Sentinel-3卫星影像介绍-北京揽宇方圆

Sentinel-3卫星影像介绍-北京揽宇方圆
Sentinel-3卫星影像介绍-北京揽宇方圆

Sentinel-3卫星影像介绍-北京揽宇方圆

Sentinel-3卫星是欧空局(ESA)和欧洲委员会(EC)卫星项目,该项目属于全球环境与安全监视(GMES)计划,负责应对近实时对海洋、陆地、冰盖监视的需求,要求监测的时间超过20年。该任务对地形要素的勘测将服务于基本海洋行动,并且可以用于对海洋冰和陆地冰的监测。利用全新的观测技术,Sentinel-3卫星任务被设计成由两颗一样的卫星组成的星座,并飞行于同一条轨道上,相位相差180o。为了满足长期对海洋及陆地的监测任务,该任务卫星的性能设计中具有较强的数据产品下传能力。

Sentinel-3卫星的主要观测任务目标可以总结为以下几项:

海洋和陆地的彩色成像数据,摆脱了太阳闪烁带来的干扰,重访时间4天(最优目标是2天),在数据质量上至少等价于Envisat卫星的Meris

载荷。实际在赤道附近的海洋表面重访时间(最坏情况)少于3.8天(单

星实现的目标),若双星组网工作,则须减少到1.9天。两颗卫星共轨

道面,相位差180o。

海洋和陆地表面的温度数据获取,在数据质量上至少等价于Envisat卫星的AATSR载荷。

地球表面地形观测应覆盖全球海洋冰提供海洋表面高度以及主要海波的高度,数据精度至少等价于Envisat卫星的RA-2载荷。此外

Sentinel-3卫星还要接续CryoSat-2卫星提供地表高度测量数据(在选

定的轨道弧段,测量冰盖表面),以及陆地区域水体表面高度(江河与

湖泊)。

图1:Sentinel-3卫星在轨飞行想象图

卫星情况:

Sentinel-3卫星由Thales Alenia Space-法国(简称TAS-F)负责建造,这项任务的合同于2008年4月14日签署,卫星为三轴稳定控制模式,卫星正常姿态指向星下点,为了补偿地球自转的影响进行了偏流角控制。卫星发射重量1150kg,卫星本体高3.9m,总功耗1100W,设计寿命7.5年,载有约100kg 肼燃料足够12年寿命期间使用,还包括了寿命结束时离轨所需的燃料。

数据处理架构:

Sentinel-3卫星的数据处理架构要求:研发风险最小化;系统价格最小化;可靠运行20年,这项要求导致了设计架构采用鲁棒性强的单个卫星管理单元处理,一个而单独的载荷数据处理单元用于任务数据管理,并再次利用继承性设计。

有效载荷包括6台设备,是任务数据的来源,其中3台高数据率的载荷直接通过SpaceWire网络收集数据,其余低数据率的载荷由中心计算机获取其数据,并通过SpaceWire网络传输到数据存储器中,载荷数据处理单元收集并存储所有的任务数据,随后对这些数据进行格式化、加密和编码,最后下传地面站。载荷数据处理单元能够同时处理4条SpaceWire网络来源的数据流,处理速度达到100Mbit/s。

图2:Sentinel-3卫星数据处理架构逻辑框图

无线通信:S波段通道用于测控链路,S波段下行码速率为123kbit/s或2 Mbit/s,上行链路码速率64kbit/s,X波段通道用于载荷数据下传,通信码速率520Mbit/s,星上数据存储能力300Gbit(寿命末期)用于存储载荷数据。

Sentinel-3卫星上使用了新开发的MEMS陀螺,名为SiREUS,在Sentinel-3卫星的姿轨控系统中进行验证,该陀螺在卫星与火箭分离后,与光学敏感器联合工作,用于测量卫星运动角速度,在陀螺内集合了3个陀螺单元,每个单元将测量一个轴上的角速度,该设备的外形尺寸为11cm×11cm×7 cm。总质量750g。

图3:新型MEMS陀螺SiREUS照片

卫星发射情况:

Sentinel-3A卫星于2016年2月16日,由俄罗斯Rockot/Briz-KM运载火箭从普列谢茨克发射场发射升空。

卫星轨道为太阳同步冻结轨道(每天绕行地球14+7/27圈),平均轨道高度815km,轨道倾角98.6o,降交点地方时10:00。回归周期27天,可提供全

球覆盖性数据。

载荷情况:

Sentinel-3A卫星同时具有光学载荷和微波载荷。载荷在星上的布局图如下:

图4:Sentinel-3卫星载荷布局图

光学载荷包括以下两种:

OLCI(Ocean and Land Color Instrument):

海洋及陆地彩色成像仪是一款中分辨率推扫成像光谱仪,该载荷继承自MERIS卫星,又在Envisat卫星上使用过,在Sentinel-3卫星上进行了微小的几何观测调整。载荷视场角向西偏。与阳光偏离了12o,使得阳光反射较少地进入到光学视场中,并且可以提供一个很宽的刈幅(宽度为1300k,总视场角达到68.6o),采样间距为1.2km(在开阔海面上),或者0.3km(在海岸线附近及地面观测中)。载荷重量为150kg,设备外形尺寸为1.24m×0.83m×1.32 m,消耗电功率为124W,由Thales Alenia Space Espa?a负责设计和建造。

