继电保护算法分析

继电保护算法分析
继电保护算法分析

继电保护算法分析

1 引言

根据继电保护的原理可知,微机保护系统的核心内容即是如何采用适当而有效的保护算法提取出表征电气设备故障的信号特征分量。图1是目前在微机保护中通常采用的提取故障信号特征量的信号处理过程。

从图中可以看出,自故障信号输入至A/D 输出的诸环节由硬件实现,在此过程中故障信号经过了预处理(如由ALF 滤除信号中高于5次的谐波分量),然后通过保护算法从中提取出故障的特征分量(如基波分量)。很明显,只有准确且可靠地提取出故障的特征量,才能通过故障判据判断出是否发生了故障,是何种性质的故障,进而输出相应的保护动作。因此计算精度是正确作出保护反应的重要条件。就硬件部分而言,为了减少量化误差,通常采用12位甚至16位A/D 转换芯片;而就保护算法而言,提高精度除了与算法本身的性能有关,还与采样频率、数据窗长度和运算字长有关。目前针对故障特征的提取有许多不同类型的保护算法,本课题研究的是电动机和变压器的保护,根据相应的保护原理,主要涉及基于正弦量的算法和基于序分量过滤器的算法。本章将对其中几种较典型的算法作简要介绍和分析。 2 基于正弦量的特征提取算法分析

故障

图1 故障信号特征的提取过程

Fig. 1 Character extraction process of fault signal

2.1 两点乘积算法

设被采样信号为纯正弦量,即假设信号中的直流分量和高次谐波分量均已被理想带通滤波器滤除。这时电流和电压可分别表示为:

)sin(20i t I i αω+=

和 )sin(20u t U u αω+= 表示成离散形式为:

)sin(2)(0i S S k T k I kT i i αω+== (1) )sin(2)(0u S S k T k U kT u u αω+== (2)

式中,ω为角频率,I 、U 为电流和电压的有效值,S T 为采样频率,0i α和0u α为电流和

电压的初相角。设1i 和2i 分别为两个相隔2

π

的采样点1n 和2n 处的采样值(图2),即: 212π

ωω=-S S T n T n

由式(1):

10111sin 2)sin(2)(i i S S I T n I T n i i ααω=+== (3)

)sin(2)(0222i S S T n I T n i i αω+==

101cos 2)2

sin(2i i S I T n I ααπ

ω=++

= (4)

式中011i S i T n αωα+=为第n 1个采样时刻电流的相位角。

kT S

图2 两点乘积算法的采样

Fig. 2 Sampling of two-point product algorithm

将式(3)和式(4)平方后相加可得:

2

22122i i I +=

由此可求得电流的有效值为:

2

2

2

21i i I +=

将式(3)和式(4)相除可求得S T n 1时刻的电流相位为:

2

11i i arctg

i =α 同理,由式(2)可得:

11sin 2u U u α= (5) 12cos 2u U u α= (6)

类似于电流的情况,由式(5)和式(6)可得:

2

2

1u u U +=

2

1

1u u arctg

u =α 式(3)~(6)表明,若输入量为纯正弦函数,只要得到任意两个相隔

2

π

的瞬时值,就可以计算出其有效值和相位。为了避免涉及三角函数,在计算测量阻抗时可采用复数法,即把电流和电压表示为:

1

1

1

1sin cos sin cos i i i i jU U U jI I I α

ααα+=+=&&

利用式(3)~(6)得:

1

21

2

ji i ju u I U Z ++==&& (7) 由式(7)可求得测量阻抗的电阻分量和电抗分量为:

2

2212

211i i u i u i R ++=

(8) 2

2

212

112i i u i u i X +-=

(9) 式(8)和式(9)中用到了两个采样点的乘积,故称为两点乘积算法。

该算法使用了两个相隔

2π的采样值,即算法本身所需的数据窗长度为4

1

周期,在工频场合该长度为5mS ,这即是算法的响应时间。文献表明,用正弦量任何两点相邻的采样值都可以计算出有效值和相位角,亦即理论上两点乘积算法本身所需的数据窗可以是很短的一个采样间隔,但事实上由于此时的算法公式将比前者复杂得多,实际应用中由于实现算法所需的运算时间加长反而抵消了采样间隔的缩短。此外,由于算法所针对的是纯正弦量,实际的故障信号很难满足这一要求,可见算法的精度严重依赖于信号波形的正弦度。因此,尽管算法本身没有理论误差,但为了使信号尽可能接近于正弦,必须通过数字滤波的方法先滤除信号中的高频分量,这将额外地增加很大的运算工作量,使实际的算法响应时间大大超过理论值。 2.2 导数算法

