直翅目昆虫线粒体基因组比较、谱系及进化研究

直翅目昆虫线粒体基因组比较、谱系及进化研究

直翅目昆虫线粒体基因组比较、谱系及进化研究

本研究利用直翅目昆虫线粒体DNA特异性引物,采用传统方法直接测序获得

了小凸额蝗(Traulia minuta)、印度橄蝗(Tagasta indica)、僧帽佛蝗(Phlaeoba infumata)、秦岭蹦蝗(Sinopodisma tsinlingensis)、素色异爪蝗(Euchorthippus unicolor)、拟短翅拟埃蝗(Pseudoeosyllina brevipennisoide)、黑角露螽(Phaneroptera nigroantennata)及拟叶螽(Orophyllus sp.)完整或几

乎完整的8条线粒体基因组序列。基于Hiseq2500测序平台,高通量测序技术测

序并组装注释获得了武陵山蹦蝗(Sinopodisma wulingshanensis)、秦岭小蹦蝗(Pedopodisma tsinlingensis)及日本黄脊蝗(Patangajaponica)三个物种全线

粒体基因组序列。

本研究测定的11条直翅目昆虫线粒体基因组序列,加上实验室测定未发表

线粒体基因组序列及NCBI上已提交的直翅目昆虫全线粒体基因组序列共153条,

应用比较基因组学,谱系基因组学及进化生物学等方法进行了分析,获得结论如下:1、本研究获得了 11条直翅目昆虫线粒体基因组序列,AT含量普遍偏高,在70%以上,13个蛋白编码基因密码子第三位AT含量普遍高于密码子第一位和第二位;11个物种线粒体基因组J链序列、22个tRNAs和AT富集区的碱基组成具有

明显AT-skew和CG-skew;13个蛋白编码基因的密码子使用频率较高的是UUA、UCU、UCA和ACA;11个物种的tRNAs二级结构与其它直翅目昆虫的二级结构基本

一致。2、秦岭蹦蝗、比氏蹦蝗、武陵山蹦蝗、霍山蹦蝗及秦岭小蹦蝗线粒体基

因组比较分析表明:①蹦蝗属和小蹦蝗属线粒体基因组A+T含量在整个直翅目昆

虫中最高。

②5种蝗虫最保守的tRNA是trnA,trnLCUN,trnF和trnG,只有一个核苷酸变

人类线粒体基因组与疾病

人类线粒体基因组与疾病 1、线粒体基因及基因组介绍 人类线粒体DNA(mtDNA),共包含37个基因,这37个基因中有22个编码转移核糖核酸(tRNA)、2个编码核糖体核糖核酸(12S和16S rRNA),13个编码多肽。 2、线粒体基因及基因组分析的现状和临床意义 对于可疑线粒体病的患者来说,理想的遗传学诊断方法是发现导致线粒体结构和功能缺陷的相关基因突变。这些基因突变可能在mtDNA上,也可能发生在核基因上,线粒体的遗传方式可能为常染色体隐形遗传、X-连锁遗传、母系遗传,有些还是新突变。由于线粒体病涉及基因众多,目前临床只能选择少数常见的线粒体基因位点进行突变和缺失筛查,阳性率很低,大多数患者难以获得准确的病因诊断。 3、线粒体基因及基因组分析测定 (1)13个编码多肽的基因 编码产物基因分 析 基因变异对应的常见线粒体病种 类 NADH dehydrogenase (complex I)MT-ND1Leber遗传性视神经病 MT-ND2心肌线粒体病,Leber遗传性视神经病 MT-ND3进肌阵挛,癫痫,视神经萎缩MT-ND4 Leber遗传性视神经病,线粒体肌 病,Leber遗传性视神经病,张力 障碍 MT-

ND4L Leber遗传性视神经病 MT-ND5Leigh综合征,线粒体脑肌病伴乳酸中毒及中风样发作综合症 MT-ND6Leber遗传性视神经病,线粒体脑肌病伴乳酸中毒及中风样发作综合症,糖尿病,肌张力障碍 coenzyme Q-cytochrome c reductase/Cytochrome b(complex III)MT-Cytb 慢性游走性红斑,Leber遗传性视 神经病,线粒体肌病,心肌线粒 体病,线粒体脑肌病伴乳酸中毒 及中风样发作综合症,帕金森病 cytochrome c oxidase(complex IV)MT- COX1 肌红蛋白尿运动神经元疾病,铁 粒幼细胞贫血 MT- COX2 线粒体肌病,线粒体多系统疾 病,线粒体脑肌病 MT- COX3 Leigh综合征,慢性游走性红斑, 骨骼肌溶解症 ATP synthase MT- ATP6 共济失调并发色素性视网膜炎, 母系遗传Leigh综合征,家族性双 侧纹状体坏死 MT- ATP8 共济失调并发色素性视网膜炎, 母系遗传Leigh综合征,家族性双 侧纹状体坏死 (2)22个编码tRNA的基因 Alanine MT-TA进行性眼外肌麻痹Arginine MT-TR

