二组分固液相图的绘制

二组分固液相图的绘制
二组分固液相图的绘制

表-1

t/min

T/℃

纯铅锡20% 锡40% 锡61.9% 锡80% 纯锡

0 395.4 395.3 397.5 398.7 399.3 394.5

1 385.3 387.0 396.8 385.3 391.3 384.9

2 374.4 378.5 396.6 375.0 383.5 375.5

3 365.3 369.8 367.3 365.1 375.0 365.7

4 355.2 363.

5 353.8 354.

6 367.8 357.9

5 346.8 356.9 345.0 346.2 359.8 350.0

6 338.

7 348.

8 335.1 336.

9 353.1 341.8

7 329.6 342.1 327.2 329.6 346.7 334.5

8 322.9 335.8 319.5 322.6 339.6 327.6

9 317.8 328.8 311.5 315.4 333.9 320.8

10 311.8 323.2 305.2 309.3 327.3 314.8

11 306.6 316.2 298.6 303.6 321.1 307.2

12 302.2 311.8 293.2 297.3 315.8 302.5

13 298.6 307.2 288.1 292.0 311.0 296.3

14 294.4 302.5 282.1 286.6 306.4 291.2

15 288.7 298.9 276.8 285.0 302.2 286.1

16 283.4 295.3 271.2 275.2 297.4 280.4

17 277.9 291.1 264.8 269.3 293.0 275.5

18 270.6 287.3 259.4 264.4 288.5 271.1

19 264.0 282.3 254.5 257.7 283.3 266.5

20 256.8 277.5 248.9 254.4 278.6 261.7

21 250.8 272.2 244.3 250.2 273.5 257.6

22 245.3 266.2 239.3 245.8 269.3 252.9

23 239.2 261.3 235.1 241.3 265.1 249.2

24 234.5 256.7 231.0 237.4 260.5 245.3

25 230.0 252.0 226.5 233.0 256.6 241.1

26 225.1 247.9 222.7 229.4 252.9 237.6

27 221.0 244.2 219.0 225.9 248.8 233.8

28 217.1 240.3 215.0 221.9 245.3 230.5

29 212.7 236.7 211.5 218.7 241.1 227.2

30 209.1 232.6 208.2 215.4 238.7 223.7

31 205.6 229.2 204.5 211.9 234.9 220.9

32 201.7 225.7 201.5 209.6 231.2 224.5

33 198.1 221.9 198.1 209.4 228.3 230.6

34 194.7 218.7 195.4 208.1 225.3 231.1

35 191.7 215.0 192.9 206.7 222.0 231.1

36 188.7 212.0 190.3 204.9 219.3 230.9

37 185.2 209.0 188.6 203.0 216.5 230.5

38 182.4 206.1 185.9 200.8 218.9 229.7

39 179.7 202.8 183.3 198.6 221.4 221.4

40 176.5 200.1 181.1 197.3 221.0 216.3

41 173.9 196.9 179.1 195.0 219.7 210.4

42 170.9 194.4 181.1 192.4 218.1 205.7

43 168.3 191.7 183.2 190.0 215.8 202.7

44 165.9 188.5 183.6 187.8 214.7 199.0

45 163.1 186.7 183.0 185.5 211.7 196.0

46 160.8 184.5 180.2 183.8 208.8 193.0

47 158.5 182.1 175.3 182.2 206.2 190.2

48 155.8 180.2 171.9 181.4 203.1 188.1

49 153.7 178.4 168.7 180.0 200.3 185.6