设电流和电压分别为:

)

sin(2)sin(200u i t U u t I i αωαω+=+=

则1t 时刻的电流和电压分别为:

1011sin 2)sin(2i i I t I i ααω=+= (10) 1011sin 2)sin(2u u U t U u ααω=+= (11)

式中011i i t αωα+=,011u u t αωα+=。 而1t 时刻电流和电压的导数分别为:

11

cos 2i I i αω=' 或 11

cos 2i I i αω

=' (12) 11

cos 2u U u αω=' 或 11

cos 2u U u αω

=' (13)

由式(10)~(13)可得:

基波有效值 2

1

2121??

? ??'+=ωi i I (14) 2

12121??

? ??'+=ωu u U (15)

阻抗分量 2

12111

11?

?? ??'+'?

'+

=

ωωωi i u i i u R (16) 2

1211

1

1

1

?

?

?

??'+'-'=

ωωω

i i u i i u X (17) 可见,只要获得了电流电压在某一时刻的采样值和在该时刻的导数,就可以计算出相应的电流电压基波有效值、相位和阻抗。在微机的离散系统中,无法通过采样直接得到该点的导数,为此,可取t 1为两个相邻采样时刻k 和k +1的中间时刻,用差分近似表示该时刻的导数(图3)。即:

)(1

11

+-='k k S

i i T i (18) )(1

11

+-='k k S

u u T u (19) 这实际上是用直线ab 的斜率近似表示直线mn 的斜率,当S T 足够小时,这种近似将会有足够的精度。

从图3可以看到,t 1并不在采样点上,为了使采样值与导数尽可能在同一点上,对相邻两点采样值求平均值:

)(21

11++=k k i i i (20)

)(2

1

11++=k k u u u (21)

显然,当S T 足够小时,t 1与导数点将足够接近。

虽然与两点乘积算法相似,导数算法也使用了两个相邻的采样值,但其采样间隔很小,因此算法的响应速度很快。由于算法在求导数时是用差分近似微分,即算法的精度与采样频率有关,所以采样频率越高则精度越高。此外,由于算法中采用了差分方法,对信号中的直流分量具有一定的滤除能力,但对高次谐波则具有放大作用,因此类似于两点乘积算法,该算法也需要通过数字滤波器滤除高次谐波,因而算法的实际响应速度主要取决于算法本身和数字滤波器的运算时间。 2.3 半周绝对值积分算法

