谐响应分析与谱分析

谐响应分析与谱分析
谐响应分析与谱分析

个人对Ansys中的谱分析和谐响应分析的区别进行了简单的总结。谱分析

是模态分析的扩展,用于计算结构对地震及其它随机激励的响应

谱的概念:谱反映了激励的频率特征(即激励随频率的变化特征)

计算方法:

对于结构的每一个模态,软件都会对结构施加谱中激励的合力,计算该模态对结构响应的贡献

因此,在进行谱分析之前,必须要对结构进行模态分析,得到的结果仅在各阶模态有意义。

补充知识:任何一个周期激振力(如方波)均可通过傅里叶级数展开成具有不同频率的波的和。

谐响应分析

用于确定线性结构在受正弦荷载作用时的稳态响应

目的是计算出结构在几种频率下的响应,并得到响应随频率变化的曲线. 确保一个给定的结构能经受住不同频率的各种正弦载荷(例如:以不同速度运行的发动机)

预测结构的持续动力特性,从而验证设计能否成功地克服共振、疲劳,以及其他受迫振动引起的不良影响.

计算方法:输入简谐振动的幅值和频率范围,软件会将频率范围内的每一个频率的谐波载荷施加到结构上进行稳态响应计算,可以从得到的响应曲线上到“峰值”

响应,并进一步观察峰值频率对应的应力。

因此,与之前是否进行模态分析并未有必然联系。

hyperworks接触分析1

在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm,而单元的尺寸为3~4mm,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh划分网格后的模型。 图1 实体模型图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

基于HyperWorks的汽车车架频率响应分析

基于HyperWorks的汽车车架频率响应分析 汽车车架是汽车各大总成的载体,是重要的受力部件。车架在工作时除了要满足强度和刚度的要求外,合理的振动特性也是十分重要的。 本文应用HyperWotks软件分析了某型汽车车架的前6阶固有频率及振型,完成了车架模型的频率响应分析。结合分析结果,改进了其车架结构,降低了汽车的低频振动。 1 HyperWorks分析流程 HyperWorks有限元分析流程参见图1。 图1 HyperWorks分析流程 在建立某车架有限元模型时需注意以下几个问题: 1)在导入CAD几何模型时.要对几何模型进行必要的几何清理(如去除倒角、工艺孔等)。这样可减小数据转换时的数据丢失; 2)如果导人的是规模较大的实体薄壁类零件模型,可对模型使用中面抽取功能。 2 车架结构模态分析 车架结构模态分析,尤其是车架结构的低阶弹性模态,它不仅是控制汽车常规振动的关键指标,而且反映了汽车车身的整体剐度性能。 对某车架计算采用自由模态分析方案,将HyperMesh中建立的有限元模型导人OptiStruct进行计算,对比分析了车架结构前6阶自由模态(固有频率值和振型),并在Hypermesh后处理器中查看结果(表1)。

表1 前6阶固有频率及振型 3 车架频率响应分析与改进 复杂系统受多种振动噪声源的激励,每种激励都可以通过不同的路径,经过衰减,传递到多个响应点。 本文采用HyperWorks软件,对该车架自由边界条件下的模态频率响应进行了分析。通过对该车架施加频率可变的单位载荷,运用OptiStmct软件在自由边界条件下进行模态频率响应分析。得出的变形、模态形状和频率相位输出特性如图2-图4所示。 图2 车架频响模型

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

SolidWorks Simulation响应谱分析简介

SolidWorks Simulation响应谱分析简介 在Solidworks Simulation Premium 2011中,添加了一个线性动力分析模块——“响应波谱分析”。 插图一 响应谱分析又名冲击谱分析,是一种近似的方法用于预测受到基础激励(强迫振动)的结构峰值响应的分析方法。取代耗时的时间域瞬态分析,可以采用响应谱分析快速地近似分析结构的峰值响应(如动应力等)。响应谱分析可以作为一种设计工具。它用于计算结构对多频信息瞬态激励的响应,这些激励可能来源于地震、飞行噪声/飞行过程、导弹发射等,频谱是载荷时间历程在频率域上的表示法,您可以使用响应波谱分析而非时间历史分析,来估测结构对随机载荷或与时间有关的载荷环境(例如地震、风载荷、海浪载荷、喷气发动机推力或火箭发动机振动)的响应。 响应谱分析可以被应用多种领域,如航空电子设备 (飞行器 / 导弹)、航天飞机零件、飞行器部件及任何受到地震或其他不稳定载荷的结构或部件。下面就来看下,在Solidworks Simulation中是如何进行响应谱分析的。 首先,建立新的自命,选择线性动力类型,并从子类型中选择响应波谱分析。 插图二