图5:OLCI设备内部设计图

SLSTR(Sea and Land Surface Temperature Radiometer):

海陆表面温度辐射计继承自Envisat卫星上AATSR载荷,并进行了升级,可以提供更宽的刈幅,与OLCI设备可以形成完全的搭接,为了获取精确的植被信息产品,SLSTR被设计成海洋与陆地表面温度探测器,与AATSR载荷不同的是:SLSTR具有双扫描机构,可以获取“从地平线到地平线”的宽视场,OLCI和SLSTR的刈幅具有很宽的搭接条带,可以提供更多的信息,SLSTR具有很宽的星下点视场和一个较窄的斜视场。

表3:SLSTR设备性能参数表

扫描刈幅宽星下点视场宽度1400km,双视场宽度740km

图6:SLSTR设备设计图

微波载荷包含以下几种:

SRAL(SAR Radar Altimeter):

合成孔径雷达高度计是带有冗余备份的双频率(C波段和Ku波段)星下点探测高度计载荷,是用于探测地表地形的核心载荷,对所有的地表物体提供其高度数据,(基础测量表面高度、海波高度和海风速度),SRAL载荷的设计很大程度上继承自Jason-2卫星上的Poseidon-3型高度计和CryoSat-2卫星上SIRAL高度计,它是由位于图鲁斯的法国Thales Alenia Space公司设计生产的。

SRAL雷达采用线性调频脉冲和脉冲压缩进行工作,星上还采用了波束去斜技术,主要用于测量表面高度的是Ku波段(13.575GHz,带宽=350 MHz),C波段(5.41GHz,带宽=320MHz)主要用于电离层校正。

SRAL雷达主要技术性能为:

雷达测量模式:LRM模式和SAR模式

跟踪模式:闭环模式和开环模式

脉冲重复频率:1.9kHz(LRM),17.8kHz(SAR)

测距误差:3cm

功率消耗:90W(LRM),100W(SAR)

数据率:100kbit/s(LRM),12Mbit/s(SAR)

设备重量:60kg

图7:SRAL雷达天线

MWR(Microwave Radiometer):

图8:MWR设备概念图及在星上安装情况

北京揽宇方圆雷达卫星影像insar技术地面沉降监测中应用

北京揽宇方圆信息技术有限公司 1、引言 在我国,由于人们过度的开采地下资源,引起的地面形变的问题非常突出。地表形变问题给当地的环境造成很大的破坏,直接危害着地面建筑设施和人们的生命安全。因此,对地面形变进行有效的监测可以对研究地表形变的形成机理、变化规律和控制地表变形相当重要,对国民经济的可持续发展有着十分重要的意义。目前地表形变监测的方法有:传统的大地水准测量、GPS技术、摄影测量和卫星合成孔径雷达差分干涉(DInSAR)测量。DInSAR是一项新近发展起来的空间对地观测技术,它具有测量精度高、作业范围大、不受天气条件的限制等技术优势,目前DInSAR及其拓展技术已经在火山、地震、冰川、滑坡和地表形变等研究领域得到广泛的应用。

图1-1DInSAR技术的应用领域 传统的路面沉降监测方法有很大的局限性:都必须预计出大致的沉降位置和范围,从而布置监测点;都是利用离散的观测点获得的沉降数据来建立经验模型,然后通过数值内插方法得到面状沉降;而且对于人员很难到达的区域,实测困难。因此,该方法只能反映局部少数的沉降信息,不能直观、宏观地反应整个沉降区域的沉降状况。表1-1反映了DInSAR技术相比于其他监测方法的优势 表1-1DInSAR技术与其他监测方法的对比 2、DInSAR技术原理 DInSAR是一个多重嵌套的缩写词,由雷达(Radar,Radio Detection and Ranging)、合成孔径雷达(Synthetic Aperture Radar,SAR)、合成孔径雷达干涉测量(SAR Interferometry,InSAR)、合成孔径雷达差分干涉测量(DiferfenceInSAR,DInSAR)嵌套

遥感卫星影像镶嵌的基本原则

北京揽宇方圆信息技术有限公司 遥感卫星影像镶嵌的基本原则 遥感卫星影像镶嵌是指对一幅或若干幅图像通过几何镶嵌、色调调整、去重叠等处理,镶嵌到一幅大的背景图像中的影像处理方法。 基本原则 镶嵌时应对多景影像数据的重叠带进行严格配准,镶嵌误差不低于配准误差,镶嵌区应保证有10-15个像素的重叠带。影像镶嵌时除了要满足在镶嵌线上相邻影像几何特征一致性,还要求相邻影像的色调保持一致。镶嵌影像应保证色调均匀、反差适中,如果两幅或多幅相邻影像时相不同使得影像光谱特征反差较大时,应在保证影像上地物不失真的前提下进行匀色,尽量保证镶嵌区域相关影像色彩过渡自然平滑。 1、原则上,镶嵌只针对采样间隔相同影像。需在相邻数据重叠区域进行如下处理:首先,在相邻数据重叠区勾绘镶嵌线,镶嵌线勾绘尽量靠近采样间隔较小影像的外边缘,以保证其数据使用率最大化。然后对镶嵌线两侧影像进行裁切,裁掉重叠区域影像,为避免因坐标系转换导致接边处出现漏缝,对于采样间隔小的影像严格沿镶嵌线裁切,采样间隔大的影像应适当外扩一定范围,原则上不超过10个像素进行裁切。 2、镶嵌前进行重叠检查。景与景间重叠限差应符合要求。重叠误差超限时应立即查明原因,并进行必要的返工,使其符合规定的接边要求。采用