半周绝对值积分算法的原理是依据一个正弦量在任意半个周期内绝对值积分为一

1 kT S

图3 差分近似求导原理

Fig, 3 Approximate derivative calculation by difference method

考研数据结构必须掌握的知识点与算法-打印版

《数据结构》必须掌握的知识点与算法 第一章绪论 1、算法的五个重要特性(有穷性、确定性、可行性、输入、输出) 2、算法设计的要求(正确性、可读性、健壮性、效率与低存储量需求) 3、算法与程序的关系: (1)一个程序不一定满足有穷性。例操作系统,只要整个系统不遭破坏,它将永远不会停止,即使没有作业需要处理,它仍处于动态等待中。因此,操作系统不是一个算法。 (2)程序中的指令必须是机器可执行的,而算法中的指令则无此限制。算法代表了对问题的解,而程序则是算法在计算机上的特定的实现。 (3)一个算法若用程序设计语言来描述,则它就是一个程序。 4、算法的时间复杂度的表示与计算(这个比较复杂,具体看算法本身,一般关心其循环的次数与N的关系、函数递归的计算) 第二章线性表 1、线性表的特点: (1)存在唯一的第一个元素;(这一点决定了图不是线性表) (2)存在唯一的最后一个元素; (3)除第一个元素外,其它均只有一个前驱(这一点决定了树不是线性表) (4)除最后一个元素外,其它均只有一个后继。 2、线性表有两种表示:顺序表示(数组)、链式表示(链表),栈、队列都是线性表,他们都可以用数组、链表来实现。 3、顺序表示的线性表(数组)地址计算方法: (1)一维数组,设DataType a[N]的首地址为A0,每一个数据(DataType类型)占m个字节,则a[k]的地址为:A a[k]=A0+m*k(其直接意义就是求在数据a[k]的前面有多少个元素,每个元素占m个字节) (2)多维数组,以三维数组为例,设DataType a[M][N][P]的首地址为A000,每一个数据(DataType 类型)占m个字节,则在元素a[i][j][k]的前面共有元素个数为:M*N*i+N*j+k,其其地址为: A a[i][j][k]=A000+m*(M*N*i+N*j+k); 4、线性表的归并排序: 设两个线性表均已经按非递减顺序排好序,现要将两者合并为一个线性表,并仍然接非递减顺序。可见算法2.2 5、掌握线性表的顺序表示法定义代码,各元素的含义; 6、顺序线性表的初始化过程,可见算法2.3 7、顺序线性表的元素的查找。 8、顺序线性表的元素的插入算法,注意其对于当原来的存储空间满了后,追加存储空间(就是每次增加若干个空间,一般为10个)的处理过程,可见算法2.4 9、顺序线性表的删除元素过程,可见算法2.5 10、顺序线性表的归并算法,可见算法2.7 11、链表的定义代码,各元素的含义,并能用图形象地表示出来,以利分析; 12、链表中元素的查找 13、链表的元素插入,算法与图解,可见算法2.9 14、链表的元素的删除,算法与图解,可见算法2.10 15、链表的创建过程,算法与图解,注意,链表有两种(向表头生长、向表尾生长,分别用在栈、队列中),但他们的区别就是在创建时就产生了,可见算法2.11 16、链表的归并算法,可见算法2.12 17、建议了解所谓的静态单链表(即用数组的形式来实现链表的操作),可见算法2.13 18、循环链表的定义,意义 19、循环链表的构造算法(其与单链表的区别是在创建时确定的)、图解

堆 排 序 算 法

堆排序——C#实现 一算法描述 堆排序(Heap Sort)是利用一种被称作二叉堆的数据结构进行排序的排序算法。 二叉堆在内部维护一个数组,可被看成一棵近似的完全二叉树,树上每个节点对应数组中的一个元素。除最底层外,该树是满的。 二叉堆中,有两个与所维护数组相关的属性。Length表示数组的元素个数,而HeapSize则表示二叉堆中所维护的数组中的元素的个数(并不是数组中的所有元素都一定是二叉堆的有效元素)。因此,根据上述定义有: 0 = HeapSize = Length。 二叉堆可分为最大堆和最小堆两种类型。在最大堆中,二叉树上所有的节点都不大于其父节点,即 A[Parent(i)] = A[i]。最小堆正好相反:A[Parent(i)] = A[i]。 为维护一个二叉堆是最大(小)堆,我们调用一个叫做MaxHeapify (MinHeapify)的过程。以MaxHeapify,在调用MaxHeapify时,先假定根节点为Left(i)和Right(i)的二叉树都是最大堆,如果A[i]小于其子节点中元素,则交换A[i]和其子节点中的较大的元素。但这样一来,以被交换的子节点为根元素的二叉堆有可能又不满足最大堆性质,此时则递归调用MaxHeapify方法,直到所有的子级二叉堆都满足最大堆性质。如下图所示: 因为在调用MaxHeapify(MinHeapify)方法使根节点为A[i]的

二叉堆满足最大(小)堆性质时我们有其左右子堆均已满足最大(小)堆性质这个假设,所以如果我们在将一个待排序的数组构造成最大(小)堆时,需要自底向上地调用 MaxHeapify(MinHeapify)方法。 在利用最大堆进行排序时,我们先将待排序数组构造成一个最大堆,此时A[0](根节点)则为数组中的最大元素,将A[0]与A[n - 1]交换,则把A[0]放到了最终正确的排序位置。然后通过将HeapSize 减去1,将(交换后的)最后一个元素从堆中去掉。然后通过MaxHeapify方法将余下的堆改造成最大堆,然后重复以上的交换。重复这一动作,直到堆中元素只有2个。则最终得到的数组为按照升序排列的数组。 二算法实现 1 注意到在C#中数组的起始下标为0,因此,计算一个给定下标的节点的父节点和左右子节点时应该特别小心。 private static int Parrent(int i) return (i - 1) - 2; private static int Left(int i) return 2 * i + 1; private static int Right(int i) return 2 * i + 2; 2 算法的核心部分是MaxHeapify(MinHeapify)方法,根据算法描述中的说明,一下代码分别实现了对整数数组的最大堆化和最小堆化方法,以及一个泛型版本。

