函数极限的十种求法

函数极限的十种求法
函数极限的十种求法

函数极限的十种求法

设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:

当a ,b 为何值时,f (x )在x=0处的极限存在?

当a ,b 为何值时,f (x )在x=0处连续?

注:f (x )=xsin 1/x +a, x< 0

b+1, x=0

X^2-1, x>0

解:f(0)=b+1

左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a

左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1

f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),

所以a =-1=b+1,

所以a =-1,b =-2

7.利用等价无穷小量代换求极限

例 8 求极限30tan sin lim sin x x x x

→-. 解 由于()s i n t a n s i n 1c o

s c o s x x x x x -=-,而 ()sin ~0x x x →,()2

1cos ~02

x x x -→,()33sin ~0x x x → 故有

2

3300tan sin 112lim lim sin cos 2

x x x x x x x x x →→?-=?=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x →

,()s i n ~0x x x →,而推出 3300tan sin lim lim 0sin sin x x x x x x x x

→→--==, 则得到的式错误的结果.

附 常见等价无穷小量

()sin ~0x x x →,()tan ~0x x x →,()2

1cos ~02

x x x -→, ()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→,

()()ln 1~0x x x +→,()()11~0x x x α

α+-?→.

8 利用洛比达法则求极限 洛比达法则一般被用来求00型不定式极限及∞∞

型不定式极限.用此种方法求极限要求在

点0x 的空心领域()00U

x 内两者都可导,且作分母的函数的导数不为零. 例1

求极限21cos lim tan x x x

π→+. 解 由于()2l i m 1c o s l i m t a n 0x x x x ππ→→+==,且有

()1cos 'sin x x +=-,()22tan '2tan sec 0x x x =≠,

由洛比达法则可得

21cos lim tan x x x

π→+

2s i n l i m 2t a n s e c x x x x π→-= 3cos lim 2x x π→??=- ??? 12

=. 8.利用定义求极限

1.()()()000

'lim x x f x f x f x x x →-=-, 2.()()()0000'lim h f x h f x f x h →+-=.

其中h 是无穷小,可以是()

0x x x x ??=-,x ?的函数或其他表达式. 例1 求极限22220x x p p x q q →+-+-()0,0p q >>.

分析 此题是0x →时00

型未定式,在没有学习导数概念之前,常用的方法是消去分母中的零因子,针对本题的特征,对分母分子同时进行有理化便可求解.但在学习了导数的定义式之后,我们也可直接运用导数的定义式来求解.

解 令()f x =()g x = 则

求函数极限的方法和技巧

求函数极限的方法和技巧 在数学分析和微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 一、求函数极限的方法 1、运用极限的定义: 例: 用极限定义证明:12 2 3lim 22=-+-→x x x x 证: 由24 4122322-+-=--+-x x x x x x ()22 22 -=--= x x x 0>?ε,取εδ=,则当δ<-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε-定义有: 12 2 3lim 22=-+-→x x x x 。 2、利用极限的四则运算性质: 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则:B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于时也同样成立-∞→+∞→∞→x x x ,, 例:求 4 5 3lim 22+++→x x x x 解: 453lim 22+++→x x x x = 2 5 4252322=++?+ 3、约去零因式(此法适用于型时0 ,0x x →) 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式=() ( ) ) 12102(65) 2062(103lim 2232232+++++--+---→x x x x x x x x x x x

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

求函数极限的方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε -定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I)[]=±→)()(lim 0 x g x f x x )(lim x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim (c 为常数) 上述性质对于时也同样成立 -∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x = 25 4252322=++?+ 3、约去零因式(此法适用于型时0 ,0x x →) 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式=() () ) 12102(65) 2062(103lim 2 23223 2 +++++--+---→x x x x x x x x x x x =) 65)(2() 103)(2(lim 222+++--+-→x x x x x x x =) 65() 103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44( lim 2 2 x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

求函数极限的方法与技巧

求函数极限的方法与技巧 《数学分析》是以函数为研究对象,以极限理论和极限方法为基本方法,以微积分学为主要内容的一门学科.极限理论和极限方法在这门课程中占有极其重要的地位. 灵活、快捷、准确地求出所给函数的极限,除了对于函数极限的本质有较清楚地认识外,还要注意归纳总结求函数极限的方法,本文对技巧性强、方法灵活的例题进行研究,进一步完善求函数极限的方法与技巧,有利于微积分以及后继课程的学习. 1基本方法 1.1利用定义法求极限 从定义出发验证极限,是极限问题的一个难点.做这类题目的关键是对任意给定的正数ε,如何找出定义中所说的δ. 一般地,证明0 lim ()x x f x A →=的方法为:0ε?>,放大不等式0()f x A x x αε-<<-,若 22111212 2132133213 x x x x x x x x ε---+-=-=<<--++. (限制x :011x <-<,则211)x +>,取=min{3,1}δε,则当01x δ<-<时,便有 22 112 3 321x x x x ε---<<--. 定义中的正数δ依赖于ε,但不是由ε所唯一确定.一般来说,ε愈小,δ也愈小.用定义证明极限存在,有一先决条件,即事先要猜测极限值A ,然后再证明,这一般不太容易,所以对于其它方法的研究是十分必要的. 1.2 利用左、右极限求极限 lim ()lim ()lim ()x x x x x x f x A f x f x A +- →→→=?==. 例2 设tan 3,0()3cos ,0 x x f x x x x ?? 求0 lim ()x f x →.