原核生物基因组和真核生物基因组比较区别

原核生物基因组和真核生物基因组的区别: 1、真核生物基因组指一个物种的单倍体染色体组(1n)所含有的一整套基因。还包括叶绿体、线粒体的基因组。 原核生物一般只有一个环状的DNA分子,其上所含有的基因为一个基因组。 2、原核生物的染色体分子量较小,基因组含有大量单一顺序 (unique-sequences),DNA仅有少量的重复顺序和基因。 真核生物基因组存在大量的非编码序列。包括: .内含子和外显子、.基因家族和假基因、重复DNA序列。真核生物的基因组的重复顺序不但大量,而且存在复杂谱系。 3、原核生物的细胞中除了主染色体以外,还含有各种质粒和转座因子。质粒常为双链环状DNA,可独立复制,有的既可以游离于细胞质中,也可以整合到染色体上。转座因子一般都是整合在基因组中。 真核生物除了核染色体以外,还存在细胞器DNA,如线粒体和叶绿体的DNA,为双链环状,可自主复制。有的真核细胞中也存在质粒,如酵母和植物。 4、原核生物的DNA位于细胞的中央,称为类核(nucleoid)。 真核生物有细胞核,DNA序列压缩为染色体存在于细胞核中。 5、真核基因组都是由DNA序列组成,原核基因组还有可能由RNA组成,如RNA病毒。 原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别 由真核细胞构成的生物。包括原生生物界、真菌界、植物界和动物界。真核细胞与原核细胞的主要区别是:

【从细胞结构】 1.真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核 2.真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。 真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。 3.真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。 真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。 4.原核细胞功能上与线粒体相当的结构是质膜和由质膜内褶形成的结构,但后者既没有自己特有的基因组,也没有自己特有的合成系统。真核生物的植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有的基因组和合成系统。与光合磷 酸化相关的电子传递系统位于由叶绿体的内膜内褶形成的片层上。原核生物中的蓝细菌和光合细菌,虽然也具有进行光合作用的膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体。 【从基因组结构】 1.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。 2.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。 3.真核细胞含有的线粒体,为双层被膜所包裹,有自己特有的基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关的电子传递链

进化基因组学研究进展

研究进化基因组学进展 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 正文 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。 一、目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学、基因注释的等方面;在新基因方面

比较基因组学

比较基因组学 摘要:比较基因组学是在基因组图谱和测序的基础上, 利用某个基因组研究获得的信息推测其他原核生物、真核生物类群中的基因数目、位置、功能、表达机制和物种进化的学科。该学科在后基因组时代是一门重要的工具学科。通过不同物种间的基因组序列比较, 可以发现生物体中蕴涵的大量生物学信息,其发展及所取得的成果与序列的积累相同步, 尤其是人类全基因组序列的分析与比较使比较基因组学成为整个生物学领域最新、最重要、进展最快和影响最大的学科之一。 关键词:比较基因组学;同源性;单核苷酸多态性;拷贝数多态性 世界范围内的多物种基因组计划和各类测序工作已经形成了海量的序列数据资源,它们正在使基因组研究发生革命性变化,信息和新技术的迅速发展也表明:分子遗传革新将是今后几十年的发展方向。尤其是从整体上而不是仅仅从某个或少数几个基因入手来研究生物体基因组的机能,己经在短短几年迅速发展壮大起来,比较基因组学已成为解读海量基因组序列数据及其相关生物学含义的强有力工具。通过物种之间的一比较能够了解基因组的进化,从而加速对人类基因结构和功能的了解。为阐明基因表达机制提供重要线索。达到从根本上了解认识生命的起源,物种及个体差异的原因,疾病产生的机制以及长寿、衰老等困扰着人类的最基本的生命现象,最终解析生命奥秘。 比较基因组学是通过对不同物种的基因组数据进行比较分析,揭示彼此的相似性和差异性,以了解不同物种进化上的差异,综合这些信息能进一步帮助我们了解物种形成的机制、基因或基因组上非编码区的功能。 1、种间比较基因组学 比较基因组学的基础是相关生物的相似性,序列间有显著的相似性即意味着序列之间有同源关系。同源是指被比较的物种是由共同的祖先经过自然选择进化而来。同源又可分为两种:直系同源和旁系同源直系同源的序列因物种形成而被区分开,若一个基因原先存在于某个物种,而该物种分化为了两个物种,那么新物种中的基因是直系同源的;旁系同源的序列因基因繁殖而被区分开,若生物体中的某个基因被复制了,那么两个副本序列就是旁系同源的。直系同源体通常有相同或相似的功能,但旁系同源体则不一定:由于缺乏原始的自然选择的力量,一繁殖出的基因副本可以自由的变异并获得新的功能。所有现代物种都是由相关的物种演化而来,现代的每一个基因都是由其它基因演化而来的。每一个基因都可以在其相关物种中找到直系同源基因,大部分的基因都可以在同一物种中找到旁系同源基因。如果两个物种非常相近,它们的基因组相关性就越高,基因组会表现出同线性,即基因序列的部分或全部保守。这样就可以利用模式基因组之间编码顺序上和结构上的同源性,通过已知基因组作图信息定位另外基因组中的基因,从而揭示基因潜在的功能、阐明物种进化关系及基因组的内在结构。 此外比较基因组分析还扩展到对序列相似性的分析、基因位置的比较、基因编码区长度或外显子数的变异、基因组上非编码区的比例、进化关系较远的物种间高度保守区域的比较

