第八章 基因组进化的分子基础1

2021学年新教材高中生物第三章遗传的分子基础第五节生物体存在表观遗传现象练习2含解析浙科版必修2

第5节生物体存在表观遗传现象 1.可遗传变异是生物的遗传物质发生改变而导致的变异,但是科学家却发现一些特别的变异:虽然DNA的序列没有改变,但是变异却可以遗传给后代,把这种现象称为表观遗传。下列关于基因和性状的关系说法错误的是() A.基因可以通过控制蛋白质的结构直接控制生物体的性状,也可以通过控制酶的合成来控制代谢过程进而控制生物体的性状 B.基因与基因,基因与基因产物,基因和环境之间相互作用,共同调控生物的性状 C.表观遗传中,核内遗传物质在亲子代之间传递不再遵循孟德尔遗传规律 D.表观遗传的一种解释:基因在转录和翻译过程中发生了一些稳定性的改变 【答案】C 【解析】 A、基因可以通过控制蛋白质的结构直接控制生物体的性状,也可以通过控制酶的合成来控制代谢过程进而控制生物体的性状,A正确; B、基因与基因,基因与基因产物,基因和环境之间相互作用共同调控生物的性状,B正确; C、表观遗传中,核内遗传物质在亲子代之间传递仍然遵循孟德尔遗传规律,C错误; D、生物体基因的碱基序列保持不变,但基因表达(转录和翻译)过程中发生变化导致表型发生可遗传变化的现象,叫作表观遗传,D正确。 故选C。 2.下列关于表观遗传的说法不正确的是() A.表观遗传的分子生物学基础是DNA的甲基化等 B.表观遗传现象中,生物表型发生变化是由于基因的碱基序列改变 C.表观遗传现象与外界环境关系密切 D.DNA甲基化的修饰可以遗传给后代,使后代出现同样的表型 【答案】B 【解析】 AB、表观遗传是指生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象。这一现象出现的原因是DNA的甲基化、染色体上的组蛋白发生甲基化等,A正确,B错误; C、外界环境会引起细胞中DNA甲基化水平变化,从而引起表观遗传现象的出现,C 正确;

进化基因组学研究进展

研究进化基因组学进展 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 正文 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。 一、目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学、基因注释的等方面;在新基因方面

(完整版)遗传的分子基础知识点

专题四遗传的分子基础 【探索遗传物质的过程】 一、1928年格里菲思的肺炎双球菌的转化实验: 1、肺炎双球菌有两种类型类型: S型细菌:菌落光滑,菌体有夹膜,有毒性 R型细菌:菌落粗糙,菌体无夹膜,无毒性 2、实验过程(看书) 3、实验证明:无毒性的R型活细菌与被加热杀死的有毒性的S型细菌混合后,转化为有 毒性的S型活细菌。这种性状的转化是可以遗传的。 推论(格里菲思):在第四组实验中,已经被加热杀死S型细菌中,必然含有某种促 成这一转化的活性物质—“转化因子”。 二、1944年艾弗里的实验: 1、实验过程: 分析:实验的思路:将S菌的DNA和蛋白质等物质分开,分别单独观察它们的作用 2、实验证明:DNA才是R型细菌产生稳定遗传变化的物质。 (即:DNA是遗传物质,蛋白质等不是遗传物质) 3、从变异的角度看,R菌转化成S菌,属于基因重组(R菌的DNA中插入了可表达的 外源DNA) 三、1952年郝尔希和蔡斯噬菌体侵染细菌的实验 1、T2噬菌体机构和元素组成:

2、实验过程(看书) 1)实验方法:同位素标记法 2)如何标记噬菌体:用被标记的细菌培养噬菌体(注意不能用培养基直接培养噬菌体) 3)搅拌的目的:使吸附在细菌上的噬菌体与细菌分离 4)离心的目的:使上清液析出噬菌体,沉淀物中留下大肠杆菌 5)对照:两组实验之间是相互对照 6)误差分析:35S标记蛋白质,搅拌不充分,会使沉淀物中放射性升高 32P标记DNA,若保温时间太短或过长,会使上清液中放射性升高; 3、实验结论:子代噬菌体的各种性状是通过亲代的DNA遗传的。(即:DNA是遗传物 质)(该实验不能证明蛋白质不是遗传物质) 四、1956年烟草花叶病毒感染烟草实验证明:在只有RNA的病毒中,RNA是遗传物质。 五、小结: 细胞生物(真核、原核)非细胞生物(病毒) 核酸DNA和RNA DNA RNA 遗传物质DNA DNA RNA 因为绝大多数生物的遗传物质是DNA,所以DNA是主要的遗传物质。 【DNA的结构和DNA的复制】 一、DNA的结构 1、DNA的组成元素:C、H、O、N、P 2、DNA的基本单位:脱氧核糖核苷酸(4种) 3、DNA的结构: ①由两条、反向平行的脱氧核苷酸链盘旋成双螺 旋结构。 ②外侧:脱氧核糖和磷酸交替连接构成基本骨架。 内侧:由氢键相连的碱基对组成。 ③碱基配对有一定规律:A =T;G ≡C。(碱基互补配对原则) ④两条链之间通过氢键连接,一条链中相邻的碱基通过“脱氧核糖-磷酸-脱氧核糖”连 接 4、DNA的特性: ①多样性:碱基对的排列顺序是千变万化的。(排列种数:4n(n为碱基对对数) ②特异性:每个特定DNA分子的碱基排列顺序是特定的。