在响应波谱分析中,模态分析结果作为已知波谱用来计算模型中的位移和应力。因此在,响应波谱分析算例属性中需设定要包含的模态分析频率数或相关参数。 插图三 在响应波谱选项中可以选择模式组合方法: 插图四

不同的组合方法会对结果有所影响,其中绝对值和方法结果最为保守。之后按照Simulation常规方法赋予零件材料参数及交互关系(注意,线性动力分析中,只可使用结合与允许贯通两种接触选项),并对结构给予合理约束,本例中是对电路板相应固定点添加固定约束。 插图五 响应波谱分析的载荷可以为统一基准激发或选定的基准激发,类型则有位移、速度、加速度三类,这里选择统一基准激发,并选择加速度,并使用如下参数: 插图六

螺栓预紧结构用Hypermesh做接触实例

螺栓预紧结构用Hypermesh 做接触实例 在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F ,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm ,而单元的尺寸为3~4mm ,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh 划分网格后的模型。 图1 实体模型 图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

基于HyperWorks的对接结构设计及优化分析_张讯

基于HyperWorks的对接结构设计及优化分析 张讯 方芳 上海飞机设计研究院结构设计研究部 上海 200232 摘要:外翼、中央翼的壁板对接结构设计是飞机设计的重要环节之一,不同的对接方式其传力方式不同,对飞机的使用寿命、装配工艺都会产生重大影响。本文通过认真分析飞机外翼、中央翼的对接结构的传力特点,设计了两种不同的上下壁板对接方案,然后运用Altair HyperWorks软件对对接结构进行了有限元分析,得出了较好的对接结构并进行了材料选择,最后运用OptiStruct软件进行了结构尺寸优化和减重分析。其设计思路和方法对飞机对接结构设计具有重要的价值。 关键词:对接结构,有限元,HyperWorks,优化 0 引言 为了满足机翼的外形设计和飞机制造装配要求,大部分飞机需要在外翼根部与中央翼连接处设置为分离面。外翼、中央翼的连接结构设计是飞机设计的重要环节之一,不同的连接方式其传力方式不同,对飞机的使用寿命、装配工艺都会产生重大影响。对接结构将外翼受力所形成的集中载荷传递到机身,起到传递载荷的作用,同时它也是连接飞机外翼和中央翼的重要连接结构,本文针对两种不同的上下壁板对接结构进行了选型分析和有限元计算,通过有限元计算找出较为适合的中央翼、外翼对接结构,并对壁板对接结构在输入载荷下进行了全面详细的优化分析,减轻了结构重量、提高了结构效率,对对接结构的设计和应用起到了关键性的作用。 1 对接结构设计 大部分民用客机在外翼根部与中央翼连接处需要设置为分离面。在分离面处一般设置有一个关键肋即民用飞机的对接肋,对接肋需要传递外翼的弯矩和扭矩,其中弯矩转化为外翼上下壁板的轴力后通过对接肋缘条传到中央翼的上下壁板,扭矩形成剪流后通过对接肋腹板传递到机身上。因此对接肋成为了机身与机翼连接的枢纽,同时该区域受力复杂,载荷大,