函数极限的十种求法

函数极限的十种求法 信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件:

求极限的常用方法(精髓版)考试必备

求极限的常用方法(精髓版) 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21)x x →- 解 1lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11lim 41--→x x x 解 4221111(1)(1)(1) lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例5 求极限 x →解 01)2x x x →→→=== 5.应用两个重要极限的公式求极限 两个重要极限是1sin lim 0=→x x x 和1lim(1)x x e x →∞+=,下面只介绍第二个公式的例子。 例6 求极限 x x x x ??? ??-++∞→11lim

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N ,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

求极限方法总结

求极限方法总结 为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下: 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,区别在于数列极限时发散的,是一般极限的一种 2解决极限的方法如下:我能列出来的全部列出来了你还能有补充么? 1 等价无穷小的转化,只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在 e的X次方-1 或者 1+x的a次方-1等价于Ax 等等。全部熟记 x趋近无穷的时候还原成无穷小 2落笔他法则大题目有时候会有暗示要你使用这个方法 首先他的使用有严格的使用前提 必须是 X趋近而不是N趋近所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷 必须是函数的.导数要存在假如告诉你gx, 没告诉你是否可导,直接用无疑于找死 必须是 0比0 无穷大比无穷大 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷应为无穷大于无穷小成倒数的关系所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 30的0次方 1的无穷次方无穷的0次方

对于指数幂数方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0 3泰勒公式含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母看上去复杂处理很简单 5无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了 6夹逼定理主要对付的是数列极限 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7等比等差数列公式应用对付数列极限 q绝对值符号要小于1 8各项的拆分相加来消掉中间的大多数对付的还是数列极限 可以使用待定系数法来拆分化简函数 9求左右求极限的方式对付数列极限例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。这两个很重要对第一个而言是X趋近0时候的sinx与x 比值。地2个就如果x趋近无穷大无穷小都有对有对应的形式 地2个实际上是用于函数是1的无穷的形式当底数是1 的时候要特别注意可能是用地2 个重要极限 11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的x的x次方快于 x 快于指数函数快于幂数函数快于对数函数画图也能看出速率的快慢当x趋近无穷的时候他们的比值的极限一眼就能看出来了 12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中 13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

函数极限的十种求法

函数极限的十种求法 信科2班江星雨250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使 得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件:

函数极限的十种求法

函数极限的十种求法

设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求: 当a ,b 为何值时,f (x )在x=0处的极限存在? 当a ,b 为何值时,f (x )在x=0处连续? 注:f (x )=xsin 1/x +a, x< 0 b+1, x=0 X^2-1, x>0 解:f(0)=b+1 左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a 左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1 f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0), 所以a =-1=b+1, 所以a =-1,b =-2 7.利用等价无穷小量代换求极限 例 8 求极限30tan sin lim sin x x x x →-. 解 由于()s i n t a n s i n 1c o s c o s x x x x x -=-,而 ()sin ~0x x x →,()2 1cos ~02 x x x -→,()33sin ~0x x x → 故有 2 3300tan sin 112lim lim sin cos 2 x x x x x x x x x →→?-=?=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x → ,()s i n ~0x x x →,而推出 3300tan sin lim lim 0sin sin x x x x x x x x →→--==, 则得到的式错误的结果. 附 常见等价无穷小量 ()sin ~0x x x →,()tan ~0x x x →,()2 1cos ~02 x x x -→, ()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→, ()()ln 1~0x x x +→,()()11~0x x x α α+-?→. 8 利用洛比达法则求极限 洛比达法则一般被用来求00型不定式极限及∞∞ 型不定式极限.用此种方法求极限要求在

求极限的常用方法

求极限的常用方法 摘要 极限思想是大学课程中微积分部分的基本原理,这显示出极限在高等数学中的重要地位。同时,极限的计算本身也是一个重要内容。 关键词 极限;计算方法 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21) x x →- 解 1 lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11 lim 41--→x x x 解 4221111(1)(1)(1)lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