遗传物质的分子基础(答案)

第二章遗传物质的分子基础(答案) 1. 从化学上分析,真核生物的染色体是核酸和蛋白质的复合物。其中核酸主要是脱氧核糖 核酸(DNA),在染色体上平均约占27%,其次是核糖核酸(RNA),约占6%;蛋白质占66%,是由组蛋白与非组蛋白构成的,两者的含量大致相等,但根据细胞的类型与代谢活动,非组蛋白的含量与性质变化较大。此外还有少量的拟脂与无机物质。 2. 分子遗传学已拥有大量直接和间接证据,说明DNA是主要的遗传物质。 ⑴ DNA作为主要遗传物质的间接证据。 ①每个物种不同组织的细胞不论其大小和功能如何,它们的DNA含量是恒定的。而且配子中的DNA含量正好是体细胞的一半,多倍体系列的一些物种,其细胞中DNA的含量随染色体倍数的增加也呈现倍数性的递增。 ② DNA在代谢上是比较稳定的。 ③ DNA是所有生物的染色体所共有的,从噬菌体、病毒,直到人类的染色体中都含有DNA。 ④用不同波长的紫外线诱发各种生物突变时,其最有效波长均为2600A,这与DNA所吸收的紫外线光谱是一致的。 ⑵ DNA作为主要遗传物质的直接证据。 ①细菌的转化:1928年,格里费斯( Griffith , F . )首次将一种类型的肺炎双球菌RII转化为另一种类型RIII,实现了细菌遗传性状的定向转化。16年后,阿委瑞( Avery , O . T . )等用生物化学方法证明这种转化物质是DNA。 ②噬菌体的侵染与繁殖:赫而歇等用同位素32P和35S分别标记T2噬菌体的DNA和蛋白质。然后用标记的T2噬菌体分别感染大肠杆菌,经10分钟后,用搅拌器甩掉附着于细胞外面的噬菌体外壳。发现用32P标记,放射性活动见于细菌内而不被甩掉并可传递给子代。用35S标记,放射性活动大部分见于被甩掉的外壳中,细菌内只有较低的放射性活动,但不能传递给子代。这样看来主要是由于DNA进入细胞内才产生完整的噬菌体。所以说DNA是具有连续性的遗传物质。 3. ①由两条互补的多核苷酸链,彼此以一定的空间距离,在同一轴上互相盘旋起来,很 象一个扭曲起来的梯子。 ②在DNA双链中,一条链的走向从5ˊ到 3ˊ、,另一条链的走向从3ˊ到 5ˊ。两条 链呈反向平行。 ③ A与T以两个氢键配对相连,G与C是以三个氢键配对相连。 ④各对碱基上下之间的距离为3.4A,每个螺旋的距离34A,也就是说,每个螺旋包括10对碱基。 4. a. 这条链是DNA。 b. 如以之为模板,形成互补DNA链,它的碱基顺序为:T-G-G-C-A-A-A-T c. 如以之为模板,形成互补RNA链,它的碱基顺序为:U-G-G-C-A-A-A-U

生物基因组进化

寒武纪物种大爆发是病毒的产物 is the result of virus creation 1984年6月中旬,中国科学院南京古生物所硕士毕业生侯先光,来到云南澄江县的帽天山,寻找曾经生存于寒武纪的高肌虫化石。7月1日下午3点左右,发现一块形状奇特又保存完整的化石,使他欣喜若狂,他用自己所学的知识判断,这是一块寒武纪早期的无脊椎动物化石。他再接再厉,当天就发现了三块重要化石,这三块经进一步鉴定,分别是纳罗虫、腮虾虫和尖峰虫化石。至此他打开了一扇古生物宝藏的大门,在以后的数天里,侯先光陆续发现了节肢动物、水母、蠕虫等许许多多同时期的古生物化石。返回南京后,他与导师张文堂教授,撰写了《纳罗虫在亚洲大陆的发现》,后来将在澄江发现的化石经技术处理复原后,展现在人们面前的是各种生物姿态奇特、色彩斑斓让人称奇的5.3亿年前的海洋全景图,澄江的动物化石因此闻名于世界,被定名为“澄江动物群”。在此之前的1909年,在加拿大发现的寒武纪中期的布尔吉斯动物化石群曾经轰动过世界,这个化石群距今有5.1亿年,比澄江动物群晚1500万年以上,澄江动物群是目前世界所发现的最古老、保存最完好的多门类动物群。1947年在澳大利亚发现了距今5.8亿年前寒武纪末期的埃迪卡拉动物化石群。奇异的是这个化石群与前上两化石群比较,物种间发生的突然性变化难以证明物种的连续性进化。这个化石动物群中没有发现任何寒武纪的属种,就如各类的动物是在寒武纪时期迅速起源,不是经过长时间的演化慢慢变来的,澄江动物群记录了这段特殊时期生物群的全貌。几乎现生动物的所有门类,都能在澄江化石群里找到它们的远祖代表,是寒武纪物种大爆发的最重要的记实。 寒武纪的物种大爆发是古生物学研究中的重大事件,因为其对达尔文的进化理论提出了严重的挑战,使其至今不能完善其说。古生物学研究表明,地球的“年龄”大约有46亿年,从地球生命出现到今天已经38亿年,但在距今5.4亿年前的寒武纪之前,生命只是以藻类和菌类的简单形式或个别简单的多细胞物种存在于海洋里。寒武纪之后,大量后生动物突然在海洋里出现,从单细胞藻类、菌类到多细胞后生动物演化特别快,短短千万年的时间里突然出现了大量不同门类的动物,这个星球上现存的物种几乎都是它们的后代。因此有学者用“神迹”来描述这个寒武纪的物种大爆发,这么多门类、多形态的生命在同一时期产生,并且已具备生命物种最初的复杂性,使人有理由认为是上帝选择了寒武纪作为创造生命的时期,对达尔文提出的渐进连续的生物进化论提出诘难。 按照达尔文的自然进化思想,物种的变化是各种微小变化的累积,进化应该是连续不断的。但这种设想显然与寒武纪的物种变化的实际情况不符,当科学家发现在寒武纪突然出现的三叶虫时,便认为可能会动摇进化论的基础。在当时的社会环境,如果谁提出快速进化,就有神创论的嫌疑。然而随着时间的推移和研究的深入,这些矛盾变得越发尖锐而不可调和。因此人们对达尔文的渐变论做了修正,“达尔文在他的时代由于研究条件的限制,对生物演化的历史了解并不是很全面,他认为进化应该是慢速进化。进入20世纪以来,大量的科学证据表明,进化应该是个快速的过程,澄江动物群就很典型。”但为什么在寒武纪的几百万年的时间中物种发生快速发展,而寒武纪之前的几十亿年中生命长期停留在藻类、菌类或简单多细胞的形式,其间找不到任何过渡物种的化石;寒武纪之后的几亿年中各种物种各自向高等类别缓慢进化,再也没有出现一次物种的快速发展,以至出现一个全新类型的物种呢?寒武纪前地球必定出现了什么。 为了达尔文学说与现实之间的矛盾,学术界争议了上百年,物种进化是连续性还是跳跃式发展?全力支持达尔文的赫胥黎曾私下多次劝告达尔文接受跳跃式的进化观点,并警告说,“你这样毫无保留地接受自然界绝无跃进的观点,使你陷入不必要的困难之中。”而达尔文深知,他的学说最具吸引力、最独到的地方乃是摒弃一切超然主义,用纯自然的观点解释生物的起源,他只有用渐进、微小的变化来解释复杂的大变化,才能持守他这种彻