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

什么是哈希函数

什么是哈希函数 哈希(Hash)函数在中文中有很多译名,有些人根据Hash的英文原意译为“散列函数”或“杂凑函数”,有些人干脆把它音译为“哈希函数”,还有些人根据Hash函数的功能译为“压缩函数”、“消息摘要函数”、“指纹函数”、“单向散列函数”等等。 1、Hash算法是把任意长度的输入数据经过算法压缩,输出一个尺寸小了很多的固定长度的数据,即哈希值。哈希值也称为输入数据的数字指纹(Digital Fingerprint)或消息摘要(Message Digest)等。Hash函数具备以下的性质: 2、给定输入数据,很容易计算出它的哈希值; 3、反过来,给定哈希值,倒推出输入数据则很难,计算上不可行。这就是哈希函数的单向性,在技术上称为抗原像攻击性; 4、给定哈希值,想要找出能够产生同样的哈希值的两个不同的输入数据,(这种情况称为碰撞,Collision),这很难,计算上不可行,在技术上称为抗碰撞攻击性; 5、哈希值不表达任何关于输入数据的信息。 哈希函数在实际中有多种应用,在信息安全领域中更受到重视。从哈希函数的特性,我们不难想象,我们可以在某些场合下,让哈希值来“代表”信息本身。例如,检验哈希值是否发生改变,借以判断信息本身是否发生了改变。` 怎样构建数字签名 好了,有了Hash函数,我们可以来构建真正实用的数字签名了。 发信者在发信前使用哈希算法求出待发信息的数字摘要,然后用私钥对这个数字摘要,而不是待发信息本身,进行加密而形成一段信息,这段信息称为数字签名。发信时将这个数字签名信息附在待发信息后面,一起发送过去。收信者收到信息后,一方面用发信者的公钥对数字签名解密,得到一个摘要H;另一方面把收到的信息本身用哈希算法求出另一个摘要H’,再把H和H’相比较,看看两者是否相同。根据哈希函数的特性,我们可以让简短的摘要来“代表”信息本身,如果两个摘要H和H’完全符合,证明信息是完整的;如果不符合,就说明信息被人篡改了。 数字签名也可以用在非通信,即离线的场合,同样具有以上功能和特性。 由于摘要一般只有128位或160位比特,比信息本身要短许多倍,USB Key或IC卡中的微处理器对摘要进行加密就变得很容易,数字签名的过程一般在一秒钟内即可完成。

哈希表的设计与实现 课程设计报告

一: 需求分析 (2) 三: 详细设计(含代码分析) (4) 1.程序描述: (4) 2具体步骤 (4) 四调试分析和测试结果 (7) 五,总结 (9) 六.参考文献; (10) 七.致谢 (10) 八.附录 (11)

一: 需求分析 问题描述:设计哈希表实现电话号码查询系统。 基本要求 1、设每个记录有下列数据项:电话号码、用户名、地址 2、从键盘输入各记录,分别以电话号码和用户名为关键字建立哈希表; 3、采用再哈希法解决冲突; 4、查找并显示给定电话号码的记录; 5、查找并显示给定用户名的记录。 6、在哈希函数确定的前提下,尝试各种不同类型处理冲突的方法(至少 两种),考察平均查找长度的变化。 二: 概要设计 进入主函数,用户输入1或者2,进入分支选择结构:选1:以链式方法建立哈希表,选2:以再哈希的方法建立哈希表,然后用户输入用户信息,分别以上述确定的方法分别以用户名为检索以及以以电话号码为检索将用户信息添加到哈希表,.当添加一定量的用户信息后,用户接着输入用户名或者电话号码分别以用户名或者电话号码的方式从以用户名或电话号码为检索的哈希表查找用户信息.程序用链表的方式存储信息以及构造哈希表。 具体流程图如下所示:

三: 详细设计(含代码分析) 1.程序描述: 本程序以要求使用哈希表为工具快速快速查询学生信息,学生信息包括电话号码、用户名、地址;用结构体存储 struct node { string phone; //电话号码 string name; //姓名 string address;//地址 node *next; //链接下一个地址的指针 }; 2具体步骤 1. 要求主要用在哈希法解决冲突,并且至少尝试用两种方法解决冲突,定义两个指针数组存储信息node *infor_phone[MAX]; node *infor_name[MAX];前者以电话号码为关键字检索哈希表中的信息,后者以姓名为关键字检索哈希表中的信息 用链式法和再哈希法解决冲突: int hash(string key) //以姓名或者电话号码的前四位运算结果作为哈{ //希码 int result=1,cur=0,i; if(key.size()<=4) i=key.size()-1; else i=4; for(;i>=0;i--) { cur=key[i]-'0'; result=result*9+cur; } result%=(MOD); return result;

专题1:算法初步知识点及典型例题(原卷版)

专题1:算法初步知识点及典型例题(原卷版) 【知识梳理】 知识点一、算法 1.算法的概念 (1)古代定义:指的是用阿拉伯数字进行算术运算的过程。 (2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。 (3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。 2.算法的特征: ①指向性:能解决某一个或某一类问题; ②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续. ③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行. ④构造性:一个问题可以构造多个算法,算法有优劣之分。 3.算法的表示方法: (1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义; (2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。 注:泛泛地谈算法是没有意义的,算法一定以问题为载体。 例1.下面给出一个问题的算法: S1输入x; S2若x≤2,则执行S3;否则,执行S4; S3输出-2x-1; S4输出x2-6x+3. 问题: (1)这个算法解决的是什么问题? (2)当输入的x值为多大时,输出的数值最小? 知识点二:流程图 1. 流程图的概念:

流程图,是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符合表示操作的内容,流程线表示操作的先后次序。 2. 图形符号名称含义 开始/结束框 用于表示算法的开始与结束 输入/输出框 用于表示数据的输入或结果的输出 处理框描述基本的操作功能,如“赋值”操作、数学 运算等 判断框判断某一条件是否成立,成立时在出口处标明 “是”或“Y”;不成立时标明“否”或“N” 流程线 表示流程的路径和方向 连接点 用于连接另一页或另一部分的框图 注释框 框中内容是对某部分流程图做的解释说明 3. (1)使用标准的框图的符号; (2)框图一般按从上到下、从左到右的方向画; (3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。判断框是具有超过一个退出点的唯一符号; (4)一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果; (5)在图形符号内描述的语言要非常简练清楚。 4.算法的三种基本逻辑结构: (1)顺序结构:由若干个按从上到下的顺序依次进行的处理步骤(语句或框)组成。这是任何一个算法都离不开的基本结构。 (2)条件结构:算法流程中通过对一些条件的判断,根据条件是否成立而取不同的分支流向的结构。它是依据指定条件选择执行不同指令的控制结构。 (3)循环结构:根据指定条件,决定是否重复执行一条或多条指令的控制结构称为循环结构。 知识点三:基本算法语句 程序设计语言由一些有特定含义的程序语句构成,与算法程序框图的三种基本结构相对应,任何程序设计语言都包含输入输出语句、赋值语句、条件语句和循环语句。以下均为BASIC

内部堆排序算法的实现课程设计说明书

数据结构课程设计设计说明书 内部堆排序算法的实现 学生姓名金少伟 学号1121024029 班级信管1101 成绩 指导教师曹阳 数学与计算机科学学院 2013年3月15日

课程设计任务书 2012—2013学年第二学期 课程设计名称:数据结构课程设计 课程设计题目:内部堆排序算法的实现 完成期限:自2013年3 月4日至2013年3 月15 日共 2 周 设计内容: 堆排序(heap sort)是直接选择排序法的改进,排序时,需要一个记录大小的辅助空间。n个关键字序列K1,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ n) 若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。(即如果按照线性存储该树,可得到一个不下降序列或不上升序列)。 本课程设计中主要完成以下内容: 1.设计堆排序算法并实现该算法。 2.对堆排序的时间复杂度及空间复杂度进行计算与探讨。 3.寻找改进堆排序的方法。 基本要求如下: 1.程序设计界面友好; 2.设计思想阐述清晰; 3.算法流程图正确; 4.软件测试方案合理、有效。指导教师:曹阳教研室负责人:申静 课程设计评阅