“拉窗帘”方式目视检查相邻影像间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者接边精度不超过1个像素。 3、镶嵌时应尽可能保留分辨率高、时相新、云雾量少、质量好的影像。 4、选取镶嵌线对DOM进行镶嵌,镶嵌处无地物错位、模糊、重影和晕边现象。 5、时相相同或相近的镶嵌影像纹理、色彩自然过渡;时相差距较大、地物特征差异明显的镶嵌影像,允许存在光谱差异,但同一地块内光谱特征尽量一致。 重叠精度检查 叠加相邻纠正单元,采用“拉窗帘”方式逐屏幕目视检查相邻纠正单元间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者相对精度应满足下表要求。 相邻影像采样间隔≤1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采样间 隔) 山地、高山地(采样间 隔) 相对误 差 2.0倍8.0倍 基础底图采样间隔>1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采 样间隔) 山地、高山地(采 样间隔) 相对误差 2.0倍 4.0倍 注:相对误差因侧视角超限、基础底图和高程数据等控制资料精度不足引起,且无法改正的特殊地区除外,但该区域周边不超限。 镶嵌步骤 1、镶嵌线选取

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

Planet遥感卫星全球最大规模的地球影像卫星星座群-北京揽宇方圆

北京揽宇方圆信息技术有限公司 Planet 遥感卫星全球最大规模的地球影像卫星星座群-北京揽宇方圆Planet(曾命名为Planet Lab)遥感卫星群是全球最大规模的地球影像卫星星座群,由美国卫星成像初创公司Planet Labs 研制,有超过150颗在轨卫星(减去已失效的卫星),使全球对地观测进入“每日”时代,有着其他公司无法比拟每天覆盖全球一次的超高频时间分辨率。 Planet 卫星星座可以识别赈灾地点和提高全球发展中国家的农业产量。用户也可以使用这些影像资源进行全球环境保护,比如森林砍伐监测和极地冰盖变化监测。商业应用包括测图、房地产和建筑业、油气资源监测,甚至是交通堵塞监测。如果公司需要对其拥有的高价值、分布式资源进行定期监测,Planet 可以补充或替代使用直升机飞过输油管道来监测油气泄漏,因为Planet 卫星可以快速获取需要的影像。 表1.PLANETSCOPE 轨道参数 参数国际空间站轨道(32颗)太阳同步轨道(100颗) 轨道高度400km 475km 轨道倾角51.6°-98° 纬度覆盖±52°±81.5° 降交点地方时可变9:30-11:30am 回归周期可变每天 表2.PLANETSCOPE 有效载荷技术指标 参数国际空间站轨道(32颗)太阳同步轨道(100颗) 波段范围蓝波455-515nm 蓝波455-515nm 绿波500-590nm 绿波500-590nm 红波590-670nm 红波590-670nm

近红外780-860nm近红外780-860nm 地面采样距离3m 3.7m 幅宽24.6km x16.4km24.6km x16.4km 影像带最大面积(一条轨道)8100km220,000km2 影像获取能力可变 1.5亿km2/天 数据提供起始时间4224842248 北京揽宇方圆信息技术有限公司

SPOT卫星遥感影像数据基本参数

SPOT5遥感卫星基本参数 北京揽宇方圆信息技术有限公司 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 – 0.59um 20米分辨率B2 0.61 – 0.68um B3 0.78 – 0.89um SWIR 1.58 – 1.75um

遥感卫星影像数据产品类型有哪些@北京揽宇方圆

北京揽宇方圆信息技术有限公司 北京揽宇方圆具有一支国内领先的遥感应用科研队伍,可根据用户的实际需求,开展航天、航空对地观测数据加工、数据专题应用等服务,用户可以向我中心的数据服务部进行咨询与洽商,具体操作过程见深加工数据订购流程。 遥感影像地图产品 遥感图像是某一时间对地表状况的客观记录。出于对资源、环境等现势性快速了解的需求,应用时间性强的遥感数据资料制作影像地图,在通常情况下已成为解决传统制图周期长等问题的首选方法。通过选择合适的航天、航空对地观测数据源,采用的合理波段组合和有效的信息增强技术,可以得到信息丰富,直观易读的影像。对于政府部门、企事业单位等了解区域地貌类型、资源状况、城市分布以及指导规划等都有很大的帮助。根据经费状况和应用目的不同,用户可以对遥感数据影像图的形式作选择,包括:一般遥感影像图,行政区划遥感影像图,立体影像图,批量的印刷型遥感影像图等。 按地形图标准分幅的影像产品