50 151.6 176.8 165.2 176.9 197.2 183.4

51 149.2 175.5 162.3 173.4 194.5 181.4

52 147.2 178.7 159.0 169.8 191.8 179.1

53 144.9 176.3 156.6 166.7 189.5 177.3

54 142.9 173.5 154.3 164.7 186.7 175.2

55 141.1 169.8 151.8 162.1 185.1 173.4

56 138.9 166.8 149.8 160.0 184.6 171.7

57 137.2 164.1 157.9 183.0 169.8

58 135.5 161.3 155.7 180.0 166.9

59 133.4 159.1 153.9 176.8 165.3

60 131.8 157.0 152.1 174.3 164.0

61 130.2 154.7 150.0 171.9 162.7

62 128.4 152.9 148.3 169.5 161.3

63 149.9 167.6 160.1

64 165.8 158.7

65 163.7 157.4

66 162.2 156.2

67 160.7 154.7

68 159.1 153.1

69 157.7 152.6

70 156.6 150.4

71 155.5 149.2

72 154.4 147.9

73 153.2

74 152.1

75 151.0

76 149.9

图-1 不同样品的不冷曲线图

表-2 Pn-Sn体系的熔点温度

锡/% 0 20 40 61.9 80 100 熔点温度/℃326.2 274.6 240.8 183 203.5 231.1

最低共熔点温度T 共熔物=183℃ 最低共熔混合物组成:含锡61.9% T 铅=326.2℃ T 锡= 231.1℃

查文献值:铅的沸点T=327℃ 锡的沸点T=232℃ 相对误差:Δ铅=(327-362.2)*100%/327=0.24%

Δ锡=(232-231.1)*100%232=0.39%

326.2℃

231.1℃

α

α+β

L+α

L

L+β A

B

C

E F

D

183℃

61.9

二组分金属相图的绘制

二组分金属相图的绘制 一.实验目的 1.用热分析法(冷却曲线法)测绘Bi —Sn 二组分金属相图。 2.了解固液相图的特点,进一步学习和巩固相律等有关知识。 二.实验原理 表示多相平衡体系组成、温度、压力等变量之间关系的图形称为相图。 较为简单的二组分金属相图主要有三种:一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu —Ni 系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi —Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如本实验研究的Bi —Sn 系统。在低共熔温度下,Bi 在固相Sn 中最大溶解度为21%(质量百分数)。 图1冷却曲线 图2由冷却曲线绘制相图 热分析法(冷却曲线法)是绘制相图的基本方法之一。它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。通常的做法是先将一定已知组成的金属或合金全部熔化,然后让其在一定的环境中自行冷却,画出冷却温度随时间变化的冷却曲线(见图 1)。当金属混合物加热熔化后再冷却时,开始阶段由于无相变发生,体系的温度随时间变化较大,冷却较快(ab 段)。若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(bc 段)。当融熔液继续冷却到某一点时,如c 点,由于此时液相的组成为低共熔物的组成。在最低共熔混 合物完全凝固以前体系温度保持不变,冷却曲线出现平台,(如图cd 段)。当融熔液完全凝固形成两种固态金属后,体系温度又继续下降(de 段)。 由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的冷却曲线得出有固体析出的温度和低共熔点温度。根据一系列组成不同系统的冷却曲线的各转折点,即可画出二组分系统的相图(T - x 或T - w B 图)。不同组成熔液的冷却曲线对应的相图如图2所示。 图3可控升降温电炉前面板 1.电源开关 2.加热量调节旋钮 3、4.电压表 5.实验坩埚摆放区 6.控温传感器插孔 7.控温区电炉8.测试区电炉 9.冷风量调节

二组分简单共熔体系相图的绘制

二组分简单共熔体系相图的绘制

————————————————————————————————作者: ————————————————————————————————日期:

实验七二组分简单共熔体系相图的绘制 ------Cd~Bi二组分金属相图的绘制1实验目的及要求: 1)应用步冷曲线的方法绘制Cd~Bi二组分体系的相图。 2)了解纯物质和混合物步冷曲线的形状有何不同,其相变点的温度应如何确定。 2 实验原理:… 用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图,叫相图。 绘制相图的方法很多,其中之一叫热分析法。在定压下把体系从高温逐渐冷却,作温度对时间变化曲线,即步冷曲线。体系若有相变,必然伴随有热效应,即在其步冷曲线中会出现转折点。从步冷曲线有无转折点就可以知道有无相变。测定一系列组成不同样品的步冷曲线,从步冷曲线上找出各相应体系发生相变的温度,就可绘制出被测体系的相图,如图Ⅱ一6一l所示。 纯物质的步冷曲线如①⑤所示,从高温冷却,开始降温很快,口6线的斜率决定于体系的散热程度。冷到A的熔点时,固体A开始析出,体系出现两相平衡(溶液和固体A),此时温度维持不变,步冷曲线出现bc的水平段,直到其中液相全部消失,温度才下降。 混合物步冷曲线(如②、④)与纯物质的步冷曲线(如①、⑤)不同。如②起始温度下降很快(如a′b′段),冷却到b′点的温度时,开始有固体析出,这时体系呈两相,因为液相的成分不断改变,所以其平衡温度也不断改变。由于凝固热的不断放出,其温度下降较慢,曲线的斜率较小(b′c′段)。到了低共熔点温度后,体系出现三相,温度不再改变,步冷曲线又出现水平段c′d′,直到液相完全凝固后,温度又迅速下降。 曲线⑧表示其组成恰为最低共熔混合物的步冷曲线,其图形与纯物相似,但它的水平段是三相平衡。 用步冷曲线绘制相图是以横轴表示混合物的成分,在对应的纵轴标出开始出现相变(即步冷曲线上的转折点)的温度,把这些点连接起来即得相图。 3仪器与药品: 加热电炉1只,热电偶(铜一康铜)1根,不锈纲试管8只,控温测定装置1台,计算机1台,镉(化学纯),铋(化学纯)。 4 实验步骤: 1)配制不同质量百分数的铋、镉混合物各100g(含量分别为0%,15%,25%,40%,55%,75%,90%,100%),分别放在8个不锈纲试管中。 2)用控温测定装置装置,依次测纯镉、纯铋和含镉质量百分数为90%,75%,55%,40%,25%,15%样品的步冷曲线。将样品管放在加热电炉中加热,让样品熔化,同时将热电偶的热端(连玻璃套管)插入样品管中,待样品熔化后,停止加热。用热电偶玻璃套管轻轻搅

实验6 Sn-Bi二组分固液相图的绘制

实验6 Sn-Bi二组分固液相图的绘制 【实验目的】 1.掌握热分析法绘制二组分固液相图的原理及方法; 2.了解纯物质与混合物步冷曲线的区别并掌握相变点温度的确 定方法; 3.了解简单二组分固液相图的特点; 4.掌握数字控温仪及KWL-80可控升温电炉的使用方法。 【实验原理】 凝聚系统受压力影响很小,因此通常讨论其定压下相平衡图。根据相律,定压下二组分系统f mix=2,最多有温度和组成两个独立变量,其相图为温度-组成图。 凝聚系统相图绘制:常用溶解度法和热分析法。 溶解度法:定温度下,直接测定固-液两相平衡时溶液的浓度,依据测得的温度和溶解度数据绘制成相图,适用于常温下易测定组成的系统,如水盐系统。 热分析法:绘制金属相图最常用的实验方法。原理:测定系统由高温均匀冷却过程中的时间、温度数据,绘制冷却曲线。根据冷却曲线可分析相态变化(若在均匀冷却过程无相变化,系统温度将随时间均匀下降。若系统在均匀冷却过程中有相变化,由于体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。)。 简单二组分凝聚系统,其步冷曲线有三种类型。 图 6.1(a)为纯物质的步冷曲线。冷却过程中无相变发生时,系统温度随时间均匀降低,至b点开始有固体析出,建立单组分两相平衡,f=0,温度不变,步冷曲线出现水平段bc,直至液体全部凝固(c点),温度又继续均匀下降。水平段所对应的温度为纯物质凝固点。 图6.1(b)为二组分混合物的冷却曲线。冷却过程中无相变发生

时,系统温度随时间均匀降低,至b 点开始有一种固体析出,随着该固体析出,液相组成不断变化,凝固点逐渐降低,到c 点,两种固体同时析出,固液相组成不变,系统建立三相平衡,此时f=0,温度不随时间变化,步冷曲线出现水平段cd ,当液体全部凝固(d 点),温度又继续均匀下降。水平段cd 所对应的温度为二组分的低共熔点温度。 图6.1(c)为二组分低共熔混合物的步冷曲线。冷却过程中无相变发生时,系统温度随时间均匀降低,至b 点,两种固体按液相组成同时析出,系统建立三相平衡,f=0,温度不随时间变化,步冷曲线出现水平段bc ,当液体全部凝固(c 点),温度又继续均匀下降。 由于冷却过程中常常发生过冷现象,其步冷曲线如图6.1虚线所示。轻微过冷有利于测量相变温度;严重过冷,却会使相变温度难以确定。 以横轴表示混合物的组成,纵轴表示温度,利用步冷曲线所得到的一系列组成和所对应的相变温度数据,就可绘出相图,见图6.2。 6.1 生成简单低共熔混合物的二组分系统 T /K (a) (b) (c) 图 6.2 简单低共熔二组分系统冷却曲线及相