2018年高中生物第三章遗传的分子基础第二节DNA的分子结构和特点学案浙科版必修2

第二节DNA 的分子结构和特点 1.DNA 是由四种不同的(A 、G 、C 、T)脱氧核苷酸聚合而成 的高分子化合物。 2.DNA 分子的双螺旋结构:①脱氧核糖与磷酸相间排列在外侧, 形成两条脱氧核苷酸链(反向平行),构成DNA 的基本骨架;② 两条脱氧核苷酸链之间是碱基对,排列在内侧。 3.DNA 分子中碱基之间一一对应,遵循卡伽夫法则 (碱基互补配 对):A 一定与T 配对,A 和T 的分子数相等;G 一定与C 配对, G 和C 的分子数相等;但A +T 的量不一定等于G +C 的量。依 据卡伽夫法则可以确定是双链DNA 还是单链DNA 。 4.不同生物的DNA 碱基对的数目可能相同,但碱基对的排列顺序 肯定不同。 5.基因是有遗传效应的DNA 片段,基因中脱氧核苷酸的排列顺序 代表了遗传信息。 错误! 1.DNA 的化学组成 (1)基本组成元素:C 、H 、O 、N 、P 五种元素。 (2)基本单元:脱氧核苷酸。 (3)脱氧核苷酸分子组成: 脱氧核苷酸 ??? 脱氧核苷????? 脱氧核糖碱基、T 、G 、磷酸 (4)脱氧核苷酸的种类: ①碱基组成:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)。 ②种类:腺嘌呤脱氧核苷酸;鸟嘌呤脱氧核苷酸;胞嘧啶脱氧核苷酸;胸腺嘧啶脱氧核苷酸。 2.DNA 分子的结构特点

[巧学妙记 ] DNA 结构的“五、四、三、二、一” 五种元素:C 、H 、O 、N 、P ; 四种碱基:A 、G 、C 、T ,相应的有四种脱氧核苷酸; 三种物质:磷酸、脱氧核糖、含氮碱基; 两条长链:两条反向平行的脱氧核苷酸链; 一种螺旋:规则的双螺旋结构。 1.DNA 分子主要存在于细胞的什么部位? 提示:DNA 分子主要存在于细胞核中的染色体上,在线粒体和叶绿体中有少量分布。 2.双链DNA 分子中,嘌呤碱基数与嘧啶碱基数有什么关系? 提示:嘌呤碱基数=嘧啶碱基数。 3.每个DNA 片段中,游离的磷酸基团数是多少?磷酸数∶脱氧核糖数∶含氮碱基数的比例是多少? 提示:(1)2个;(2)1∶1∶1。 4.两个长度相同的双链DNA 分子,其结构差异主要体现在哪里? 提示:主要体现在碱基对的排列顺序不同。 1.DNA 分子的结构 (1)基本单位——脱氧核苷酸,如图所示: 其中,○表示磷酸基团; 表示脱氧核糖(O 表示氧原子,数字表示碳原子编 号);□表示含氮碱基,构成DNA 分子的含氮碱基共有4种,即A(腺嘌呤)、T(胸 腺嘧啶)、G(鸟嘌呤)、C(胞嘧啶)。 (2)一条脱氧核苷酸单链中,相邻脱氧核苷酸之间的连接如图所示:

遗传的分子基础(知识点)