与上述的遥感数据影像图的主要区别在于这类产品完全按国家标准地形图图幅号进行图像裁切,形成1:2.5万-1:100万系列遥感影像产品,它们拥有与标准地形图一致的坐标系统和地理网格注记,便于比对和野外定位。精度高是其重要特点之一,表现在几何定位上的准确性、辐射水平的连续性和信息的可判读性。我中心特有的高水准预处理级几何精校正技术、几何精校正或正射校正技术、数字镶嵌技术和多源数据融合技术则从技术上保证了这类遥感数据产品的精度要求。目前,通过对数据的深加工处理,按标准地形图分幅的遥感数据影像图产品已受到众多用户的青睐,服务于野外调绘和地形图的更新等方面。 遥感数据融合产品 由于航天、航空对地观测的传感器种类越来越多,多种光谱与几何分辨率、多时相遥感数据源的接收、应用以及对高质量遥感数据的需求是促使各种遥感数据融合技术的出现与发展的直接动力。为了在有限的投资内获得不同遥感数据源的信息优势,以增强对目标物的检测与识别能力,提高遥感数据应用的精度和效率,我中心向用户提供航天、航空数据融合产品,能够针对不同的遥感数据源、不同地物特征和应用目的采用不同的融合方法;或强调信息保持,保证图像判读和统计上的一致性;或突出光谱变异以取变化信息。 专题信息产品 1.土地资源调查 充分利用遥感地球所的航天、航空数据源以及信息处理与应用的技术优势,结合政府部门对土地管理的需求,提供土地利用分类、基本农田、城市建设用地、土地开垦、土地沙漠化、退耕还林还草等方面的动态监测专题图件。 2.生态环境监测

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

高分辨率遥感卫星介绍

北京揽宇方圆信息技术有限公司 高分辨率遥感卫星有哪些 高分辨率遥感可以以米级甚至亚米级空间分辨率精细观测地球,所获取的高空间分辨率遥感影像可以清楚地表达地物目标的空间结构与表层纹理特征,分辨出地物内部更为精细的组成,地物边缘信息也更加清晰,为有效的地学解译分析提供了条件和基础。随着高分辨率遥感影像资源日益丰富,高分辨率遥感在测绘制图、城市规划、交通、水利、农业、林业、环境资源监测等领域得到了飞速发展。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A (3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades

高分一号卫星影像数据免费查询单位

北京揽宇方圆信息技术有限公司 高分一号卫星影像数据免费查询单位高分一号 高分一号卫星是中国高分辨率对地观测系统的第一颗卫星,于2013年4月26日成功发射。“高分一号”的全色分辨率是2米,多光谱分辨率为8米。它的特点是增加了高分辨率多光谱相机,该相机的性能在国内投入运行的对地观测卫星中最强。此外,“高分一号”的宽幅多光谱相机幅宽达到了800公里,重访周期只有4天,“高分一号”实现了高空间分辨率和高时间分辨率的完美结合。它为国土资源部门、农业部门、环境保护部门提供高精度、宽范围的空间观测服务,在地理测绘、海洋和气候气象观测、水利和林业资源监测、城市和交通精细化管理,疫情评估与公共卫生应急、地球系统科学研究等领域发挥重要作用。 高分一号卫星参数 项目 技术性能轨道 轨道类型 太阳同步圆轨道平均轨道高度 644.5km 降交点地方时 10:30AM 回归周期 41天重访、覆盖特性重访:侧摆条件下,2/8m 相机4天 覆盖:16m 相机4天,2/8m 相机41 天 卫星重量 总重量1060kg 卫星尺寸发射状态最大包络 Φ2650mm×2000mm 在轨太阳翼展开后的跨度 7930mm 高分成像谱段/μm 全色:0.45~0.90 B1:0.45~0.52,B2:0.52~0.59 B3:0.63~0.69,B4:0.77~0.89 星下点地面像元分辨率 全色优于2m,多光谱优于8m 地面幅宽 >60km 宽幅成像 谱段/μm B1:0.45~0.52;B2:0.52~0.59; B3:0.63~0.69;B4:0.77~0.89 星下点地面像元分辨率 优于16m 地面幅宽 >800km 姿态控制控制方式 三轴稳定,对地定向

遥感卫星影像数据采购知识要素

北京揽宇方圆信息技术有限公司 (一)遥感卫星数据类型有哪些? 北京揽宇方圆卫星公司可提供多种遥感数据类型供用户选择,目前来说是国内遥感数据最多的遥感数据中心,分辨率从0.3米到30米的光学卫星影像,还有各种极化方式的雷达卫星影像,高光谱卫星影像,还有解密的1960年至1980年的锁眼卫星影像,根据自己的情况来定,也可以把自己的卫星数据需求告诉我们,给您推荐合适的卫星数据类型。如果您想获取高程信息DEM、DLG等信息,需要购买的就是卫星影像立体像对数据,并不是所有卫星都有立体像对哦。 (二)遥感卫星数据影像有哪些级别? 卫星公司北京揽宇方圆销售的都是1A级别原始卫星影像,光学卫星影像原始数据都是以全色+多光谱捆绑形式提供,卫星影像一般可以经过一定的处理,形成各级别的影像数据,不同的级别可以针对不同的用户需求,在订购时需特别注意。 *名词(全色就是黑白数据,多光谱是指红绿蓝近红外) (三)遥感卫星数据影有没有最小数量起订的说法? 北京揽宇方圆提醒您在购买卫星影像时,都要确认购买面积大小或景数。对于高分辨率影像来说,一般是按面积大小来计算,单位为平方公里。但是往往有个最小购买面积,例如,WorldView影像的存档数据最低起购面积为25平方公里,且需要满足四边形两边相距大于等于5公里;而中低分辨率影像则往往按景数来计算,景是一幅卫星影像的通俗讲法,例如,一景高分一号卫星影像,范围大小为32.5×32.5公里。 (四)遥感卫星存档数据是指什么? 北京揽宇方圆详解遥感卫星存档数据:是指先前卫星已经拍摄过的某区域的影像数据,已存档在数据库中,是现成品。该种影像的购买价格相对较低,订购时间较快。但是订购前需要对既定需求区域做出确认,即确认所需区域是否有卫星影像数据存档、卫星影像存档数据的拍摄时间、拍摄质量(包含了云量、拍摄倾角等因素)等。 (五)遥感卫星编程数据是什么意思? 北京揽宇方圆遥感公司对遥感卫星编程数据的解释是指地面编程控制卫星对需求区域拍摄最新的影像,可以让用户得到需求区域最新的影像。但是编程影像的拍摄周期通常较长,订购初期需要先向卫星运营公司申请拍摄区域的拍摄周期,然后由卫星公司反馈计划拍摄周期。在这个拍摄周期中,并不能够保证拍摄成功,这与所拍摄地的天气情况、拍摄数据的优先级权重以及需求数据范围有关。 (六)遥感卫星影像数据价格如何一般是多少? 目前市面上的商业遥感卫星数量较多,北京揽宇方圆是国内遥感数据资源最多的公司,不同的行业根据自己的遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星