基因组注释

基因组注释主要包括四个研究方向:重复序列的识别;非编码RNA的预测;基因结构预测和基因功能注释。我们将分别对这四个领域进行阐述。 1:重复序列的识别。 重复序列的研究背景和意义:重复序列可分为串联重复序列(Tendam repeat)和散在重复序列(Interpersed repeat)两大类。其中串联重复序列包括有微卫星序列,小卫星序列等等;散在重复序列又称转座子元件,包括以DNA-DNA方式转座的DNA转座子和反转录转座子(retrotransposon)。常见的反转录转座子类别有LTR,LINE和SINE等。 重复序列识别的发展现状:目前,识别重复序列和转座子的方法为序列比对和从头预测两类。序列比对方法一般采用Repeatmasker软件,识别与已知重复序列相似的序列,并对其进行分类。常用Repbase重复序列数据库。从头预测方法则是利用重复序列或转座子自身的序列或结构特征构建从头预测算法或软件对序列进行识别。从头预测方法的优点在于能够根据转座子元件自身的结构特征进行预测,不依赖于已有的转座子数据库,能够发现未知的转座子元件。常见的从头预测方法有Recon,Piler,Repeatscout,LTR-finder,ReAS等等。 重复序列识别的研究内容:获得组装好的基因组序列后,我们首先预测基因组中的重复序列和转座子元件。一方面,我们采用RepeatScout、LTR-finder、Tendem Repeat Finder、Repeatmoderler、Piler等从头预测软件预测重复序列。为了获得从头预测方法得到的重复序列的类别信息,我们把这些序列与Repbase数据库比对,将能够归类的重复序列进行分类。另一方面,我们利用Repeatmasker 识别与已知重复序列相似的重复序列或蛋白质序列。通过构建Repbase数据库在DNA水平和蛋白质水平的重复序列,Repeatmasker能够分别识别在DNA水平和蛋白质水平重复的序列,提高了识别率。 重复序列识别的关键技术难点: 1):第二代测序技术测基因组,有成本低、速度快等优点。但是由于目前产生的读长(reads)较短。由于基因组序列采用kmer算法进行组装,高度相似的重复序列可能会被压缩到一起,影响对后续的重复序列识别。 2):某些高度重复的序列用现有的组装方法难以组装出来,成为未组装reads (unassembled reads)。有必要同时分析未组装reads以得到更为完整的重复序列分布图。之前,华大已开发了ReAS软件,专门用于识别未组装reads中