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

12.HyperWorks 在白车身刚度建模对标分析中的应用

HyperWorks在白车身刚度建模对标分析中的应用 瞿晓彬戴轶 上海汽车集团股份有限公司技术中心

HyperWorks在白车身刚度建模对标分析中的应用HyperWorks Application in BIW Stiffness Modelling and Correlation Analysis 瞿晓彬戴轶 (上海汽车集团股份有限公司技术中心,上海,201804) 摘要:本文建立了某车型白车身结构的有限元模型,通过和刚度试验方案相对比,确定有限元模型的边界条件及分析载荷,并介绍了用于刚度计算的输出点的处理方法。利用OptiStruct计算了该白车身结构的扭转刚度和弯曲刚度,并将计算结果与试验结果进行了对比,结果表明计算结果和试验结果有较好的吻合,证明了白车身刚度建模和输出点处理方法的合理性。 关键词:有限元,白车身,刚度,试验 Abstract: In this paper, a FE model of BIW is established. The FE model’s boundary conditions and analysis loads are applied, by comparing the FE method with testing. The bending and torsion stiffness analysis of the BIW is carried out using OptiStruct. The related analysis results are compared with the test results. The results show that the outcomes match well, which means the FEM modelling is reasonable. Key words: FEM, BIW, stiffness 1 引言 现代轿车车身大多数采用全承载式结构,承载式车身几乎承载了轿车使用过程中的所有载荷,主要包括扭转、弯曲等载荷,在这些载荷的作用下,轿车车身的刚度特性则尤显重要。车身刚度不合理,将直接影响轿车的可靠性、安全性、NVH性能等关键性指标,白车身的弯曲刚度和扭转刚度分析是整车开发设计过程中必不可少的环节。 本文通过和试验方案对比,提出了用于刚度分析的有限元模型前处理方法,通过将计算结果和试验结果对比,证明了前处理方法的合理性。 2 白车身结构刚度分析的前处理 2.1 白车身结构的有限元建模

HyperWorks 在汽车零部件有限元分析中的应用

HyperWorks 在汽车零部件有限元分析中的应用 1 概述 随着计算机辅助设计和制造技术的日趋成熟,设计人员迫切需要一种能对所做的设计进行快速、精确评价分析的工具,而不再仅仅依靠以往积累的经验和知识去估计。Altair 公司HyperWorks 软件正是这样一个有效的工具。他能与常用的CAD 软件相集成,实现"设计-校核-再设计"的功能,可以轻松的直接从CAD 软件中读取几何文件,并将最终的仿真计算结果反馈到CAD 几何模型的设计中。同时由于有限元计算的高精度,可以减少试验次数,大大降低产品开发成本,缩短产品开发周期,提高产品设计质量。 本文通过两个案例,阐述了如何利用HyperWorks 软件简化边界条件及计算复杂结构的强度,并通过与理论解的对比,验证HyperWorks 软件在有限元计算方面的准确性。 2 案例一:摩擦片从动盘的强度计算 由于摩擦片的形状比较特殊,九个叶片和内部八根加强筋呈同心圆分布,本案例介绍了如何灵活使用简化方法划分有限元网格及简化加载。摩擦片从动盘的几何模型如图 1 所示。 2.1 摩擦片从动盘有限元模型的建立 由上述图1 可见,摩擦片从动盘的九个叶片和八根加强筋呈同心圆分布,因此在划分此摩擦片从动盘有限元模型时可以将划分过程分成两部分:内圈加强筋部分和叶片部分,在接合部分进行局部修改缝合。首先可以将内圈几何模型分成八部分,叶片分成九部分,分别选取其中的一片进行网格划分,如图2 所示。再使用HyperMesh 的旋转功能Rotate 划分出整个网格,最后进行局部缝合,这样,整个摩擦片从动盘的2D 网格就完成了,继续使用3D 中的拉伸功能,完整的三维网格就建立成功了,如图 3 所示。

基于Hyperworks前处理轴承速度及应力分析

基于Hyperworks 前处理Ansysls-dyna 分析轴承速度及应力分析 1.轴承3D 模型的建立 轴承组成:外圈,保持架,滚动体,内圈 2.为了方便画网格用CATIA 把轴承切成小块得到下图结果 3.把文件保存为STP 格式,导入Hyperworks 中进行网格处理,得到如下图结果: 外圈(绿色) 保持架(蓝色) 滚动体(黄色) 内圈(浅蓝色)

3.1本例中网格要求为8节点六面体,所以为了方便画网格,先用3维软件对模型进行简单的处理,处理结果如下图所示: 3.1.1对滚动体网格的画分: 1).1/8滚动体模型如下图所示:

2).对粉红色部分画网格: 切换到one volume模块,选中粉红色实体,density设置为3,点mesh. 3).对绿色部分进行网格划分: 切换到one volume模块,选中绿色实体,elem size设置为0.2,点mesh

操作步骤: 1,TOOL------orgnize---我们要把body11和333合成一体,element选中body11(点击by collector-选中body11),dest component选中333,点击MOVE即可。 4).将绿色网格移到粉色网格部件里,合并网格,如下图: 5).对1/8网格镜像:

Based 点击duplicate---current comp---reflect,完成镜像,如下图:

按上述方法重复操作可得到整个滚动体的网格模型,如下图所示: 在tool---edges面板检查间隙,合并节点。 选择ELEMEN,先选绿色任务栏中第三个后选倒数第二个。消除缝隙

初学hyperworks的注意事项和应用技巧

入门篇 其实各种CAE前处理的一个共同之处就是通过拆分把一个复杂体拆成简单体。这个思路一定要记住,不要上来就想在原结构上分网,初学者往往是这个问题。刚开始学,day1,day2,advanced training 和HELP先做一遍吧。另外用熟24 个快捷键。(快捷键用法见tutuma 版主的精华贴《Hyperworks FAQ》) 做一下HELP里面的教程,多了解一些基本的概念和操作。这样会快点入门。论坛更多的是方法。 划分的方法要灵活使用,再有就是耐心。 1、如何将.igs文件或.stl文件导入hypermesh进行分网? files\import\切换选项至iges格式,然后点击import...按钮去寻找你的iges 文件吧。划分网格前别忘了清理几何 2、导入的为一整体,如何分成不同的comps?两物体相交,交线如何做?怎样从面的轮廓产生线(line)? 都用surface edit Surface edit的详细用法见HELP,点索引,输入surface edit 3、老大,有没有划分3D实体的详细例子? 打开hm,屏幕右下角help,帮助目录下hyperworks/tutorials/hyermesh tutorials/3D element,有4个例子。 4、如何在hypermesh里建实体? hm的几何建模能力不太强,而且其中没有体的概念,但它的曲面功能很强的.在2d面板中可以通过许多方式构建面或者曲面,在3D面板中也可以建造标准的3D曲面,但是对于曲面间的操作,由于没有"体"的概念,布尔运算就少了,分割面作就可以了 5、请问怎么在hypermesh中将两个相交平面到圆角啊? defeature/surf fillets 6、使用reflect命令的话,得到了映射的另一半,原先的却不见了,怎么办呢?法1、在选择reflect后选择duplicate复制一个就可以 法2、先把已建单元organize〉copy到一个辅助collector中, 再对它进行reflect, 将得到的新单元organize〉move到原collector中, 最后将两部分equivalence, 就ok拉。 7、请问在hypermesh中如何划分装配体?比如铸造中的沙型和铸件以及冷铁,他们为不同材质,要求界面单元共用,但必须能分别开? 你可以先划分其中一个部件,在装配面上的单元进行投影拷贝到被装配面上 8、我现在有这样一个问题,曲线是一条线,我想把它分成四段,这样可以对每一段指定density,网格质量会比直接用一条封闭的线好。 可用F12里的cleanup_add point,那里面还有很多内容,能解决很多问题9、我在一个hm文件中创建了一组组装件的有限元模型,建模过程很麻烦,由于失误我把一个很重要的部件建在了另一个hm文件中,请问有没有什么方法把这个部件的有限单元信息转移到组装件的hm文件中呢? 如果可以,装配关系可以满足吗?

HyperWorks介绍

软件简介—SoftWare Description ALTAIR HyperWorks 7.0 SP1 HyperWorks 企业级的CAE软件,几乎所有财富500强制造企业都应用.为工程师量身定做的软件.强力推荐. 系列产品集成了开放性体系和可编程工作平台,可提供顶尖的CAE建模、可视化分析、优化分析、以及健壮性分析、多体仿真、制造仿真、以及过程自动化。HyperWorks的开放式平台可以直接运用顶尖的CAD、CAE求解技术,并内嵌与产品数据管理以及客户端软件包交互的界面。Altair HyperWorks是一个创新、开放的企业级CAE平台,它集成设计与分析所需各种工具,具有无比的性能以及高度的开放性、灵活性和友好的用户界面。HyperWorks包括以下模块:Altair HyperMesh 高性能、开放式有限单元前后处理器,让您在一个高度交互和可视化的环境下验证及分析多种设计情况。Altair MotionView 通用多体系统动力学仿真及工程数据前后处理器,它在一个直观的用户界面中结合了交互式三维动画和强大无比的曲线图绘制功能。Altair HyperGraph 强大的数据分析和图表绘制工具,具有多种流行的工程文件格式接口、强大的数据分析和图表绘制功能、以及先进的定制能力和高质量的报告生成器。Altair HyperForm 集成HyperMesh强大的功能和金属成型单步求解器,是一个使用逆向逼近方法的金属板材成型仿真有限元软 件。Altair HyperOpt 使用各种分析软件进行参数研究和模型调整的非线性优化工具。Altair OptiStruct 世界领先的基于有限元的优化工具,使用拓扑优化方法进行概念设计。Altair OptiStruct/FEA 基本线性静态、特征值分析模块。创新、灵活、合理的许可证无论是单机版还是网络版,HyperWorks 许可单位(HWUs)都是平行的,所以不管你运行多少个HyperWorks 模块,只有需要HWUs最多的模块才占用HWUs数。集成的CAD图形标 准ACIS CATIA(HP,IBM,WIN,SUN, SGI)DESDXF UG I-DEAS IGES INCA PATRAN PDGS VDAFS 等支持的有限元分析软 件ABAQUS ANSYS AutoDV C-MOLD DYTRAN LS-DYNA3D LS-NIKE3D MADY MO MARC MOLDFLOW MSC/NASTRAN Nsoft CSA/NASTRAN OPTISTRUCT PAM-CRASH PATRAN RADIOSS Spotweld VPG等主要几大模 块: Altair HyperMesh是一个针对有限元主流求解器的高性能有限元前后处理软件,工程设计人员可以在一个极佳的交互式可视环境下对多种设计条件进行分析。HyperMesh 的图形用户界面易于学习,可以直接使用CAD几何数据和现