常见地遥感卫星地介绍及具体全参数

常见的遥感卫星的介绍及具体参数 遥感卫星(remote sensing satellite )用作外层空间遥感平台的人造卫星。用卫星作为平台的遥感技术称为卫星遥感。通常,遥感卫星可在轨道上运行数年。卫星轨道可根据需要来确定。遥感卫星能在规定的时间覆盖整个地球或指定的任何区域,当沿地球同步轨道运行时,它能连续地对地球表面某指定地域进行遥感。所有的遥感卫星都需要有遥感卫星地面站,卫星获得的图像数据通过无线电波传输到地面站,地面站发出指令以控制卫星运行和工作。以下列出较为常见的遥感卫星: 一、Landsat卫星 美国NASA的陆地卫星(Landsat)计划(1975年前称为地球资源技术卫星——ERTS ),从1972年7月23日以来,已发射7颗(第6颗发射失败)。目前Landsat1—4均相继失效,Landsat 5仍在超期运行(从1984年3月1日发射至今)。Landsat 7于1999年4月15日发射升空。其常见的遥感扫描影像类型有MMS影像、TM图像。 (一)、MSS影像 MSS影像为多光谱扫描仪(MultiSpectral Scanner)获取的图像,第一颗至第三颗地球卫星(Landsat)上反光束导管摄像机获取的三个波段摄影相片分别称为第1、2、3波段,多光谱扫描仪有4个波段获取的扫描影像被命名为4、5、6、7波段,两个波段为可见光波段,两个波段为近红外波段,此外,第三颗地球卫星上还供有热红外波段影像,这个影像称为第8波段,但使用不久,就因为一起的问题二关闭了。 表 1 :Landsat上MSS波段参数

(二)、TM影像 TM影像是指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。 影像空间分辨率除热红外波段为120米外,其余均为30米,像幅185×185公里2。每波段像元数达61662个(TM-6为15422个)。一景TM影像总信息量为230兆字节),约相当于MSS影像的7倍。 因TM影像具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,成为20世纪80年代中后期得到世界各国广泛应用的重要的地球资源与环境遥感数据源。能满足有关农、林、水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1∶10万或更小比例尺专题图,修测比例尺地图的要求。 表 2 :Landsat上TM波段参数 (三)、ETM 1999年4月15日,美国发射了Landsat-7,它采用了增强-加型专题绘图仪(ETM)遥感器来获取地球表层信息,它与TM的区别在于增加了全色波段,分辨率为15米,并改进了热红外波段影像的分辨率。

0.3米分辨率卫星影像-worldview3卫星销售@北京揽宇

北京揽宇方圆信息技术有限公司 2015年2月25日,美国数字全球(DigitalGlobe)公司在其官网正式宣布“开始向所有用户销售0.3m分辨率卫星观测图像”,并认为“在全球应用市场,更高分辨率的卫星图像如今已成为航空图像的高竞争力替代产品”。这是迄今全球商业卫星遥感公司能够提供的最高分辨率数据产品,将成为商业对地观测领域的里程碑事件。 2014年,全球商业对地观测领域保持蓬勃发展态势,各国纷纷发布或修订新版航天政策法规,大量创新卫星系统相继成功部署。其中,美国放宽商业销售数据分辨率限制以及世界观测-3(WorldView-3)卫星发射入轨尤为引人注目。此前,美国政府禁止商业遥感卫星运营商向美国政府以外的用户销售优于0.5m分辨率的卫星图像数据,这一施行多年的政策早已饱受业界诟病。在DigitalGlobe公司不断争取以及美国政府情报、安全和商务部门的持续磋商下,2014年6月,美国政府最终决定放宽商业销售图像分辨率限制,允许商业公司销售最高0.25m 分辨率的天基对地观测图像。同年8月13日,DigitalGlobe公司成功发射了WorldView-3卫星,全色分辨率高达0.31m,多光谱分辨率高达1.24m。WorldView-3卫星成功发射,使得DigitalGlobe公司在美国新数据政策支持下更具全球竞争力。 WorldView-3是全球分辨率最高的商业光学遥感成像卫星,其分辨率是DigitalGlobe公司竞争对手的5倍。图1是DigitalGlobe公司WorldView-3卫星与该公司运营的WorldView-2卫星拍摄的同一地区的卫星图像对比图,图2是DigitalGlobe公司WorldView-3卫星与其竞争对手卫星拍摄的同一地区的卫星图像对比图。从这两幅图片不难看出,WorldView-3卫星在成像分辨率、图像信噪比、纹理清晰度等方面具有明显优势。DigitalGlobe公司0.3m分辨率卫星图像对应的美国国家图像解析度分级标准(NIIRS)是5.7级,能够识别出地面井盖、建筑物通风孔、消防栓等物体。这一分辨率等级的图像能提供更清晰、更丰富的数据信息,有助于支撑改进决策,提高运营效率,增强政府民用、防务情报、能源以及研发等部门的天基对地观测应用能力。如图3所示,WorldView-3卫星拍摄的新西兰奥克兰市港口图像,其中港口停车场的地面停车位标志线清晰可见。此外,WorldView-3卫星还具备独一无二的短波红外(SWIR)成像能力,能够透视烟尘雾霾、识别矿物和人造物以及评估农作物健康状况。 图1WorldView-3和WorldView-2卫星拍摄的同一地区图像对比