基础课时案17DNA是主要的遗传物质 一、肺炎双球菌转化实验 1.格里菲思体内转化实验 (1)过程 (2)结论:加热杀死的S型细菌中,含有某种促成R型细菌转化为S型细菌的“转化因子”。2.艾弗里体外转化实验 (1)实验过程及结果 (2)结论:DNA才是使R型菌产生稳定遗传变化的物质,即DNA是转化因子,是遗传物质。 二、噬菌体侵染细菌的实验 1.实验材料 噬菌体和大肠杆菌等。 (1)噬菌体的结构及生活方式 (2)

2.实验方法 同位素示踪法。 3.实验过程及结果 (1)标记噬菌体 (2)侵染细菌 4.实验结果分析 (1)噬菌体侵染细菌时,其DNA进入细菌细胞中,而蛋白质外壳留在外面。 (2)子代噬菌体的各种性状是通过亲代DNA遗传的。 5.结论DNA是遗传物质。 (1)肺炎双球菌转化实验的3个误区 ①体内转化实验不能简单地说成S型细菌的DNA可使小鼠致死,而是具有毒性的S型细菌使小鼠致死。 ②在转化过程中并不是所有的R型细菌均转化成S型细菌,而是只有少部分R型细菌转化为S型细菌。 ③转化的实质并不是基因发生突变,而是S型细菌的DNA片段整合到了R型细菌的DNA 中,即实现了基因重组。 (2)噬菌体侵染细菌实验的2个关键环节 ①侵染时间要合适,若保温时间过短或过长会使32P组的上清液中出现放射性。原因是部分噬菌体未侵染或子代噬菌体被释放出来。,②搅拌要充分,如果搅拌不充分,35S组部分噬菌体与大肠杆菌没有分离,噬菌体与细菌共存于沉淀物中,这样造成沉淀物中出现放射性。 三、RNA是某些病毒的遗传物质 1.烟草花叶病毒对烟草叶细胞的感染实验 (1)实验过程及现象 (2)结论 RNA是烟草花叶病毒的遗传物质,蛋白质不是烟草花叶病毒的遗传物质。 2.生物的遗传物质[连线] 考点一肺炎双球菌转化实验

基因组学答案

1.什么是基因组学?基因组学有哪些特点? 以基因组分析为手段,研究基因组的结构组成、时序表达模式和功能,并提供有关生物物种及其细胞功能进化信息的一门学科。特点:Genome sciences are sequence-based,Genome sciences are data-guided (not so hypothesis-driven),Genome sciences is a systematic approach。 2.什么是模式生物? 生物学家通过对选定的生物物种进行科学研究,用于揭示某种具有普遍规律的生命现象,此时,这种被选定的生物物种为模式生物。在人类基因组计划中,包括对五种生 物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。 3.人类基因组计划是哪一年完成的?在科学上有什么意义? 2000年完成了人类基因组“工作框架图”。2001年公布了人类基因组图谱及初步分析结果。 意义: 首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。 第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。4.基因组学的发展方向是什么? 5. 3 大公共DNA 数据库名称是什么? EMBL,GenBank,DDBJ。 6.什么是一级数据库和二级数据库? Primary Databases:Original submissions by experimentalists,Content controlled by the submitter。 Derivative Databases:Built from primary data,Content controlled by third party。 7.什么是NCBI 的Refseq?什么是Unigene?Unigene 和Refseq 的区别和联系。 RefSeq (accessible via the main page of NCBI) provides an expertly curated accession number that corresponds to the most stable, agreed-upon “reference” version of a sequence. Unigene:MegaBlast based automated sequence clustering,Nonredundant set of gene oriented clusters,Each cluster a unique gene,Information on tissue types and map locations,Includes known genes and uncharacterized ESTs,Useful for gene discovery and selection of mapping reagents。 8.GEO 是什么类型数据库,主要包含什么类型数据? 9.大致介绍一下UCSC GENOME BROWSER? Stands for “Encyclopedia Of DNA Elements”,Public research consortium to carry out a project to identify all functional elements in the human genome sequence,Launched by The National Human Genome Research Institute (NHGRI),Conducted in three phases:pilot project phase,technology development phase,planned production phase。 10.HAVANA 基因是什么类型数据? 11.什么是细菌人工染色体(BAC) 是指一种以F质粒(F-plasmid)为基础建构而成的细菌染色体克隆载体,常用来克隆150kb左右大小的DNA片段,最多可保存300kb个碱基对。 12.什么是遗传图谱?用来构建遗传图谱的标记有哪些?