生物基因组进化

寒武纪物种大爆发是病毒的产物 is the result of virus creation 1984年6月中旬,中国科学院南京古生物所硕士毕业生侯先光,来到云南澄江县的帽天山,寻找曾经生存于寒武纪的高肌虫化石。7月1日下午3点左右,发现一块形状奇特又保存完整的化石,使他欣喜若狂,他用自己所学的知识判断,这是一块寒武纪早期的无脊椎动物化石。他再接再厉,当天就发现了三块重要化石,这三块经进一步鉴定,分别是纳罗虫、腮虾虫和尖峰虫化石。至此他打开了一扇古生物宝藏的大门,在以后的数天里,侯先光陆续发现了节肢动物、水母、蠕虫等许许多多同时期的古生物化石。返回南京后,他与导师张文堂教授,撰写了《纳罗虫在亚洲大陆的发现》,后来将在澄江发现的化石经技术处理复原后,展现在人们面前的是各种生物姿态奇特、色彩斑斓让人称奇的5.3亿年前的海洋全景图,澄江的动物化石因此闻名于世界,被定名为“澄江动物群”。在此之前的1909年,在加拿大发现的寒武纪中期的布尔吉斯动物化石群曾经轰动过世界,这个化石群距今有5.1亿年,比澄江动物群晚1500万年以上,澄江动物群是目前世界所发现的最古老、保存最完好的多门类动物群。1947年在澳大利亚发现了距今5.8亿年前寒武纪末期的埃迪卡拉动物化石群。奇异的是这个化石群与前上两化石群比较,物种间发生的突然性变化难以证明物种的连续性进化。这个化石动物群中没有发现任何寒武纪的属种,就如各类的动物是在寒武纪时期迅速起源,不是经过长时间的演化慢慢变来的,澄江动物群记录了这段特殊时期生物群的全貌。几乎现生动物的所有门类,都能在澄江化石群里找到它们的远祖代表,是寒武纪物种大爆发的最重要的记实。 寒武纪的物种大爆发是古生物学研究中的重大事件,因为其对达尔文的进化理论提出了严重的挑战,使其至今不能完善其说。古生物学研究表明,地球的“年龄”大约有46亿年,从地球生命出现到今天已经38亿年,但在距今5.4亿年前的寒武纪之前,生命只是以藻类和菌类的简单形式或个别简单的多细胞物种存在于海洋里。寒武纪之后,大量后生动物突然在海洋里出现,从单细胞藻类、菌类到多细胞后生动物演化特别快,短短千万年的时间里突然出现了大量不同门类的动物,这个星球上现存的物种几乎都是它们的后代。因此有学者用“神迹”来描述这个寒武纪的物种大爆发,这么多门类、多形态的生命在同一时期产生,并且已具备生命物种最初的复杂性,使人有理由认为是上帝选择了寒武纪作为创造生命的时期,对达尔文提出的渐进连续的生物进化论提出诘难。 按照达尔文的自然进化思想,物种的变化是各种微小变化的累积,进化应该是连续不断的。但这种设想显然与寒武纪的物种变化的实际情况不符,当科学家发现在寒武纪突然出现的三叶虫时,便认为可能会动摇进化论的基础。在当时的社会环境,如果谁提出快速进化,就有神创论的嫌疑。然而随着时间的推移和研究的深入,这些矛盾变得越发尖锐而不可调和。因此人们对达尔文的渐变论做了修正,“达尔文在他的时代由于研究条件的限制,对生物演化的历史了解并不是很全面,他认为进化应该是慢速进化。进入20世纪以来,大量的科学证据表明,进化应该是个快速的过程,澄江动物群就很典型。”但为什么在寒武纪的几百万年的时间中物种发生快速发展,而寒武纪之前的几十亿年中生命长期停留在藻类、菌类或简单多细胞的形式,其间找不到任何过渡物种的化石;寒武纪之后的几亿年中各种物种各自向高等类别缓慢进化,再也没有出现一次物种的快速发展,以至出现一个全新类型的物种呢?寒武纪前地球必定出现了什么。 为了达尔文学说与现实之间的矛盾,学术界争议了上百年,物种进化是连续性还是跳跃式发展?全力支持达尔文的赫胥黎曾私下多次劝告达尔文接受跳跃式的进化观点,并警告说,“你这样毫无保留地接受自然界绝无跃进的观点,使你陷入不必要的困难之中。”而达尔文深知,他的学说最具吸引力、最独到的地方乃是摒弃一切超然主义,用纯自然的观点解释生物的起源,他只有用渐进、微小的变化来解释复杂的大变化,才能持守他这种彻

