型 【学习目标】 1.了解几何概型的概念及基本特点; 2.熟练掌握几何概型中概率的计算公式; 3.会进行简单的几何概率计算; 4.能运用模拟的方法估计概率,掌握模拟估计面积的思想. 【要点梳理】 要点一:几何概型 1.几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型. 2.几何概型的基本特点: (1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等. 3.几何概型的概率: 一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D 的测度的测度 . 说明: (1)D 的测度不为0; (2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积. (3)区域为"开区域"; (4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关. 要点诠释: 几种常见的几何概型 (1)设线段l 是线段L 的一部分,向线段L 上任投一点,若落在线段l 上的点数与线段l 的长度成正比,而与线段l 在线段L 上的相对位置无关,则点落在线段l 上的概率为: P=l 的长度/L 的长度 (2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为: P=g 的面积/G 的面积 (3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点,若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域V 上的相对位置无关,则点落在区域v 上的概率为: P=v 的体积/V 的体积

高中数学几何概型经典考点及例题讲解

几何概型 考纲解读 1.根据随机数的意义,用模拟方法估计生活中的概率问题;2.根据几何概型的意义,运用几何度量求概率;3.根据几何概型,估计几何度量. [基础梳理] 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的特点 (1)无限性:试验中所有可能出现的结果(基本事件)有无限多个. (2)等可能性:试验结果在每一个区域内均匀分布. 3.几何概型的概率公式 P (A )= 构成事件A 的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) . [三基自测] 1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( ) 答案:A 2.已知A ={(x ,y )|-1≤x ≤1,0≤y ≤2},B ={}(x ,y )|1-x 2≤y .若在区域A 中随机地扔一粒豆子,则该豆子落在区域B 中的概率为( ) A .1-π 8 B.π4 C.π 4-1 D.π8 答案:A 3.在区间[-2,3]上随机选取一个数X ,则 X ≤1的概率为( ) A.4 5 B.35 C.25 D.15 答案:B

4.(必修3·3.3例1改编)在[0,60]上任取一个数,则x ≥50的概率为________. 答案:16 5.(2017·高考全国卷Ⅰ改编)求在半径为r 的圆内随机撒一粒黄豆,它落在圆内接等腰直角三角形内的概率. 答案:1π 考点一 与长度型有关的几何概型|方法突破 命题点1 与线段长度有关的几何概型 [例1] (2018·长春模拟)已知线段AC =16 cm ,先截取AB =4 cm 作为长方体的高,再将线段BC 任意分成两段作为长方体的长和宽,则长方体的体积超过128 cm 3的概率为________. [解析] 设长方体的长为x ,宽为(12-x ), 由4x (12-x )>128,得x 2-12x +32<0, ∴4

几何概型

几何概型 最新考纲 1.了解随机数的意义,能运用模拟方法估计概率;2.了解几何概型的意义. 知识梳理 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 2.几何概型的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 3.几何概型的概率公式 P(A)= 构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) . 基础自测 1.判断下列结论正误(在括号内打“√”或“×”) (1)随机模拟方法是以事件发生的频率估计概率.( ) (2)从区间[1,10]内任取一个数,取到1的概率是1 10 .( ) (3)概率为0的事件一定是不可能事件.( ) (4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) 答案(1)√(2)×(3)×(4)√ 2.(必修3P140练习1改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )

解析 如题干选项中图,各种情况的概率都是其面积比,中奖的概率依次为P (A )=38,P (B )=28,P (C )=26,P (D )=1 3,所以P (A )>P (C )=P (D )>P (B ). 答案 A 3.(必修3P146B4改编)如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________. 解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率 公式可得S 4=30200,∴S =0.6. 答案 0.6 4.(2016·全国Ⅱ卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B.58 C.38 D.310 解析 至少需要等待15秒才出现绿灯的概率为40-1540=5 8 . 答案 B 5.(2018·深圳模拟)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A.1 8 B.16 C.127 D.38

知识讲解_几何概型_基础

几何概型 编稿:丁会敏 审稿:王静伟 【学习目标】 1.了解几何概型的概念及基本特点; 2.熟练掌握几何概型中概率的计算公式; 3.会进行简单的几何概率计算; 4.能运用模拟的方法估计概率,掌握模拟估计面积的思想. 【要点梳理】 要点一、几何概型 1.几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型. 2.几何概型的基本特点: (1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等. 3.几何概型的概率: 一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D 的测度的测度 . 说明: (1)D 的测度不为0; (2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积. (3)区域为"开区域"; (4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关. 要点诠释: 几种常见的几何概型 (1)设线段l 是线段L 的一部分,向线段L 上任投一点,若落在线段l 上的点数与线段l 的长度成正比,而与线段l 在线段L 上的相对位置无关,则点落在线段l 上的概率为: P=l 的长度/L 的长度 (2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为: P=g 的面积/G 的面积 (3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点,若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域V 上的相对位置无关,则点落在区域v 上的概率为: P=v 的体积/V 的体积 要点二、均匀随机数的产生 1.随机数的概念 随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到降低成本,缩短时间的作用. 2.随机数的产生方法 (1)实例法.包括掷骰子、掷硬币、抽签、转盘等.

3.3.1 几何概型(一) (2)

§3.3.1 几何概型(一) (1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P()A A 构成事件的区域 d 的长度(面积、角度或体积) 试验的全部结果所构成的区域 D 的长度(面积、角度或体积) ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; 重点: 几何概型的概念、公式及应用. 难点: 对几何概型的理解. 学法指导 几何概型概率求解过程: ①适当选择观察角度,确定几何度量的种类:长度(或面积,角度,体积); ②把基本事件空间转化为与之对应的区域; ③把事件A转化为与之对应的区域; ④如果事件A对应的区域不好处理,可以利用对立事件概率公式逆向思维; ⑤利用概率公式计算. 1.基本事件的两个特点:(1)任何两个基本事件是互斥的。(2)任何事件(除不

可能事件)都可以表示成基本事件的和. 2.古典概型有两个特征:有限性和等可能性. 【提出问题】 在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用古典概型来计算事件发生的概率.对此,我们必须学习新的方法来解决这类问题.【探究新知】(一):几何概型的概念 思考1:某班公交车到终点站的时间可能是11:30~12:00之间的任何一个时刻;往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这两个试验可能出现的结果是有限个,还是无限个? 若没有人为因素,每个试验结果出现的可能性是否相等? 思考2:有一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于1m的概率是多少? 分析:从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m的绳子上除端点外的任意一点,记“剪得两段绳子长都不小于1m”事件A. 问题1 每一个基本事件是不是等可能发生的的?且能否看做线段上的一个点与其对应? 问题2 与每一个基本事件对应的这些点构成的几何区域D是什么? 问题3 事件A发生,剪刀应剪在

相关文档
最新文档