实验六 二组分金属相图的绘制

实验六二组分金属相图的绘制 一、实验目的 1.学会用热分析法测绘Sn—Bi二组分金属相图。 2.了解热电偶测量温度和进行热电偶校正的方法。 二、预习要求 1.了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。 2.掌握热电偶测量温度的原理及校正方法。 三、实验原理 测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。 二元简单低共熔体系的冷却曲线具有图1所示的形状。

图1根据步冷曲线绘制相图 图2有过冷现象时的步冷曲线 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。见图2。遇此情况,可延长dc线与ab线相交,交点e即为转折点。 四、仪器药品 1.仪器 立式加热炉1台;冷却保温炉1台;长图自动平衡记录仪1台;调压器1台;镍铬-镍硅热电偶1副;样品坩埚6个;玻璃套管6只;烧杯(250mL)2个;玻璃棒1只。

柴油微乳液拟三元相图的绘制及燃烧性能测定

柴油微乳液拟三元相图的绘制及燃烧性能测定 指导老师:何广平 杜格林20102401029 10化学1班 同组组员苏礼浩余澎凡 一、实验目的 本实验学习柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液,通过氧弹卡计进行燃烧性能测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。 通过对乳化柴油的燃烧热的测定,掌握燃烧热的定义,学会测定物质燃烧热的方法,了解恒压燃烧热与恒容燃烧热的差别;了解氧弹卡计的主要部件的作用,掌握氧弹卡计的量热技术;熟悉雷诺图解法校正温度改变值的方法。 二、实验原理 微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。微乳燃油可长期稳定,不分层,且制备简单,并能使燃烧更完全,燃烧效率更高,其节油率可达5%~15%,排气温度下降20%~60%,烟度下降40%~77%,NO X和CO的排放量降低25%,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。 乳化燃油与通常的乳状液一样,也分为油包水型(W/O)和水包油型(O/W),在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内相,燃料油则包在水珠的外层,被称为连续相或外相。我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。 对微乳柴油的研究通常包括为微乳燃油配方选择合适的表面活性剂和助表面活性剂,并考察各组分对可增溶水量的影响,确定最佳的微乳燃油配方比例。然后针对微乳柴油体系,通过相图、电导、NMR、FT-IR、分子光谱、荧光光谱、黏度法、电子显微镜等方式研究微乳液的结构,并进行燃烧性能与尾气排放量测定。 三、实验试剂与仪器 实验试剂:柴油0#、油酸(化学纯)、十六烷基三甲基溴化铵(CTAB)(化学纯)、氨水、正丁醇实验仪器:燃烧热测定装置一套、充氧装置一套、万用电表、5安保险丝、磁力搅拌器、搅拌子(中)、电导率仪、电子分析天平、烧杯、镊子、滤纸、PH试纸、玻棒、洗耳 球、胶头滴管等。 四、实验步骤 1.水-柴油体系配制及拟三元相图绘制

金属相图

实验 金属相图 [实验目的] 1.学会用热分析法测绘Pb - Sn 二组分金属相图。 2.掌握热分析法的测量技术与有关测量温度的方法。 [基本原理] 热分析法是先将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间读体系温度一次,将所得温度值对时间作图,所得曲线即为步冷曲线(如下图1)。每一种组成的Pb - Sn 体系均可根据其步冷曲线找出相应的转折点和水平台温度,然后在温度-成分坐标上确定相应成分的转折温度和水平台的温度,最后将转折点和恒温点分别连接起来,即为相图(如下图2)。 图1 步冷曲线 图2 步冷曲线与相图 [仪器结构] 图1 加热装置 图2 测量装置 仪器参数设置法: 最高温度:C 350℃ 加热功率:P1 400W 保温功率:P2 40W 报警时间:E1 30s 报警声音:n 0 按设置键:显示温度时就是退出了设置状态,可以进行实验。