11个石蛃样本的线粒体基因组研究

11个石蛃样本的线粒体基因组研究 石炳目在昆虫纲的系统发生关系分析中处于基部,是最早分支出来的原始类群,是一种不被人们熟知的无翅类昆虫。目前,关于石蛃目的系统发生地位及单系性已经得到普遍证实,但是关于石蛃目昆虫内部各科、各亚科、各属之间的系统 发生关系及系统地理研究一直存在着争议,有待更多的分子数据对其进行深入的研究。 因此本研究是在本实验室原有研究的基础上通过增加石蛃目昆虫样本数量,对其内部系统发生关系进行更深入地研究并对中国石蛃目昆虫的扩散机制进行 初步探讨。本研究包括石蛃目昆虫中的2亚科4属的11个样本,分别是:石蛃亚科(Machilinae)中的辽宁弓长岭的高丽韩蛃Coreamachiliscoreanus、山西衡山的高丽韩蛃 Coreamachiliscoreanu、新疆喀纳斯异蛃 Allopsontus(Allopsontinus)kanasiensis、新疆新源异蛃 Allopsontus(Allopsontinus)xinyuanensis、新疆玛纳斯希蛃Silvestrichilis manasiensis;新蛃亚科(Petrobiinae)中的河北承德的希氏跳蛃Pedetontus silvstri、辽宁凤城的希氏跳蛃Pedetontussilvestri、太姥山跳蛃Pedetontustaimushanensis、霸王岭跳蛃Pedetontusbawanglingensis、大陈岛跳蛃Pedetontus dachendaoensis、重庆跳蛃Pedetontus chongqingensis。 11个石蛃样本的线粒体基因组信息全部成功获得,其基因组的长度分别是:高丽韩蛃(弓长岭)Coreamachilis coreanus 15579 bp、高丽韩蛃(衡 山)Coreamachilis coreanus 15574 bp、喀纳斯异蛃 Allopsontus(Allopsontinus)kanasiensis 15628 bp、新源异蛃 Allopsontus(Allopsontinus)xinyuanensis 15518 bp、玛纳斯希蛃

进化基因组学研究进展

进化基因组学研究进展 刘超 (山东大学生命科学学院济南250100) 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从 基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进 化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 前言 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 1进化基因组学研究内容 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学 数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们 可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。 图1 进化基因组学主要研究内容 目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。例如生物进化的本质和目前重建系统进化树方法 的限制[1]。 2研究进化基因组学的方法 研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产 生和演化两种。 2.1利用基因组数据进行系统进化分析 利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。(如图2)

gene_ontology(GO基因注释)

GO(gene ontology)是基因本体联合会(Gene Onotology Consortium)所建立的数据库,旨在建立一个适用于各种物种的,堆积因和蛋白质功能进行限定和描述的,并能随着研究不断深入而更新的语言词汇标准.GO是多种生物本体语言中的一种,提供了三层结构的系统定义方式,用于描述基因产物的功能. 基因本体论(gene ontology)的建立 现今的生物学家们浪费了太多的时间和精力在搜寻生物信息上。这种情况归结为生物学上定义混乱的原因:不光是精确的计算机难以搜寻到这些随时间和人为多重因素而随机改变的定义,即使是完全由人手动处理也无法完成。举个例子来说,如果需要找到一个用于制抗生素的药物靶点,你可能想找到所有的和细菌蛋白质合成相关的基因产物,特别是那些和人中蛋白质合成组分显著不同的。但如果一个数据库描述这些基因产物为“翻译类”,而另一个描述其为“蛋白质合成类”,那么这无疑对于计算机来说是难以区分这两个在字面上相差甚远却在功能上相一致的定义。 Gene Ontology (GO)项目正是为了能够使对各种数据库中基因产物功能描述相一致的努力结果。这个项目最初是由1988年对三个模式生物数据库的整合开始:: FlyBase (果蝇数据库Drosophila),t Saccharomyces Genome Database (酵母基因组数据库SGD) and the Mouse Genome Database(小鼠基因组数据库MGD)。从那开始,GO不断发展扩大,现在已包含数十个动物、植物、微生物的数据库。GO的定义法则已经在多个合作的数据库中使用,这使在这些数据库中的查询具有极高的一致性。这种定义语言具有多重结构,因此在各种程度上都能进行查询。举例来说,GO可以被用来在小鼠基因组中查询和信号转导相关的基因产物,也可以进一步找到各种生物地受体酪氨酸激酶。这种结构允许在各种水平添加对此基因产物特性的认识。 GO发展了具有三级结构的标准语言(ontologies),如表所示。根据基因产物的相关分子功能,生物学途径,细胞学组件而给予定义,无物种相关性。 本体论内容分子功能本体论基因产物个体的功能,如与碳水化合物结合或ATP 水解酶活性等生物学途径本体论分子功能的有序组合,达成更广的生物功能,如有丝分裂或嘌呤代谢等细胞组件本体论亚细胞结构、位置和大分子复合物,如核仁、端粒和识别起始的复合物等 基本来说,GO工作可分为三个不同的部分:第一,给予和维持定义;第二,将位于不同数据库中的本体论语言、基因和基因产物进行联系,形成网络;第三,发展相关工具,使本体论的标准语言的产生和维持更为便捷。 本体论(The ontologies) GO的结构包括三个方面?D?D分子生物学上的功能、生物学途径和在细胞中的组件作用。当然,它们可能在每一个方面都有多种性质。如细胞色素C,在分子功能上体现为电子传递活性,在生物学途径中与氧化磷酸化和细胞凋亡有关,在细胞中存在于线粒体质中和线粒体内膜上。下面,将进一步的分别说明GO的具体定义情况。 基因产物 基因产物和其生物功能常常被我们混淆。例如,“乙醇脱氢酶”既可以指放在Eppendorf管里的基因产物,也表明了它的功能。但是这之间其实是存在差别