摘要 堆排序是直接选择排序法的改进。本课设以VC++6.0作为开发环境,C语言作为编程语言,编程实现了堆排序算法。程序运行正确,操作简单,易于为用户接受。 关键词:堆排序;C语言;时间复杂度

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

单向散列函数算法Hash算法

单向散列函数算法(Hash算法): 一种将任意长度的消息压缩到某一固定长度(消息摘要)的函数(过程不可逆),常见的单向散列算法有MD5,SHA.RIPE-MD,HAVAL,N-Hash 由于Hash函数的为不可逆算法,所以软件智能使用Hash函数作为一个加密的中间步骤 MD5算法: 即为消息摘要算法(Message Digest Algorithm),对输入的任意长度的消息进行预算,产生一个128位的消息摘要 简易过程: 1、数据填充..即填出消息使得其长度与448(mod 512)同余,也就是说长度比512要小64位(为什么数据长度本身已经满足却仍然需要填充?直接填充一个整数倍) 填充方法是附一个1在后面,然后用0来填充.. 2、添加长度..在上述结果之后附加64位的消息长度,使得最终消息的长度正好是512的倍数.. 3、初始化变量..用到4个变量来计算消息长度(即4轮运算),设4个变量分别为A,B,C,D(全部为32位寄存器)A=1234567H,B=89abcdefH,C=fedcba98H,D=7654321H 4、数据处理..首先进行分组,以512位为一个单位,以单位来处理消息.. 首先定义4个辅助函数,以3个32为双字作为输入,输出一个32为双字 F(X,Y,Z)=(X&Y)|((~X)&Z) G(X,Y,Z)=(X&Z)|(Y&(~Z)) H(X,Y,Z)=X^Y^Z I(X,Y,Z)=Y^(X|(~Z)) 其中,^是异或操作 这4轮变换是对进入主循环的512为消息分组的16个32位字分别进行如下操作: (重点)将A,B,C,D的副本a,b,c,d中的3个经F,G,H,I运算后的结果与第四个相加,再加上32位字和一个32位字的加法常数(所用的加法常数由这样一张表T[i]定义,期中i为1至64之中的值,T[i]等于4294967296乘以abs(sin(i))所得结果的整数部分)(什么是加法常数),并将所得之值循环左移若干位(若干位是随机的??),最后将所得结果加上a,b,c,d之一(这个之一也是随机的?)(一轮运算中这个之一是有规律的递增的..如下运算式),并回送至A,B,C,D,由此完成一次循环。(这个循环式对4个变量值进行计算还是对数据进行变换??) For i=0 to N/16 do For j=0 to 15 do Set X[i] to M[i*16+j] End AA = A BB=B CC=C DD=D //第一轮,令[ABCD K S I]表示下面的操作: //A=B+((A+F(B,C,D)+X[K]+T[I])<<

哈 希 常 见 算 法 及 原 理

数据结构与算法-基础算法篇-哈希算法 1. 哈希算法 如何防止数据库中的用户信息被脱库? 你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下存储就够了吗? 在实际开发中,我们应该如何用哈希算法解决问题? 1. 什么是哈希算法? 将任意长度的二进制值串映射成固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 2. 如何设计一个优秀的哈希算法? 单向哈希: 从哈希值不能反向推导出哈希值(所以哈希算法也叫单向哈希算法)。 篡改无效: 对输入敏感,哪怕原始数据只修改一个Bit,最后得到的哈希值也大不相同。 散列冲突: 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小。 执行效率: 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速计算哈

希值。 2. 哈希算法的常见应用有哪些? 7个常见应用:安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。 1. 安全加密 常用于加密的哈希算法: MD5:MD5 Message-Digest Algorithm,MD5消息摘要算法 SHA:Secure Hash Algorithm,安全散列算法 DES:Data Encryption Standard,数据加密标准 AES:Advanced Encryption Standard,高级加密标准 对用于加密的哈希算法,有两点格外重要,第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要小。 在实际开发中要权衡破解难度和计算时间来决定究竟使用哪种加密算法。 2. 唯一标识 通过哈希算法计算出数据的唯一标识,从而用于高效检索数据。 3. 数据校验 利用哈希算法对输入数据敏感的特点,可以对数据取哈希值,从而高效校验数据是否被篡改过。 4. 散列函数 1.如何防止数据库中的用户信息被脱库?你会如何存储用户密码这么重要的数据吗?