SAP2000之反应谱分析

反应谱分析:基本概念 地震作用本质上是一种地面运动荷载,虽然其发生的过程总体上很短暂,但是作用的大小是随时间变化的,目前结构分析的发展水平允许我们基于振型叠加法或其它方法在地震作用的整个过程中对结构的响应进行完整计算,这就是我们所常说的结构的时程分析。但是这种分析方法往往需要更复杂的计算工作,并且所进行的分析往往需要更详尽并有针对性的场地信息,这一点并不是所有实际工程都能够提供的,另外,时程分析会输出地震作用整个过程每一时刻的结构位移及内力响应,对于这些信息的统计需要大量的工作量,并且难以形成直接指导结构设计的信息。因此虽然时程分析是更为真实的结构动力分析,但是满足大部分结构规范要求和工程师需求的仍然是地震作用的反应谱分析。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力方法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后再使用静力方法进行结构分析。时程分析的不足恰好是反应谱分析方法的优点,光滑设计反应谱是地震运动的平均值,它仅包括计算每个振型中的位移和构件力的最大值,因此不需要对于多条地震波的复杂计算。并且结构反应谱分析所给出的结构响应信息可以很方便的应用于结构设计,避免了对于整个时间范围内结构响应的处理。

反应谱分析:振型组合的基本理论与方法SAP2000对于反应谱分析振型组合分析,给出了CQC法、SRSS法、ABS法、GMC法、10Pct法和Dbl Sum法等六种组合方法。我国2002新的规范规定考虑结构藕联效应的情况,可以采用SRSS和CQC两种组合方法。 1. ABS法 ABS法是绝对值相加法。这种方法的假设条件是所有振型的最大模态值都发生在相同的时间点上,通过求它们的绝对值和的方法来对振型进行组合。实际上同一时刻基本上不可能所有模态均发生最大值,因此,这一组合方法是用于计算结构中的位移或内力峰值的最保守方法。 2. SRSS法

ANSYS响应谱分析实例-平板结构

!ANSYS响应谱分析 !响应谱分析实例-平板结构 finish /CLEAR /FILENAME,example,1 /PREP7 /TITLE, DYNAMIC LOAD EFFECT ON SIMPLY-SUPPORTED THICK SQUARE PLATE ! 定义单元类型 ET,1,SHELL281 ! 定义厚度 SECTYPE,1,SHELL SECDATA,1,1,0,5 ! 定义材料属性 MP,EX,1,200E9 MP,NUXY,1,0.3 MP,ALPX,1,0.1E-5 MP,DENS,1,8000 ! 定义模型 N,1,0,0,0 N,9,0,10,0 FILL NGEN,5,40,1,9,1,2.5 N,21,1.25,0,0 N,29,1.25,10,0 FILL,21,29,3 NGEN,4,40,21,29,2,2.5 EN,1,1,41,43,3,21,42,23,2 EGEN,4,2,1 EGEN,4,40,1,4 FINISH /SOLU ANTYPE,MODAL ! 定义分析类型为模态分析 MODOPT,REDUC MXPAND,16,,,YES SFE,ALL,,PRES,,-1E6 ! 施加面载荷 D,ALL,UX,0,,,,UY,ROTZ ! 施加约束 D,1,UZ,0,0,9,1,ROTX D,161,UZ,0,0,169,1,ROTX D,1,UZ,0,0,161,20,ROTY D,9,UZ,0,0,169,20,ROTY