2020学年高中生物 第三章 遗传的分子基础 第一节 核酸是遗传物质的证据学案 浙科版必修2

第一节核酸是遗传物质的证据 1.通过“活动:资料分析——噬菌体侵染细菌的实验”,概述噬菌体侵染细菌的过程,体会实验方法与技术的多样性。 2.概述肺炎双球菌的转化实验,感悟实验的严密性和逻辑的严谨性。 3.简述烟草花叶病毒的感染和重建实验,认同使用模型是进行科学研究的重要方法。 [学生用书P39] 一、染色体结构与功能 1.结构:由DNA、RNA和蛋白质组成,其中蛋白质又分为组蛋白和非组蛋白。 2.功能:是遗传物质的载体。 二、DNA是遗传物质的直接证据 1.噬菌体侵染细菌的实验 (1)实验过程(同位素标记法) 用放射性同位素35S标记了一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。然后,用两种被标记的T2噬菌体分别去侵染细菌。当T2噬菌体在细菌体内大量繁殖后,对标记物质进行检测。结果表明,大多数35S标记的噬菌体在感染细菌时,放射性蛋白质附着在宿主细胞的外面;32P标记的噬菌体感染细菌时,放射性同位素主要进入宿主细胞内,并且能在子代噬菌体中检测到32P。 (2)实验结论:DNA是噬菌体的遗传物质。 2.肺炎双球菌的转化实验 (1)活体细菌转化实验 ①过程及现象:把加热杀死的S型菌和活的无毒R型菌混合后一起注射到小鼠体内,发现很多小鼠患败血症致死。从患病致死的小鼠血液中分离出活的S型菌。无论是活的R型菌还是死的S型菌,分别注射到小鼠体内都不能使小鼠患败血症。由此可见,加热杀死的S 型菌中的“转化因子”进入R型菌体内,引起R型菌稳定的遗传变异。 ②结论:加热杀死的S型菌中含有转化因子,能将R型菌转化为活的S型菌。 (2)离体细菌转化实验 ①过程及现象:从活的S型菌中抽提DNA、蛋白质和荚膜物质,分别与活的R型菌混合培养。只有加入DNA时,R型菌才能转化为S型菌,若用DNA酶处理DNA样品,就不能使R 型菌发生转化,并且DNA纯度越高,转化效率就越高。 ②结论:DNA是遗传物质。

医学生物学教学大纲

《医学生物学》教学大纲(第七版) 适用于临床医学、麻醉学、医学影像学、口腔医学专业本科使用 一、课程的地位与任务 医学生物学是研究生命运动及其本质并探讨生物发生发展规律的科学,是高等医学教学中一门重要的专业基础医学必修课程,是医学各专业的生命科学导论,它以人体为研究对象,研究人的生命现象及其本质的科学。从医学的角度,介绍生命现象的一般原理;从生物学角度,介绍医学的发展趋势。容涉及到医学知识的基本理论、基本知识和基本技能,既是医学基础的前沿学科,又是学习其它临床医学的奠基学科,起着承上启下的作用。 二、课程简述 1、课程目标 医学生物学系统地介绍生物学基础理论、基本知识和现代生物学的研究进展及其与医学的关系,从宏观上概括性的训练、培养学生的综合能力,奠定学习医学科学的基础。并适当联系医学各学科各专业的需要,通过教学各环节,使学生逐步地从分子层次、细胞层次、个体层次、群体层次认识生物界发生发展的规律,同时,介绍生命科学前沿的细胞生物学,分子生物学等领域的新成就、新进展,以扩大学生的知识领域,使学生对生命科学中的新理论和新概念有所了解。 2、教学方法 本课程的教学方式有讲课、实验、自学、辅导答疑、测验、考试。 理论教学采用多媒体辅助的讲授方式为主,开展问题式教学,构建科学合理的知识网络,采用图像联想法、对比记忆法、相互联系记忆法使学生分析归纳问题的能力、理解想象问题的能力和创新思维能力等科学文化素质得到提高和发展。实验教学开设基础

的细胞生物学、遗传学等实验,重视基本技能训练,培养创造性思维,培养学生严谨的科学实验态度。 本大纲适用于我院五年制本科临床医学、麻醉学、医学影像学、口腔医学专业学生学习和教师教学该课程为2学分,计划学时为54学时,其中理论教学30学时,实验教学24学时。教学要求及时数分配 学时分配表

第九章 遗传物质的分子基础

第九章遗传物质的分子基础 [关闭窗口] 本章习题 1.解释下列名词:半保留复制、冈崎片段、转录、翻译、小核RNA、不均一核RNA、遗传密码简并、多聚核糖体、中心法则。 2.如何证明DNA是生物的主要遗传物质? 3.简述DNA双螺旋结构及其特点? 4.比较A-DNA、B-DNA、Z-DNA的主要异同? 5.染色质的基本结构是什么?现有的假说是怎样解释染色质螺旋化为染色体的? 6.原核生物DNA聚合酶有哪几种?各有何特点? 7.真核生物与原核生物DNA合成过程有何不同? 8.简述原核生物RNA的转录过程。 9.真核生物与原核生物相比,其转录过程有何特点? 10.简述原核生物蛋白质合成的过程。 参考答案 [关闭窗口]第九章遗传物质的分子基础 [关闭窗口] 参考答案 1.解释下列名词:半保留复制、冈崎片段、转录、翻译、小核RNA、不均一核RNA、遗传密码简并、多聚核糖体、中心法则。 半保留复制:DNA分子的复制,首先是从它的一端氢键逐渐断开,当双螺旋的一端已拆开为两条单链时,各自可以作为模板,进行氢键的结合,在复制酶系统下,逐步连接起来,各自形成一条新的互补链,与原来的模板单链互相盘旋在一起,两条分开的单链恢复成DNA双分子链结构。这样,随着DNA分子双螺旋的完全拆开,就逐渐形成了两个新的DNA分子,与原来的完全一样。这种复制方式成为半保留复制。 冈崎片段:在DNA复制叉中,后随链上合成的DNA不连续小片段称为冈崎片段。