卫星全色和多光谱模式介绍

QuickBird卫星全色和多光谱模式 时间:2009-08-24 众所周知,遥感是使用各种传感器远距离探测目标所辐射、反射或散射的电磁波,经加工处理变成能够识别和分析的图像和信号,以获取目标性质和状态信息的综合技术。 遥感根据获取目标的手段不同可分为狭义遥感和广义遥感。 狭义遥感以电磁辐射为感测对象,而广义遥感还包括磁力、重力等地球物理的测量和属于地球物理测量范畴的地震波、声波等弹性波。 我们通常所说的遥感概念则专指以电磁辐射为特征的狭义遥感。不同的目标物受到太阳或其他辐射源的电磁辐射时,它们所特有的反射、发射、透射、吸收电磁辐射的性质是不同的。通过获取目标物对电磁辐射的显示特征,可识别目标的属性和状态。所以传感器谱段的设置与目标物的光谱特性有着密切的关系。 目前世界上用于卫星遥感的传感器有两大类:光学遥感和微波遥感。 光学遥感: 光学遥感指利用光学设备探测和记录被测物体辐射、反射和散射的相应谱段电磁波,并分析、研究其特性及变化的技术。 光学遥感覆盖了红外、可见光和紫外三个谱段,常用的有以下三种: 可见光遥感: 其工作波长为0.4~0.76微米,一般采用感光胶片或光电探测器作为感测元件,属于摄影成像遥感。它主要使用可见光远摄镜头照相和可变焦距电视摄像等,感测的是目标及背景反射或自身发出的可见光,记录的信息或拍摄的图像是物体反射光或发光强度的空间分布。可见光遥感是光学遥感中历史最长的一种,是对地观测和军事侦察的主要手段之一。摄影成像的分辨率(G)很高,可以近似地表示为: G=f×R/H 其中f为镜头焦距,R为镜头与底片的综合分辨率,H为高度(或距离)。 红外遥感器: 主要包括红外扫描仪、红外辐射仪等。红外遥感通过探测红外辐射获取目标和背景的辐射温度或热成像。其探测能力取决于目标、背景与周围环境的温度差。红外遥感的最大优点是可获取无光照或薄云下目标和背景的图像。 多谱段遥感: 使用几个不同的谱段同时对一目标或地区进行感测,从而获得与各谱段相对应的各种信息。将不同谱段的遥感信息加以组合,可获取目标物更多的信息。多谱段遥感是在可见光和红外遥感的基础上发展起来的,它能明显地分辨多种目标和背景特性,兼有可见光和红外遥感技术的优点。也为高光谱和超高光谱的发展提供了依据。微波遥感: 微波遥感是利用微波遥感设备,对地物目标和环境的微波辐射、反射或散射能量实施探测的技术,其波长为1~1000毫米. 微波遥感按工作模式的不同可分为两种: 有源微波遥感: 主要由成像雷达、微波散射计和微波高度计组成。在卫星遥感中应用较多的是合成孔径雷达,它是利用平台与目标的相对运动产生的多普勒频移,经二维相关处理或匹配滤波处理而获得高分辨率的图像。 无源微波遥感: 主要指各种微波辐射计,它是通过测量自然界各种物体发出的微弱微波辐射来测量目标的辐射特性和实际温度。

Sentinel-5P卫星影像-北京揽宇方圆

Sentinel-5P卫星影像-北京揽宇方圆 Sentinel-5P卫星是欧洲GMES(环境与安全全球监视)项目的预先运行低轨卫星任务。该任务由ESA和NSO(荷兰空间办公室)共同努力下促成。用于填补现有的大气监测监视载荷(包括ESA卫星Envisat上的SCIAMACHY和NASA卫星Aura上的OMI)与未来先进载荷(指ESA的卫星Sentinel-5)之间的空档期。Sentinel-5计划于2020年发射,而Envisat任务终结于2012年。 Sentinel-5P(低轨)、Sentinel-4(地球静止轨道)、和Sentinel-5(低轨)三个任务将用于GMES计划大气层服务,主要执行大气成分监测任务。Sentinel-5P任务的目标是在2015~2020年之间提供大气成分监测数据。随后