NSEL,S,LOC,X,.1,9.9 NSEL,R,LOC,Y,.1,9.9 M,ALL,UZ ! 选择主自由度 NSEL,ALL SOLVE *GET,F,MODE,1,FREQ FINISH /SOLU ANTYPE,SPECTR ! 定义分析类型 SPOPT,PSD,2,ON ! 利用前两阶模态并计算应力PSDUNIT,1,PRES ! 定义功率谱为面载荷谱DMPRAT,0.02 PSDFRQ,1,1,1.0,80.0 PSDVAL,1,1.0,1.0 LVSCALE,1 ! 比例使用载荷因子PFACT,1,NODE PSDRES,DISP,REL PSDCOM SOLVE FINISH /eof /POST1 SET,3,1 ! 读取位移 /VIEW,1,2,3,4 PLNSOL,U,Z PRNSOL,U,Z FINISH /SOLUTION ANTYPE,HARMIC ! 重新定义求解类型HROPT,MSUP ! 利用模态叠加法HROUT,OFF,ON KBC,1 HARFRQ,1,80 DMPRAT,0.02

如何进行ANSYS谱分析

如何进行ANSYS谱分析 谱是谱值和频率的关系曲线,反映了时间-历程载荷的强度和频率之间的关系。 响应谱代表系统对一个时间-历程载荷函数的响应,是一个响应和频率的关系曲线。 谱分析是一种将模态分析结果和已知谱联系起来的计算结构响应的分析方法,主要用于确定结构对随机载荷或随时间变化载荷的动力响应。谱分析可分为时间-历程分析和频域的谱分析。时间-历程谱分析主要应用瞬态动力学分析。谱分析可以代替费时的时间-历程分析,主要用于确定结构对随机载荷或时间变化载荷(地震、风载、海洋波浪、喷气发动机推力、火箭发动机振动等)的动力响应情况。谱分析的主要应用包括核电站(建筑和部件),机载电子设备(飞机/导弹),宇宙飞船部件、飞机构件,任何承受地震或其他不规则载荷的结构或构件,建筑框架和桥梁等。 功率谱密度(Power Spectrum Density):是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值-频率值的关系曲线,其中PSD可以是位移PSD、速度PSD、加速度PSD、力PSD等形式。数学上,PSD-频率关系曲线下面的面积就是方差,即响应标准偏差的平方值。 ANSYS谱分析分为3种类型: *响应谱分析(SPRS OR MPRS) ANSYS响应谱分为单点响应谱和多点响应谱,前者指在模型的一个点集(不局限于一个点)定义一条响应谱;后者指在模型的多个点集定义多条响应谱。 * 动力设计分析(DDAM) 动力分析设计是一种用于分析船舶装备抗震性的技术 *随机振动分析(PSD) 随机振动分析主要用于确定结构在具有随机性质的载荷作用下的响应。 与响应谱分析类似,随机振动分析也可以是单点的或多点的。。在单点随机振动分析时,要求在结构的一个点集上指定一个PSD;在多点随机振动分析时,则要求在模型的不同点集上指定不同的PSD。 一单点响应谱分析 基本步骤 (1)建立模型 (2)求得模态解 (3)求得谱解 (4)扩展模态 (5)合并模态

midas反应谱分析

反应谱分析 北京迈达斯技术有限公司

目录 简要 (1) 设定操作环境及定义材料和截面 (2) 定义材料 (2) 定义截面 (3) 建立结构模型 (4) 主梁及横向联系梁模型 (4) 输入横向联系梁 (5) 输入桥墩 (5) 刚性连接 (7) 建立桥墩和系梁 (9) 输入边界条件 (10) 输入支座的边界条件 (10) 刚性连接 (11) 输入横向联系梁的梁端刚域 (12) 输入桥台的边界条件 (13) 输入二期恒载 (14) 输入质量 (15) 输入反应谱数据 (17) 输入反应谱函数 (17) 输入反应谱荷载工况 (18) 运行结构分析 (19) 查看结果 (20) 荷载组合 (20) 查看振型形状和频率 (21) 查看桥墩的支座反力 (24)