转录:由DNA为模板合成RNA的过程。RNA的转录有三步: ①. RNA链的起始; ②. RNA链的延长; ③. RNA链的终止及新链的释放。 翻译:以RNA为模版合成蛋白质的过程即称为遗传信息的翻译过程。 小核RNA:是真核生物转录后加工过程中RNA的剪接体的主要成分,属于一种小分子RNA,可与蛋白质结合构成核酸剪接体。 不均一核RNA:在真核生物中,转录形成的RNA中,含有大量非编码序列,大约只有25%RNA经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA在分子大小上差别很大,所以称为不均一核RNA。 遗传密码:是核酸中核苷酸序列指定蛋白质中氨基酸序列的一种方式,是由三个核苷酸组成的三联体密码。密码子不能重复利用,无逗号间隔,存在简并现象,具有有序性和通用性,还包含起始密码子和终止密码子。 简并:一个氨基酸由一个以上的三联体密码所决定的现象。 多聚合糖体:一条mRNA分子可以同时结合多个核糖体,形成一串核糖体,成为多聚核糖体。 中心法则:蛋白质合成过程,也就是遗传信息从DNA-mRNA-蛋白质的转录和翻译的过程,以及遗传信息从DNA到DNA的复制过程,这就是生物学的中心法则。 2.如何证明DNA是生物的主要遗传物质? 答:DNA作为生物的主要遗传物质的间接证据: ⑴. 每个物种不论其大小功能如何,其DNA含量是恒定的。 ⑵. DNA在代谢上比较稳定。⑶. 基因突变是与DNA分子的变异密切相关的。 DNA作为生物的主要遗传物质的直接证据:

2019_2020学年高中生物第三章遗传的分子基础章末过关检测(三)浙科版必修2

章末过关检测(三) [学生用书P119(单独成册)] (时间:45分钟,满分:100分) 一、选择题(本题包括10小题,每小题6分,共60分) 1.根据碱基互补配对原则,以下碱基间不能配对的是( ) A.A与T B.A与U C.G与C D.G与T 解析:选D。根据碱基互补配对原则,DNA分子中A与T配对、G与C配对,RNA分子中A与U配对、G与C配对。 2.下列关于核酸的叙述中,正确的是( ) A.DNA和RNA中的五碳糖相同 B.组成DNA和ATP的元素种类不同 C.T2噬菌体的遗传信息贮存在RNA中 D.双链DNA分子中嘌呤数等于嘧啶数 解析:选D。DNA含的五碳糖是脱氧核糖,RNA含的五碳糖是核糖,A错误;组成DNA 和ATP的元素种类都是C、H、O、N、P,B错误;T2噬菌体的遗传信息贮存在DNA中,C错误;DNA中A与T配对、G与C配对,故双链DNA分子中嘌呤数等于嘧啶数,D正确。 3.下面是4位同学拼制的DNA分子部分平面结构模型,正确的是( ) 解析:选C。根据DNA分子的结构特点可知,每条链都是由脱氧核糖和磷酸基团结合形成基本骨架,碱基位于主链内侧,所以A、B两项错误。由DNA结构可知,两个磷酸应结合在五碳糖的不同部位,所以D错误,选项C正确。 4.科学家们通过实验研究控制生物遗传的物质基础。下面有关分析正确的是( ) A.R型活菌注射到小鼠体内,小鼠正常;将S型活菌注射到小鼠体内,小鼠死亡。实验结论:S型细菌的荚膜有毒 B.将杀死后的S型菌与活的R型菌混合后,注射到小鼠体内,小鼠死亡。实验结论:R 型细菌有毒 C.从S型细菌中提取蛋白质、多糖和DNA,分别与R型活菌混合培养。从实验结果可以得出:DNA是遗传物质 D.用15N和32P这两种同位素标记烟草花叶病毒,然后侵染烟草叶片。通过示踪观察可以得出:RNA是烟草花叶病毒的遗传物质,而蛋白质不是 解析:选C。A项中只能说明S型细菌体内存在有毒的物质;B项杀死的S型菌其DNA

进化基因组学研究进展

进化基因组学研究进展 刘超 (山东大学生命科学学院济南250100) 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从 基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进 化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 前言 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 1进化基因组学研究内容 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学 数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们 可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。 图1 进化基因组学主要研究内容 目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。例如生物进化的本质和目前重建系统进化树方法 的限制[1]。 2研究进化基因组学的方法 研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产 生和演化两种。 2.1利用基因组数据进行系统进化分析 利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。(如图2)