大学数学经典求极限方法(最全)

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ

3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第 一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】2 2 2 12 1 2112111lim 121lim 11lim e x x x x x x x x x x x =???? ????? ???? ? ?-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。

函数的极限的求解方法

函数的极限的求解方法 摘 要:本文介绍了计算函数极限的几种方法,讨论如何运用已掌握的知识方法计算极限. 关键词:零因子:初等法:两个重要极限 :等价无穷小: 等价无穷小替换 :函数的连续性 :Hospital L '法 。 引 言 极限思想是许多科学领域的重要思想之一. 因为极限的重要性,从而怎样求极限也显得尤其重要. 对于一些复杂极限,直接按照极限的定义来求就显得非常困难,不仅计算量大,而且不一定能求出结果. 为了解决求极限的问题,有不少学者曾探讨了计算极限的方法 . 本文也介绍了计算极限的几种方法,并对文献结论进行了推广,讨论如何利用我们已有的知识计算极限,并且以实例来阐述方法中蕴涵的数学思想. 函数的极限主要表现在两个方面: 一、自变量x 任意接近于有限值0x ,或讲趋向(于)0x (记0x x →)时,相应的函数值)(x f 的变化情况. 二、当自变量x 的绝对值x 无限增大,或讲趋向无穷大(记∞→x )时,相应的函数值)(x f 的变化情况. 相关知识点 (一)“0x x →”形: 定义1:如果对0>?ε(不论它多么小),总0>?δ,使得对于适合不等式δ<-<00x x 的一切x 所对应的函数值)(x f 满足:ε<-A x f )(,就称常数A 为函数)(x f 当0x x →时的极限,记为 A x f n =∞→)(lim ,或A x f →)( (当0x x →时) 注1:“x 与0x 充分接近”在定义中表现为:0>?δ,有δ<-<00x x , 即),(0δ∧ ∈x U x .显然δ越小,x 与0x 接近就越好,此δ与数列极限中的N 所起的作用是一样的,它也依赖于ε.一般地,ε越小,δ相应地也小一些. 2:定义中00x x -<表示0x x ≠,这说明当0x x →时,)(x f 有无限与)(0x f 在0x 点(是否有)的定义无关(可以无定义,即使有定义,与)(0x f 值也无关).

确定函数极限的常用方法

确定函数极限的常用方法 内容摘要 在数学分析中,极限思想贯穿于始末,求极限的方法也显得至关重要。本文主要探讨、总结求函数极限的一般方法,并展示了利用积分求极限的特殊方法,而且把每一种方法的特点及注意事项作了重点说明,并以实例进行了具体注解,使方法更具针对性、技巧性和可操作性。 关键词:函数,求极限,基本方法

Common method to determine the limit of function Abstract In mathematical analysis, the limit idea throughout the story, the limit methods are crucial. This paper mainly discussed, summed up the general method of seeking the limit of a function and demonstrated the use of special methods for Integral limit, and the characteristics of each method and precautions were highlighted, and specific examples to comment, make way more and targeted, skill and operability. keyword:Function, Limit, The basic method

目录 一、引言 (1) 二、函数极限的基本知识 (1) (一)函数极限的定义 (1) (二)函数极限的性质 (1) 三、函数极限的基本解法 (2) (一)定义法 (2) (二)利用极限四则运算法则 (2) (三)利用迫敛性定理求极限 (3) (四)利用两个重要极限求极限 (3) (五)利用左右极限求极限 (4) (六)幂指函数求极限 (4) 四、函数极限的微积分解法. (5) (七)利用无穷小量求极限 (5) (八)利用洛比达法则求极限 (7) (九)利用单调有界准则求极限 (9) (十)利用中值定理求极限 (10) 五、小结 (11) 参考文献 (11) 致谢 (11)

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1 (1 (2(3)若B ≠0 (4(5)[] 0lim ()lim ( )n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()222 22 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+= =-- 例2. 求3 x →

( )( ()( ) 3312 1 2 12 lim lim 312 x x x x x x x →→+-+++-=-++ ()( ) 3 lim 312x x x →=-++ 1 4= 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知()11112231n x n n = +++??-?L L ,求lim n n x →∞ 解: 观察 11=1122-? 111 =2323- ? ()()111=n 1n n-1n --? 因此得到 ()11112231n x n n =+++??-?L L 1111111 1223311n n n =-+-+-+---L L 1 1n =- 所以1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 ()() 00y f x x f x ?=+?- 如果 ()()000lim lim x x f x x f x y x x ?→?→+?-?=?? 存在, 则此极限值就称函数f(x)在点0x 的导数记为()0'f x 。

相关文档
最新文档