简要 本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。 例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。桥台部分由于刚度很大,不另外建立模型只输入边界条件;基 础部分假设完全固定,也只按边界条件来定义。 下面是桥梁的一些基本数据。 跨 径:45 m + 50 m + 45 m = 140 m 桥 宽:11.4 m 主梁形式:钢箱梁 钢 材:GB(S) Grade3(主梁) 混 凝 土:GB_Civil(RC) 30(桥墩) 图1. 桥梁剖面图[单位: mm]

设定操作环境及定义材料和截面 开新文件(新项目),以‘Response.mcb’为名保存(保存)。 文件 / 新项目t 文件 / 保存( Response ) 将单位体系设定为kN(力), m(长度)。 工具 / 单位体系 长度>m ; 力>kN ? 定义材料 分别输入主梁和桥墩的材料数据。 模型 / 材料和截面特性 / 材料 材料号(1); 类型>S钢材 规范>GB(S); 数据库>Grade3 ? 材料号(2); 类型>混凝土 规范>GB-Civil(RC) ; 数据库>30 ? 图2. 定义材料

hyperworks弹簧受力分析

弹簧受力分析 摘要:新一代飞机的设计对性能有更高的要求,需要有新的性能设计平台来应对这些挑战。Altair公司的HyperWorks在飞机结构有限元建模,结构优化及减重,碰撞安全性分析,复合材料零部件设计和运动机构仿真及优化等领域的技术已经被世界各大飞机制造商广泛采用,成为事实上的现代飞机性能设计新平台。 关键字:HyperWorks HyperMesh OptiStruct Radioss MotionView HyperStudy 飞机性能设计 近年来,以A380,A350,A400M,B787,F35为代表的新一代飞机,外形更大,重量更轻,飞得更远,载重量更大,机动性更好,突发情况下更安全,燃油经济性更好,确立了飞机性能设计的新标准,对现代飞机设计技术提出了一系列新的要求和挑战,需要有新的技术来应对。 λ结构减重技术:能够清楚给出在给定设计空间内的最佳材料分布和确定零部件尺寸、外形和位置,从而工程师有足够的设计提示信息和依据,而不仅仅依靠经验来进行结构的轻量化设计。 λ复合材料设计技术:能够对复合材料零部件进行建模、仿真和优化,预估复合材料零部件的强度、刚度、破坏和疲惫特性,优化复合材料的展层角度、展层外形、展层数目和展层叠加次序。 λ系统优化技术:能够在概念设计阶段优化结构传力路径和布局,减少设计后期风险;能够对飞机的性能参数进行优化,满足各种设计指标;能够进行多学科考虑,做到各子系统最优,总体系统也最优。 λ碰撞安全性分析技术:能够对鸟撞、坠撞、水上迫降等工况进行仿真,评估并改进突发危险情况下的飞机安全性。 λ缩短设计周期:能够快速进行CAE建模、求解和结果评估,特别是把CAE前后处理的时间降下来,并且通过优化技术和流程减少人工的反复设计迭代。 Altair公司是世界领先的工程设计技术开发者,旗舰产品HyperWorks软件包含了HyperMesh,OptiStruct,Radioss,MotionView,HyperStudy等著名模块,是全球领先的企业级产品创新解决方案,目前全球客户超过4000家,分布于汽车、航空航天、机械、电子、船舶、国防等各个行业。近十年来,HyperWorks 专注于应对航空产业的最新发展趋势和挑战,以其创新平台设计技术帮助波音、空客、欧洲宇航防务、洛克西德马丁、欧洲直升机等公司设计新一代的飞机,取得了大量前所未有的工程成果,成为现代飞机性能设计的新平台,提供了一系列高效、优化、创新的新技术。 一.有限元建模技术 随着计算机硬件技术的发展,现代飞机的有限元模型规模越来越大,网格越来越精细,模型治理越来越复杂,特别是复合材料在飞机上的大规模应用使得单元属

22.基于HyperWorks的轿车车门外板抗凹性分析.