高二生物遗传的分子基础单元练习题及答案

第三章遗传的分子基础单元练习 一、选择题 1、如果用32P和35S分别标记噬菌体的DNA和蛋白质外壳,当它侵染到细菌体内后,经多次复制,所释放出来的子代噬菌体() A.不含32P B.含少量32P C.含大量32P D.含少量35S 2、噬菌体侵染大肠杆菌实验不能说明的是() A.DNA能主要的遗传物质B.DNA能自我复制 C.DNA是遗传物质D.DNA能控制蛋白质合成 3、肺炎双球菌最初的转化实验结果说明() A.加热杀死的S型细菌中的转化因子是DNA B.加热杀死的S型细菌中必然含有某种促进转化的转化因子 C.加热杀死的S型细菌中的转化因子是蛋白质 D.DNA是遗传物质,蛋白质不是遗传物质 4、肺炎双球菌中的S型具有多糖类荚膜,R型则不具有。下列叙述错误的是() A.培养R型活细菌时加S型细菌的DNA,能产生具有荚膜的细菌 B.培养R型活细菌时加S型细菌的蛋白质,不能产生具有荚膜的细菌 C.培养R型活细菌时加S型细菌的多糖类物质,能产生一些具有荚膜的细菌 D.培养R型活细菌时加S型细菌DNA的完全水解产物,不能产生具有荚膜的细菌 5、下列有关DNA是双螺旋结构主链特征的表述中,哪一项是错误的() A.两条主链方向相同且保持平行B.由脱氧核糖与磷酸交互排列而成 C.两条主链排在外侧且极为稳定D.两条主链按一定的规则盘绕成双螺旋 6、双链DNA分子的一个片段中,含有腺嘌呤520个,占碱基总数20%,则这个片段中含胞嘧啶() A.350个B.420个C.520个D.780个 7、在一个DNA分子中,腺嘌呤和胸腺嘧啶之和占全部碱基数的42%,若其中一条链中的胞嘧啶占该链碱基总数的24%,胸腺嘧啶占30%,则在其互补链上,胞嘧啶和胸腺嘧啶分别占() A.12%和34% B.21%和24% C.34%和12% D.58%和30% 8、在下列四种化合物的化学组成中,“○”中所对应的含义最接近的是() A.①和②B.②和③C.③和④D.①和④ 9、骨骼肌细胞中合成mRNA及多肽链的场所分别是() A.细胞质和细胞核B.细胞核和线粒体 C.内质网与核糖体D.细胞核与核糖体 10、在胰蛋白质酶的合成过程中,决定它性质的根本因素是() A.mRNA B.tRNA C.DNA D.核糖体 11、一段信使RNA上有30个碱基,其中A和G有12个,转录出该信使RNA的一段DNA中的C和T的个数以及翻译合成多肽时脱去的水分子数分别是()A.30、10 B.30、9 C.18、9 D.12、10

05-第五章 遗传的分子基础

第六章遗传的分子基础 I. 遗传物质是什么? 染色体的化学成分: 蛋白质:组蛋白(相对含量1) 染色体非组蛋白(0.5-1.5) 核酸:DNA(1) RNA(0.05) 1.遗传物质的发现过程 1). Friedrich Miescher(1869)从医院绷带脓液中分离出“核素”,并指出其中含有蛋白和核酸。 2). 19世纪末,分离出“核酸”。 3). 1930s,Levene、Jacobs等证明核酸由糖、磷酸和含量大致相等的四种碱基构成,导致“四核苷酸假说” (tetranucleotide hypothesis),认为DNA不可能是遗传物质。 4). Erwin Chargaff(1950)通过研究不同生物DNA的化学成分,发现了DNA中各碱基的含量因物种而有微小差异,从而否定了“四核苷酸假说”,同时提出了Chargaff 规则: (1).T+C=A+G; (2).A=T;G=C; (3).A+T≠G+C。 2.细菌的遗传物质是DNA Griffith(1928)发现肺炎双球菌转化,Avery (1944)证实转化因子是DNA而不是蛋白质,证实了遗传物质是DNA,并由Hotchkiss进一步证实。 3.噬菌体的遗传物质是DNA A.D.Hershey,Martha Chase(1952),用噬菌体T2感染大肠杆菌的放射性同位素标记示踪实验最终证实了遗传物质是DNA。 4.有些病毒的遗传物质是RNA 有些病毒只含有RNA和蛋白质,不含有DNA, 称为RNA病毒,又叫做逆转录病毒。如烟草花叶病毒(tobacco mosaic virus, TMV),其遗传物质是RNA。 5. DNA和RNA的分布 1). 高等动植物体内,绝大部分DNA在细胞核内的染色体上,细胞质中只有少量的DNA,存在于叶绿体和线粒体等细胞器内。RNA则在细胞核和细胞质中都有。核内RNA主要集合在核仁上,少量在染色体上。 2). 细菌也含有DNA和RNA,多数噬菌体只有DNA,植物病毒多数只有RNA,动物病毒则有些含有DNA,有的含有RNA。 6.染色体的形态 1.中间着丝粒或亚中间着丝粒 (metacentric or submetacentric) 2.近端着丝粒(acrocentric) 3.端着丝粒(telocentric) 7.染色质的结构 绳珠模型和30nm纤维 8.染色质环的结构 II. DNA结构 1.DNA结构的发现 2.DNA和RNA的结构 3.DNA结构模型 4.DNA的构型 5.DNA变性和复性 1. DNA结构的发现 2. DNA和RNA的结构

遗传的分子基础知识点

专题四 遗传的分子基础 【探索遗传物质的过程】 、1928年格里菲思的肺炎双球菌的转化实验: 1、肺炎双球菌有两种类型类型: S 型细菌:菌落 光滑,菌体有夹膜,有毒性 R 型细菌:菌落 粗糙,菌体无夹膜,无毒性 2、实验过程(看书) 3、实验证明:无毒性的 R 型活细菌与被加热杀死的有毒性的 S 型细菌混合后,转化为有 毒性的S 型活细菌。这种性状的转化是可以 遗传的。 推论(格里菲思):在第四组实验中,已经被加热杀死 S 型细菌中,必然含有某种促 成这一转化的活性物质一转化因子 、1944年艾弗里的实验: 1、实验过程: 分析:实验的思路:将 S 菌的DNA 和蛋白质等物质分开,分别单独观察它们的作用 2、 实验证明:DNA 才是R 型细菌产生稳定遗传变化的物质 。 (即: DNA 是遗传物质,蛋白质等不是遗传物质) 3、 从变异的角度看, R 菌转化成S 菌,属于基因重组(R 菌的DNA 中插入了可表达的外 源DNA 三、1952年郝尔希和蔡斯噬菌体侵染细菌的实验 1、T2噬菌体机构和元素组成: S^DNA + DNA#