基因组学整理试题

基因组学整理试题 填空题: 1.位置效应的两种类型:稳定型,花斑型 2.细胞器基因组:线粒体基因组,叶绿体基因组 3.基因组进化的分子基础:突变,重组,转座 4.RNA聚合酶的三种类型:pol1(RNA聚合酶1),pol2(RNA聚合酶2),pol3(RNA聚合酶3) 5.转座子分类:DNA转座子,逆转录转座子 6.克隆载体的几种类型:YAC,BAC,HAC,MAC 7.重叠群组建的方法:步移法,指纹法 名词解释: 1.C值:是指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。 2.C值悖理:生物种属所具有的基因数目与其生物结构的复杂性不成比例的现象. 3.N值悖理:基因数目与进化程度或生物复杂性的不对应性,称之为N值悖理(N所表示的是基因数目)。 4.基因家族:来自一个共同的祖先, 因基因加倍和趋异产生许多在DNA序列上基本一致而略有不同的成员。 1)大部分担负类似的生物学功能. 2)比较各个成员间的序列差异,可追踪基因的演变轨迹。 5.假基因:来源于功能基因但已失去原来功能的DNA序列.包括重复假基因、加工假基因、残缺假基因。 6. DNA标记 ->限制性片段长度多态性( RFLP) 同一物种的亚种、品系或个体间基因组DNA 受到同一种限制性内切酶作用而形成不同的酶切图谱的现象 ->简单序列长度多态性(SSLP) 可变排列的简单重复序列, 即重复次数不一,在染色体的同一座位重复序列拷贝数不同; 包括俩种类型:小卫星序列(VNTR)、微卫星序列(SSR) ->单核苷酸多态性(SNP) SNP是指同一物种不同个体基因组DNA的等位序列上单个核苷酸存在差异的现象。其中最少一种在群体中的频率不小于1%;如果出现频率低于1%,则视作点突变。 7.序列间隙:因覆盖率的原因而留下的未能测序的序列,仍存在于克隆文库中, 这类间隙称为序列间隙。 物理间隙:因克隆载体自身的限制或DNA顺序特殊的组成等原因造成某些序列丢失或未能克隆, 这类间隙称为物理间隙。 8.表达序列标签(EST):基因转录产物的一段cDNA序列。 9.转座因子:原核生物与真核生物基因组中广泛存在的一类可以移动位置的遗传因子。 10.CpG岛:基因组中富含GC碱基的DNA区段。 满足CpG岛的条件为: 1) 连续500 bp的DNA顺序; 2) C+G含量大于55%;