算法知识点总结

《算法设计与分析》知识点总结 1.算法的渐进时间复杂度分析,能够对给定的代码段(伪代码段)进行时间复杂度分析,能够对用关于问题规模n的函数表示的时间复杂度计算其渐进阶。 2.概念: 算法:通俗来讲,算法是指解决问题的方法或者过程,包括输入,输出,确定性,有限性。 1)子问题:结构性质与原问题相似的具有规模更小的问题。 2)可行解:满足某线性规划所有的约束条件(指全部前约束条件和后约束条件)的任意一组决策变量的取值,都称为该线性规划的一个可行解。 3)解空间:若齐次线性方程组有非零解,则其解有无穷多个,而齐次线性方程组所有解的集合构成一个向量空间,这个向量空间就称为解空间. 4)目标函数:指所关心的目标(某一变量)与相关的因素(某些变量)的函数关系。 5)最优解:使某线性规划的目标函数达到最优值(最大值或最小值)的任一可行解,都称为该线性规划的一个最优解。 6)最优化问题:一般是指按照给定的标准在某些约束条件下选取最优的解集,即使系统的某些性质能指标达到最大或最小。 7)递归算法:直接或者间接地调用自身的算法称为递归算法。

8)分治法:将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。递归地求出子问题的解,就可得到原问题的解。 9)动态规划:将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解,与分治法不同的,分解的子问题往往不是互相独立的。(为了避免指数时间,不管子问题的解会不会用到,都会填入到一个表中) 10)最优子结构性质:当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。(动态规划和贪心都有) 11)重叠子问题性质:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要此子问题时,只是简单地用常数时间查看一下结果。 12)备忘录算法:动态规划方法的变形。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上的。(其控制结构与递归方法是一样的,只是备忘录方法为每一个解过的子问题建立备忘录,以便需要时查看,避免相同子问题的重复求解) 13)贪心法:是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。 14)贪心选择性质:指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择来达到。 15)回溯法:是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这

堆排序算法的基本思想及算法实现示例

堆排序算法的基本思想及算法实现示例 堆排序 1、堆排序定义 n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质): (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ ) 若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。 【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。 2、大根堆和小根堆 根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。 根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。 注意: ①堆中任一子树亦是堆。 ②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。 3、堆排序特点 堆排序(HeapSort)是一树形选择排序。 堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。 4、堆排序与直接插入排序的区别 直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。 堆排序可通过树形结构保存部分比较结果,可减少比较次数。5、堆排序 堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。 (1)用大根堆排序的基本思想

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

哈 希 常 见 算 法 及 原 理

计算与数据结构篇 - 哈希算法 (Hash) 计算与数据结构篇 - 哈希算法 (Hash) 哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 构成哈希算法的条件: 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法)对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同; 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小; 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。 哈希算法的应用(上篇) 安全加密 说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。 除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。

前面我讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。 不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1-2^128。 如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资-源下,哈希算法还是被很难破解的。 对于加密知识点的补充,md5这个算法固然安全可靠,但网络上也有针对MD5中出现的彩虹表,最常见的思路是在密码后面添加一组盐码(salt), 比如可以使用md5(1234567.'2019@STARK-%$#-idje-789'),2019@STARK-%$#-idje-789 作为盐码起到了一定的保护和安全的作用。 唯一标识(uuid) 我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。

哈希表的设计与实现-数据结构与算法课程设计报告

合肥学院 计算机科学与技术系 课程设计报告 2009 ~2010 学年第二学期 课程数据结构与算法 课程设计名称哈希表的设计与实现 学生姓名王东东 学号0804012030 专业班级08计本(2) 指导教师王昆仑、李贯虹 2010 年5 月