1) 实验方法:同位素标记法 2) 如何标记噬菌体:用 被标记的细菌 培养噬菌体(注意不能用培养基直接培养噬菌 体) 3) 搅拌的目的:使吸附在细菌上的噬菌体与细菌分离 4) 离心的目的:使上清液析出噬菌体,沉淀物中留下大肠杆菌 5) 对照:两组实验之间是 相互对照 6) 误差分析:35S 标记蛋白质,搅拌不充分,会使沉淀物中放射性升高 32P 标记DNA 若保温时间太短或过长,会使上清液中放射性升高; 3、实验结论:子代噬菌体的各种性状是通过亲代的 DNA 遗传的。(即: DNA 是遗传物质) (该实验不能证明蛋白质不是遗传物质) 四、 1956年烟草花叶病毒感染烟草实验证明: 在只有RNA 的病毒中,RNA 是遗传物质。 五、 小结: 细胞生物 (真核、原核) 非细胞生物 (病毒) 核酸 DNA 和 RNA DNA RNA 遗传物质 DNA DNA RNA 因为绝大多数生物的遗传物质是 所以是主要的遗传物质 。 【DNA 勺结构和 、DNA 的结构 1、 DNA 的 组成元素:C 、H 、ON 、P 2、 DNA 的基本单位:脱氧核糖 核苷酸(4种) 3、 DNA 的结构: ① 由两条、反向平行的脱氧核苷酸链盘旋成: 旋结构。 ② 外侧:脱氧核糖和磷酸交替连接构成基本骨架。 内侧:由氢键相连的碱基对组成。 ③ 碱基配对有一定规律: A = T ; G 三C 。(碱基互补配对原则) ④ 两条链之间通过氢键连接,一条链中相邻的碱基通过“脱氧核糖 -磷酸-脱氧核糖” 连接 4、 DNA 的特性: ① 多样性:碱基对的排列顺序是 千变万化的。(排列种数:4n (n 为碱基对对数) ② 特异性:每个特定 DNA 分子的碱基排列顺序是 特定的。 (DNA 分子的多样性和特异性是生物体多样性和特异性的物质基础) 5、 DNA 的功能:携带遗传信息(DNA 分子中碱基对的 排列顺序 代表遗传信息)。 6、 与DNA 有关的计算: DNA 勺复制】 吟 G 吗喋呻 C 胞囁症 T 胸滋聽毗

遗传物质的分子基础

第二章遗传物质的分子基础 一、DNA作为主要遗传物质的证据 分子遗传学的大量直接和间接的证据,说明DNA是主要的遗传物质,而在缺乏DNA的某些病毒等中,RNA就是遗传物质 1、间接证据 从DNA含量、代谢、结构、染色体共有等方面均能间接证明遗传物质是DNA而不是其他物质 2、直接证据 (1)细菌的转化 肺炎双球菌两种类型: 光滑型(S型): SI 、SII 、SIII 粗糙型(R型): RI 、RII 、RIII 1928, Griffith首次将R II →S III ,实现了细菌遗传性状的定向转化。被加热杀死的S III 型肺炎双球菌必然含有某种促成这一转变的活性物质 1944 ,Avery等用生物化学方法证明这种活性物质是DNA,该提取物不受蛋白酶、多糖酶和核糖核酸酶的影响,而只能为DNA酶所破坏 (2)噬菌体的侵染与繁殖 1952, Hershey等用同位素32P和35S分别标记T2噬菌体的DNA与蛋白质 (3)烟草花叶病毒的感染和繁殖 1956, Frankel-Conrat,Singer 的实验: RNA接种到烟叶→发病 RNA RNA酶处理RNA →不发病 TMV 蛋白质:接种后不形成新的TMV →不发病 说明在不含DNA的TMV中RNA就是遗传物质

二、核酸的化学结构 核酸的构成单元是核苷酸,是核苷酸的多聚体 每个核苷酸包括三部分:五碳糖、磷酸、碱基 两个核苷酸之间由3’和5’位的磷酸二脂键相连 两种核酸的主要区别: DNA:脱氧核糖,A、C、G、T,双链,分子链较长 RNA:核糖,A、C、G、U,单链,分子链较短 1、DNA的分子结构 1949-1951,Chargaff对多种生物来源的DNA的碱基成分的精密分析,发现DNA中: A=T,G=C,A+G=C+T 说明碱基A与T之间、G与C之间存在互补配对关系,称为查尔格佛法则(Chargaff’s rule) 1953,Watson和Crick根据:查尔格佛法则(碱基互补配对的规律)和对DNA分子的X射线衍射结果,提出了著名的DNA分子双螺旋结构模型。这个模型已为以后拍摄的电镜直观形象所证实 DNA分子模型最主要特点: (1) 两条多核苷酸链以右手螺旋的形式,以一定的空间距离,环绕于同一轴相互盘旋而成 (2) 反向平行:5’-3’,3’-5’ (3) 两条单链间以碱基间氢键配对相连: A T,C G (4) 每个螺旋34? (3.4nm),含10bp,直径约为20? (5) 分子表面大沟和小沟交替出现 A-T和C-G两种核苷酸对分子链内排列的位置和方向只有四种形式: A---T C---G A---T G---C C---G A---T G---C A---T 假设某一段DNA分子链有1000bp,则该段就可以有41000种不同的排列组合形式,反映出来的就是41000种不同性质的基因 2、RNA的分子结构 绝大部分RNA以单链形式存在,但可折叠起来形成若干双链区域。这些区域内,互补的碱基对间可形成氢键

相关文档
最新文档