真核基因组注释流程

真核基因组注释入门指南 doi:10.1038/nrg3174 Mark Yandell 和 Daniel Ence Department of Human Genetics, Eccles Institute of Human Genetics, School of Medicine, University of Utah, Salt Lake City, Utah 84112-5330, USA. Correspondence to M.Y. e-mail: myandell@https://www.360docs.net/doc/4a9328956.html, 摘要:基因组测序价格的下降给考虑进行基因组测定和注释的研究团体带来了显著的影响。基因组注释项目普遍变成由单个实验室实施的小规模事件。尽管注释一个真核基因组已经可由非专业人士完成,但仍较难。本文综述了基因组注释的概貌、相关软体并描述了一些最适用的方法。 引言:测序费用下降如此快以致单个实验室也能支付人类基因组的测定。尽管测序变得容易了,许多因素却使基因组注释却变得更难: 首先,第二代测序平台的更短的原始读长意味着现在基因组组装很少获得接近果蝇和人类基因组那样用经典shotgun组装的结果。 第二,许多近来测定的基因组具有的独特性也带来了挑战,尤其是对基因的发掘。不同于第一代基因组项目依赖于大量已知的基因模型,今天的基因组常常缺乏前期研究。这导致难于训练、优化和设定基因预测等注释工具的参数。 第三个新挑战来自对升级和融合注释数据的需求。RNA水平数据(RNA-seq)为升级陈旧的注释数据集提供了显而易见的途径。而且,这一工作十分重要。然而,也不能直接保证可以改进原始的注释结果。另外,今天常常有多个团队用不同的注释过程去注释同一个基因组,众多信息整合获得一致注释是一个相对复杂的任务。 最后一点,基因组注释项目的团队大小发生了变化。不像以往,今天的基因组注释项目常是更小规模团队完成,相关研究者常缺乏生物信息学和计算生物学的专业知识。真核基因组注释不是一个简单的过程,需要一些基本的UNIX技能。但利用现在的工具软体,自己动手进行基因组项目注释十分可行。本文综述了基因组注释的概貌、相关工具并描述了一些最适用的方法。 概述:组装和注释 组装 成功注释任何基因组的第一步是决定组装是否已经达到要求。许多总结性统计用来描述基因组组装的完整性和连续性。最重要的是N50 。其他的统计参数有scaffold的平均gap大小和数目。大多数现有基因组是“标准的草图”组装,这意味着它们达到了递交至公共数据库的最低标准。然而,“高质量草图”组装是注释的更高目标,至少达到90%的完整性。 尽管没有绝对的标准,但是对注释而言,scaffold N50长度达到基因平均长度是一个合理的目标。原因十分简单:此时,基因中约有50%有望包括在单个scaffold;这些完整的基因与其它片段一同提供下游分析的素材。如图1所示,平均基因长度与基因组大小存在粗略的对应关系。因此,如果基因组大小已知,就可以粗略的获得基因大小从而获得注释所需的最小scaffold N50。CEGMA提供了估算组装的完整性和连续性的另外一种补充方式,该方式依靠所收集的真核单拷贝基因并确定每一个基因存在于单个scaffold中的百分比来检测组装效果。 获得高质量组装草图是大多数基因组项目都可以完成的目标。如果组装不完全或者scaffold的N50长度过短,我们建议补充进行shotgun测序。

cDNA文库和基因组文库比较

cDNA文库和基因组文库比较 cDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。 基因组文库: 一个生物体的基因组DNA用限制性内切酶部分酶切后,将酶切片段插入到载体DNA分子中,所有这些插入了基因组DNA片段的载体分子的集合体,将包含这个生物体的整个基因组,也就是构成了这个生物体的基因文库。 基因组DNA文库与cDNA文库的比较: 1 基因组DNA文库的优点相对于cDNA文库,基因组文库的优点: cDNA克隆只能反映着mRNA的分子结构,没有包括基因组的间隔序列, cDNA文库中,不同克隆的分布状态总是反映着mRNA的分布状态,即:高丰度mRNA的cDNA克隆,所占比例较高,分离基因容易;低丰度mRNA的cDNA克隆,所占比例较低,分离基因困难; 从cDNA克隆中,不能克隆到基因组DNA 中的非转录区段序列,不能用于研究基因编码区外侧调控序列的结构与功能. 2 cDNA文库的主要优点: ①cDNA文库以mRNA为材料,特别适用于某些RNA病毒等的基因组结构研究及有关基因的克隆分离. ②cDNA文库的筛选比较简单易行. ③每一个cDNA文库都含有一种mRNA序列,这样在目的基因的选择中出现假阳性的概率就会比较低,因此阳性杂交信号一般都是有意义的,由此选择出来的阳性克隆将会含有目的基因. ④cDNA文库可用于在细菌中能进行表达的基因的克隆,直接应用于基因工程操作. ⑤cDNA克隆还可用于真核细胞mRNA的结构和功能研究. 3 cDNA克隆的主要的缺点: cDNA文库所包含的遗传信息要远远少于基因组DNA文库,并且受细胞来源或发育时期的影响. cDNA文库虽能反映mRNA的分子结构和功能信息,但不能直接获得基因内含子序列和基因编码区外大量调控序列的结构与功能方面信息. 在cDNA文库中,相应于高丰度mRNA 的cDNA克隆所占的比例比较高,分离起来比较容易,而相应于低丰度mRNA的cDNA克隆所占的比例则比较低,因此分离也就比较困难.