的继任者是Sentinel-5,计划于2020年发射。 Sentinel-5P与其他相关卫星的时间衔接关系 卫星情况: Sentinel-4和-5卫星任务和之前的任务(Sentinel-1,Sentinel-2和Sentinel-3)并不相像,它们作为从事气象卫星的“宿主”,用于监视大气成分,为哥白尼大气服务项目工作。该任务只有单独一台载荷设备TROPOMI,这是一款推扫型,四通道超光谱成像仪,覆盖了从紫外线到短波红外谱段。2011年12月8日,ESA与Astrium公司签署合同,Astrium公司作为Sentinel-5P卫星的主承包商。 Sentinel-5P卫星采用Astrium公司的AstroBus-L250M卫星平台,该平台继承自西班牙的SEOSat/Ingenio任务,在ESA的控制下发展起来,曾用于SPOT-6和-7卫星项目上,这是两颗商业成像卫星任务。该平台还曾用于出口

WorldView卫星影像命名规则

WorldView卫星影像命名规则 WorldView-2于2009年10月6日发射升空,运行在770Km高的太阳同步轨道上。更高的轨道带来了更短的重访周期和更好的拍摄机动性。作为Digital Globe公司当时先进的遥感卫星,它同样使用了控制力矩陀螺技术。这项高性能技术可以提供多达10倍以上的加速度的姿态控制操作,从而可以更精确的瞄准和扫描目标。卫星的旋转速度可从QuickBird的60秒减少至9秒,星下摆动距离达200km。所以,WorldView-2在太空中的角色就像一个神奇的画笔,能灵活的前后扫描、拍摄大面积的区域,能在单次操作中完成多频谱影像的扫描。除了更快速的采集和更高的精度,WorldView-2还是第一颗具有八波段多光谱的高分辨率遥感卫星,它不但具有传统遥感卫星的四个多光谱波段,还新增加了海岸线、黄、红边和近红外2波段。 一般情况下,我们订购的影像都是分块存储的,上图就是一幅分块影像的所有文件。 (1)*.ATT——姿态文件:存储第一个数据点的时间、数据点数目、点和姿态信息间隔。 (2)*.EPH——星历文件:存储第一个数据点获取的时间、数据点数目、点和星历信息之间的间隔。 (3)*.GEO——几何定标文件:虚拟相机的标注摄影测量参数,是基础产品的相机和光学系统之间的关系。

(4)*.IMD——影像元数据文件:存储影像关键信息,包括产品级别、角点坐标、投影信息、获取时间、分辨率、视线高度、方位角、云覆盖率等。对后期数据处理分析有很大帮助。 (5)*.RPB——RPC参数文件:包含影像的RPC参数,是影像物方空间坐标与像方空间坐标之间的数学映射。这是我们做卫星影像立体成图RPC空三的关键参数。 (6)*.STE——立体文件:包含构成立体的影像列表,重叠区域等。 (7)*.TIF——影像文件:原始影像格式为非标准16bit,普通看图软件无法打开显示,可将其转换成8bit后再打开。或者使用ArcGIS、ERdas等专业软件打开。 (8)*.TIL——影像分块文件:产品分块情况及各部分位置关系。 (9)*.XML——影像索引文件:包含索引、许可、影像元数据、分块、rpc 文件的索引信息。 (10)*README.TXT——高级影像索引文件:产品文件列表和辅助数据文件以及产品版本信息。 备注说明: 北京揽宇方圆200多颗遥感卫星数据资源,各卫星都有详细的价格体系表,不同行业根据自己遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星影像的价格则主要由以上参数决定。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,遥感行业的国家高新技术企业,整合全球200多颗遥感卫星数据资源,遥感卫星影像数据贯穿中国1960年至今的所有商业卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫

卫星遥感数据处理规范流程

北京揽宇方圆信息技术有限公司遥感卫星影像图像数据处理介绍 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。 7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。 8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。 技术能力说明 北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 一.图像预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。

最新卫星影像图2米卫星影像图-北京揽宇方圆

北京揽宇方圆信息技术有限公司 一、高清卫星影像数据生产,按照合同约定,项目经理组织生产。 二、提交的产品,满足以下参数要求: 1.时间要求:成像时间2014年(含)以后 2.面积:大于200万平方公里,包括四川、重庆、云南、甘肃、安徽、湖南、湖北、江苏等全部。 3.精度要求:满足1:5万比例尺精度要求,重点保证覆盖辖区内城市建成区、村镇、道路、桥梁、河流等重要目标地物。 4.空间分辨率:优于2.5米 5.数据格式:GeoTIFF或IMG 6.坐标系:WGS84或者2000坐标系 7.卫星影像数据整体色调一致,接近自然色; 8.卫星影像数据应具有较好的平面定位精度,不低于10米; 9.卫星影像数据拼接精度应高于2个像元,不存在裂缝、错位等情况。 10.合同签订后在7个工作日内,提交影像产品。 三、提交的影像产品在满足招标要求的四川、重庆、云南、甘肃、安徽、湖南、 湖北、江苏8个省的基础上,考虑到自然灾害发生时间和地点的不确定性,我方承诺中标后一年内将按照甲方的需求额外提供部分省市的遥感影像,以满足甲方灾害应急需求。如一年中没有发生重大灾害,我方同样承诺中标后可以额外提供采购方采购面积的20%的影像产品。 四、交货方式:由于数据量比较大,采用移动硬盘为介质给甲方提供影像产品