课程设计目的 “数据结构与算法课程设计”是计算机科学与技术专业学生的集中实践性环节之一, 是学习“数据结构与算法”理论和实验课程后进行的一次全面的综合练习。其目的是要达到 理论与实际应用相结合,提高学生组织数据及编写程序的能力,使学生能够根据问题要求和 数据对象的特性,学会数据组织的方法,把现实世界中的实际问题在计算机内部表示出来并 用软件解决问题,培养良好的程序设计技能。 一、问题分析和任务定义 1、问题分析 要完成如下要求:设计哈希表实现电话号码查询系统。 实现本程序需要解决以下几个问题: (1)如何定义一个包括电话号码、用户名、地址的节点。 (2)如何以电话号码和用户名为关键字建立哈希表。 (3)用什么方法解决冲突。 (4)如何查找并显示给定电话号码的记录。 (5)如何查找并显示给定用户名的记录。 2 任务定义 1、由问题分析知,本设计要求分别以电话号码和用户名为关键字建立哈希表,z在此基 础上实现查找功能。本实验是要我们分析怎么样很好的解决散列问题,从而建立一比较合理 的哈希表。由于长度无法确定,并且如果采用线性探测法散列算法,删除结点会引起“信息 丢失”的问题。所以采用链地址法散列算法。采用链地址法,当出现同义词冲突时,可以使 用链表结构把同义词链接在一起,即同义词的存储地址不是散列表中其他的空地址。 根据问题分析,我们可以定义有3个域的节点,这三个域分别为电话号码char num[30],姓名char name[30],地址char address[30]。这种类型的每个节点对应链表中的每个节点,其中电话号码和姓名可分别作关键字实现哈希表的创建。 二、数据结构的选择和概要设计 1、数据结构的选择 数据结构:散列结构。 散列结构是使用散列函数建立数据结点关键词与存储地址之间的对应关系,并提供多 种当数据结点存储地址发生“冲突”时的处理方法而建立的一种数据结构。 散列结构基本思想,是以所需存储的结点中的关键词作为自变量,通过某种确定的函 数H(称作散列函数或者哈希函数)进行计算,把求出的函数值作为该结点的存储地址,并 将该结点或结点地址的关键字存储在这个地址中。 散列结构法(简称散列法)通过在结点的存储地址和关键字之间建立某种确定的函数 关系H,使得每个结点(或关键字)都有一个唯一的存储地址相对应。 当需要查找某一指定关键词的结点时,可以很方便地根据待查关键字K计算出对应的“映像”H(K),即结点的存储地址。从而一次存取便能得到待查结点,不再需要进行若干次的 比较运算,而可以通过关键词直接计算出该结点的所在位置。

堆排序算法分析(C语言版)

堆排序 堆排序是利用堆的性质进行的一种选择排序,下面先讨论一下堆。 1.堆 堆实际上是一棵完全二叉树,其任何一非叶节点满足性质: Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]或者Key[i]>=Key[2i+1]&&key>=key[2i+2] 即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字。 堆分为大顶堆和小顶堆,满足Key[i]>=Key[2i+1]&&key>=key[2i+2]称为大顶堆,满足Key[i]<= key[2i+1]&&Key[i]<=key[2i+2]称为小顶堆。由上述性质可知大顶堆的堆顶的关键字肯定是所有关键字中最大的,小顶堆的堆顶的关键字是所有关键字中最小的。 2.堆排序的思想 利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单。 其基本思想为(大顶堆): 1)将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区; 2)将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n]; 3)由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。 操作过程如下: 1)初始化堆:将R[1..n]构造为堆; 2)将当前无序区的堆顶元素R[1]同该区间的最后一个记录交换,然后将新的无序区调整为新的堆。 因此对于堆排序,最重要的两个操作就是构造初始堆和调整堆,其实构造初始堆事实上也是调整堆的过程,只不过构造初始堆是对所有的非叶节点都进行调整。 下面举例说明: 给定一个整形数组a[]={16,7,3,20,17,8},对其进行堆排序。 首先根据该数组元素构建一个完全二叉树,得到

数据结构各种排序算法的时

数据结构各种排序算法的时间性能.

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能 学生姓名 学生学号 专业班级

指导老师李晓鸿完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略

相关文档
最新文档