基因功能注释

Gene Annotation 基因注释主要基于蛋白序列比对。将基因的序列与各数据库进行比对,得到对应的功能注释信息。为便于分析,还需要将各种注释信息进行综合,选取最为准确的注释。可以先用程序来选取比对最相似,形式最好的注释信息,然后再做少量的人工校正。 请注意:对于Nt, Nr, Swissprot, trEMBL, COG, KEGG, InterPro的搜索,我们默认的方法是只取best hit, 也就是每个基因只对应数据库中比对最好的那条记录。这样可以简化分析,但是会丢失一些信息。如果要求严格,可以采用一定E-value条件下所有的hit。 Blast database Nt, Nr is the non-redundant NCBI collection of nucleotide and protein sequence database. ftp://https://www.360docs.net/doc/4a9328956.html,/blast/db/FASTA/ 注意:Nt,Nr数据库由于很大,被分成很多部分,使用时直接指定Nt,Nr即可。 UniProtKB/Swiss-Prot; a curated protein sequence database which strives to provide a high level of annotation (such as the description of the function of a protein, its domains structure, post-translational modifications, variants, etc.), a minimal level of redundancy and high level of integration with other databases. UniProtKB/TrEMBL; a computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL nucleotide sequence entries not yet integrated in Swiss-Prot. 注意:Swissprot/trembl数据库不能直接跑blast,必须先用simplify_uniprot.pl程序把蛋白序列名字简化; COG(Cluster of Orthologous Groups of pretein)蛋白相邻类的聚簇。该数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成的。对于预测单个蛋白质的功能和整个新基因组中的蛋白质的功能非常有用。 COG: https://www.360docs.net/doc/4a9328956.html,/COG/ COG:ftp://https://www.360docs.net/doc/4a9328956.html,/pub/COG/ 准备数据库,首先将没有COG归类的基因的filter掉,减少无效计算量。 有用文件:readme whog fun.txt myva org.txt。 注意:COG单细胞版本(Unicellular)里包含的都是原核生物,数据量较小,搜索COG 的目的是对应出COG号。 KEGG(Kyoto Encyclopedia of Genes and Genomes)京都基因及基因组百科全书,是一个有关生物系统较完善的数据库,关联基因组信息和功能信息的知识库。其由基因蛋白序列(KEGG Genes)、具有内源性和外源性的化学物质(KEGG Ligand)、分子相互作用和代谢通路图(KEGG Pathway)和各种生物之间的层次关系(KEGG Brite)构成,在功能注释分析中,我们主要关注的是KEGG代谢通路图的分析 KEGG:ftp://ftp.genome.jp/pub/kegg/ 需要ko genome,pathway/map 和seq_pep文件。通过genome文件中的物种可分为原核与真核两部分。通过ko文件,可确定ko分类各层级的关系。序列文件seq_pep中含有基

基因组注释

基因组注释(Genome annotation) 是利用生物信息学方法和工具,对基因组所有基因的生物学功能进行高通量注释,是当前功能基因组学研究的一个热点。基因组注释的研究内容包括基因识别和基因功能注释两个方面。基因识别的核心是确定全基因组序列中所有基因的确切位 置。从基因组序列预测新基因,现阶段主要是3 种方法的结合: (1) 分析mRNA 和EST数据以直接得到结果; (2) 通过相似性比对从已知基因和蛋白质序列得到间接证据[1 ] ; (3) 基于各种统计模型和算法从头预测。对预测出的基因进行高通量功能注释可以借助于以下方法,利用已知功能基因的注释信息为新基因注释: (1) 序列数据库相似性搜索; (2)序列模体(Motif) 搜索; (3) 直系同源序列聚类分析(Cluster of orthologousgroup ,COG) [2 ] 。随着微生物全基因组序列测定速率的加快,开发有Web 接口的高效、综合基因组注释系统十分要。近年来,国际上已有一些这样的工具,如基于Java 的微生物基因组数据库接口。尽管JMGD 提供了一个很好的图形化接口程序,却并不具有基因组自动注释功能。德国国家环境和健康研究中心开发的蛋白质摘录、描述和分析工具(Protein extrac2tion , description , and analysis tool ,PEDANT) 是大型基因组分析系统,整合了大量基因组功能信息和结构信息。PEDANT 注释功能强大[3 ] ,适用范围广,但没有便于操作的图形界面,而且需要较强的硬件系统支持。 在基因组学中,对基因和其他生物特征的标注称为基因组注释。 (1) 基因组组分分析 GC含量分析, Contig N50 和Scaffold N50统计 (2) 基因预测 (3) 基因结构注释(4) 重复序列分析与注释 (5) 启动子和motif预测 (6) 非编码RNA的注释tRNA, rRNA, microRNA靶基因预测, snoRNA及其甲 基化位点预测 (7) 基因功能注释GO, KEGG, InterPro, COG, NR, NT (8) 免疫防御关键基因, 转录因子预测 (9) Pseudogene 预测 (10) 基因组的倍增(tandem and segmental duplication)

全基因组重测序数据分析详细说明

全基因组重测序数据分析 1. 简介(Introduction) 通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。 实验设计与样本 (1)Case-Control 对照组设计; (2)家庭成员组设计:父母-子女组(4人、3人组或多人); 初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。 3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、

相关文档
最新文档