五、提交产品的格式:提供按照1:5万标注分幅的分幅影像,数据格式为 GEOTIFF 六、验收:按合同时间要求供货,配合甲方进行验收,安装验收是我公司和甲方 单位共同对影像产品根据有关的产品技术指标进行验收。安装验收后双方签署安 装验收证书。 供应商全称(盖章):北京揽宇方圆信息技术有限公司 全权代表(签字): 附件14-4影像产品生产技术流程 1原始影像检查 1.1完整性检查 对原始卫星影像压缩包解压缩,查看影像数据、RPC文件、XML元文件等内容是否缺失,文件是否可读。 1.2数据源覆盖 根据数据的经纬度范围,制作数据源覆盖范围矢量文件,叠加工作区范围,检查数据源的覆盖状况及不同数据源的覆盖范围。 1.3时相 根据影像的头文件的信息,统计并制作影像时相分布图,检查影像时相是否符合项目的要求。 1.4重叠区 根据影像的覆盖矢量文件检查相邻景之间的重叠区是否大于2%,不符合要求的数据需重新选取订购。 1.5云量 检查每景影像的云、雪、雾覆盖状况,并列表记录其覆盖位置、覆盖量、是否覆盖重点关注区域。 1.6入射角 根据影像的头文件,检查每景影像的入射角,确认入射角是否符合项目的要求。 1.7纹理 根据影像的快视图,先对影像质量总体情进行检查,对疑似有问题的,打开影像文件进行重点检查。 对全色影像的纹理细节、多光谱影像的光谱丰富程度、多光谱波段间匹配程度等进行全面检查,并记录质量不合格影像,以及质量问题描述。

遥感卫星影像数据信息提取.

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由 26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供 worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、 ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm、 landsat(etm、 rapideye、alos、Kompsat 卫星、北京二号、资源三 号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。

WorldDEM数据购买应用-北京揽宇方圆

北京揽宇方圆信息技术有限公司 WorldDEM数据购买应用-北京揽宇方圆 北京揽宇方圆信息技术有限公司,全球领先的遥感影像数据服务商! 德国雷达卫星TanDEM-X正致力于打造一个覆盖全球的数字高程模型WorldDEM,该模型的质量、精确度和覆盖范围都提升到前所未有的水平。它将与TerraSAR-X卫星合作,共同制作一个对全球实现无缝覆盖的世界数字高程模型。 2010年6月21日,德国雷达卫星TanDEM-X的成功发射,象征着全球数字高程模型开始了一个新的时代。TanDEM-X与TerraSAR-X共同组成了一个高精度的雷达干涉仪,能够为全球同源数字高程模型获取基础数据。2颗卫星组成了一个独特的卫星编队,以精密控制的螺旋式编队飞行,距离很近,最小相对距离只有几百米。 数据准确性达到新的高度——从南极到北极 TanDEM-X的主要任务是制作一个质量好、精确度高、覆盖范围广的全球数字高程模型(WorldDEM)。该数字高程模型将于2014年正式投入使用。届时,它将取代“航天飞机雷达地形测绘任务”(SRTM)数据库,覆盖从南极到北极的所有地球陆地面积。WorldDEM的准确性将高于任何现有的基于卫星拍摄的数字高程模型,并具有以下几个独特的优势: ?2m的相对垂直精度和10m绝对垂直精度 ?12m×12m的扫描光栅 ?全球同源性

?首次全球数据采集将历时2年半的时间,因此所收集的数据集结果将具有高度的一致性。另外,在首次全球数据采集结束后,卫星仍有可能继续对局部地区再次进行数据采集。 ?因为该卫星传感器具有非常高的几何精度,因此不需要任何地面控制信息。 WorldDEM改变规则的突破性技术可以提供无缝全球数字高程模型。它能利用相同的数据源对模型进行更新,并能够对全球实现无缝建模。TanDEM-X与TerraSAR-X都能够单独在云层覆盖或雷雨的情况下正常运行,因此获取的数据具有绝对的可靠性。数据获取的全球同源性能够确保建立的数字高程模型不会受到国家或地区疆界的影响,因此不会出现图像断裂线。其次,它采用相同的测量程序,避免在数据收集时出现时间错位,确保了模型数据的一致性。 里程碑 2010年6月21日,TanDEM-X在哈萨克斯坦拜科努尔航天发射场进行了一次称得上是完美无瑕的发射。在入轨后的第3天,它就成功地在记录时间内获取了第一批卫星图像。并在仅仅1个月之后(比预定时间提前了1周),德国航空航天中心的科学家们就通过卫星编队获取的数据,成功处理并生成了第一批数字高程模型样本(虽然此时TanDEM-X与TerraSAR-X还没有到达最终的近距离编队飞行位置)。2010年10月19日,卫星地面站记录了世界上第一批由2个自由飞行的相对静止卫星获取的数字高程模型数据,数据质量和准确性都达到了预期标准。2010年12月14日,该卫星星座正式进入运行阶段。 2012年初,TanDEM-X又完成了另外一个重要的里程碑任务,第一次实现了对全球陆地的彻底覆盖。考虑到世界上有1.5亿平方千米的陆地面积,要实现对全球陆地的无缝覆盖,对于高度复杂的TanDEM-X来说,这项任务的成功完成实

相关文档
最新文档