Altair 中国区 2008 HyperWorks 技术大会论文集基于 HyperWorks 的轿车车门外板抗凹性分析袁连太毛凌丽浙江吉利汽车研究院有限公司 -1- Altair 中国区 2008 HyperWorks 技术大会论文集基于 HyperWorks 的轿车车门外板抗凹性分析 HyperWorks Application in Outer Board Denting Analysis of The Door 袁连太毛凌丽 (浙江吉利汽车研究院有限公司综合技术部工程分析科摘要:本文主要阐述了如何应用HyperWorks 软件平台,对车门外板的抗凹性能进行分析验证。在整个分析过程中使用HyperMesh平台进行前处理、利用AbaqusCommand 做求解、采用HyperView与HyperGraph平台进行后处理,介绍某车型车门外板的抗凹性能分析过程,以验证车门性能品质为目的,同时也体现了HyperWorks 软件平台在有限元分析方面的强大功能。关键词: HyperMesh HyperView 车门Abstract Applying the theory of finite element analysis ,the paper focus on analyzing the intension of the steer-arm in the steer system and gets the stress draw of the steer-arm。 The analysis can improve the controlling flexible of the heavy off-road vehicle and is the optimize design basis of steer-arm。 Key words:HyperMesh HyperView door 1 概述车门外板尺寸较大、带曲率、有一定的预变形,在使用过程中常常会受到外载荷的作用,如人为的触摸按压、行进过程中碎石的冲击等等,这些载荷往往使覆盖件形状发生凹陷挠曲甚至产生局部永久凹痕,影响到整车的外观品质。车门外板件以及车身外板的抗凹性分析属于品质分析,其直接影响车辆外观品质,因此很有必要对车门外板进行抗凹性分析,本文主要介绍了模拟用户手指(或其它)对外板局部按压等动作引起的车门外板的变形,车门的外板是不允许出现太大的变形以及局部的失稳凹陷;因此本文中主要介绍了利用 HyperWorks 软件平台进行前后处理,使用 ABAQUS 软件求解,考察车门外板在小的局部区域受外力作用时的外板的弹性恢复性能,即外力撤销后产生的残余变形。本文进行车门外板抗凹性分析的流程,如图 1 所示: -2- Altair 中国区 2008 HyperWorks 技术大会论文集图 1 车门外板抗凹性分析的流程 2 有限元模型的建立车门是由壳体、附件和内饰盖板三部分组成。本文中主要针对车门外板进行抗凹性分析,因此对其余部件不做建模, HyperMesh 软件为用

底部剪力法--反应谱法--时程分析法概念及分析

底部剪力法/反应谱法/时程分析法一些有用的概念 从传统的观点来看,底部剪力法,反应谱法和时程分析法是三大最常用的结构地震响应分析方法。那么正确的认识它们的一些关键概念,对于建筑结构的抗震设计具有非常重要的意义。HiStruct在此简单的总结一些,全当抛砖引玉。 1. 底部剪力法 高规规定:高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的高层建筑结构,可采用底部剪力法。底部剪力法适用于基本振型主导的规则和高宽比很小的结构,此时结构的高阶振型对于结构剪力的影响有限,而对于倾覆弯矩则几乎没有什么影响,因此采用简化的方式也可满足工程设计精度的要求。底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2. 反应谱方法 高规规定:高层建筑结构宜采用振型分解反应谱法。对质量和刚度不对称、不均匀的结构以及高度超过100m的高层建筑结构应采用考虑扭转耦联振动影响的振型分解反应谱法。反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而

言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS 是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构反应起重要作用的振型所对应的频率密集的结果(高振型的影响较大,或者考虑扭转振型的条件下),CQC是精确的。这是因为对于建筑工程上常用的阻尼而言,振型相关系数(见高规3.3.11-6)在很窄的范围内才有显著的数值。 3.反应谱分析的精确性 对于采用平均意义上的光滑反应谱进行分析而言,其峰值估计与相应的时程分析的平均值相比误差很小,一般只有百分之几,因此可以很好的满足工程精度的要求,正是在这个平均(普遍性)意义上,我们认为反应谱分析方法是精确的。但是对于单个锯齿形的反应谱而言,其分析结果与单个波的时程分析,误差可以达到10-30%之间,因此在个别(特殊性)意义上而言,反应谱分析结果是有误差的,因此,规范规定对于复杂的或者高层建筑需要采用时程分析进行补充计算和验证。 4.反应谱分析与时程分析对于高阶振型计算的不同之处 一般反应谱的高频段是采用平台段来表达的,实际上对于高阶振型反应不显著的结构而言,反应谱适用性很好,也足够准确。但是对于高柔结构而言,一般高阶振型的影响比较显著,采用时程分析的时候,

相关文档
最新文档