[实验步骤] 1.配制样品。配制含锡量分别为20%,40%,61.9%,80%的铅-锡混合物各100g,装入4个样品管中,然后在样品管内插入玻璃套管(管中应有硅油,增加热传导系数),并在样品上方盖一层石墨粉; 2.将需加热的样品管放入一炉子中,将加热选择旋钮指向该加热炉(加热炉和选择旋钮上均有数字标号),并将测温传感器置于需加热的样品管中; 3.设定具体需加热的温度,加热功率和保温功率,本实验中这些参数依次设定为350o C,400W, 40W,参数设定完成后, 按下“加热”键,即进入加热状态; 4.当测量装置上的温度示值接近于330 O C时,可停止加热。待样品熔化后,用玻璃套管小心搅拌样品; 5.待温度降到需要记录的温度值时(比如305 C),可点击测量软件中的“开始实验”按钮,降温过程中,若降温速度太慢,可打开风扇;若降温速度太快,则可按“保温”键,适当增加加热量。当温度降到平台以下,停止记录。 按照上述步骤,测定不同组成金属混合物的温度—时间曲线。 [数据处理] 1.依实验数据绘制T-t步冷曲线,6根曲线绘制在同一张图上; 2.依样品的组成和步冷曲线中转折点和平台的温度绘制出Pb-Sn的T-w金属相图; 3.你所测得的Pb, Sn的熔点与教材(东北师大第90面)上的值的相对误差分别为: %, %. [问答题] 金属相图的用途有哪些? ---------------------------------------------------------------------------------------------------------------- 班级: 姓名: 学号: 实验日期: 分数: 教师:

二组分固液系统相图的测定

二组分固液系统相图的测定 一、实验目的 1、利用步冷曲线建立二组分铅---锡固液系统相图的方法。 2、介绍PID 温度控制技术和热电阻的使用。 二、实验原理 本实验的目的是通过热分析法获得的数据来构建一个相图,用于表示不同温度、组成下的固相、液相平衡。不同组成的二组分溶液在冷却过程中析出固相的温度可以通过观察温度 – 时间曲线的斜率变化进行检测。当固相析出时,冷却速率会变得比较慢,这可归因于固化过程释放的热量部分抵消了系统向低温环境辐射和传导的热量。 A B B%a b c e f B (c )%I II III I II III B T/K t (a ) (b ) 图8.1 二元简单低共熔物相图(a ) 及其步冷曲线(b ) 图8.1(a )是典型的二元简单低共熔物相图。图中A 、B 表示二个组分的名称,纵轴是物理量温度T ,横轴是组分B 的百分含量B %。在acb 线的上方,系统只有一个相(液相)存在;在ecf 线以下,系统有两个相(固相A 和固相B )存在;在ace 所包围的区域内,一个固相(固体A )和一个液相(A 在B 中的饱和熔化物)共存;在bcf 所包围的区域内,一个固相(固体B )和一个液相(B 在A 中的饱和熔化物)共存。c 点有三相(互不相溶的固

体A 和固体B ,以及A 、B 的饱和熔化物液相)共存,根据相律,在压力确定的情况下,三相共存时系统的自由度为零,即三相共存的温度为一定值,在相图上表现为一条通过c 点的水平线,处于这个平衡状态下的系统温度T c 、系统组成A 、B 和B (c )%均不可改变,T c 和B (c )%构成的这一点称为低共熔点。 热分析法是绘制相图的常用实验方法,将系统加热熔融成一个均匀的液相,然后让系统缓慢冷却,以系统温度对时间作图得到一条曲线,称为步冷曲线或冷却曲线。曲线的转折点表征了某一温度下发生相变的信息,由系统组成和相变点温度可以确定相图上的一个点,多个实验点的合理连接就形成了相图上的相线,并构成若干相区。图1(b )是与相图对应的不同组成系统的步冷曲线。 三、仪器与药品 SWKY-1型数字控温仪、KWL —09可控升降温电炉、Pt-100热电阻温度传感器、配套软件、样品管(南京桑力电子设备厂) 锡(化学纯),铅(化学纯),铋(化学纯),苯甲酸(化学纯) 本实验装置由三部分组成:SWKY-1型数字控温仪、KWL —09可控升降温电炉和数据采集计算机系统(图8.2)。 图8.2 合金相图测定实验装置图 ② ① ③ ④ ⑤

OP-10拟三元体系微乳区域相图研究

Advances in Material Chemistry 材料化学前沿, 2020, 8(3), 43-54 Published Online July 2020 in Hans. https://www.360docs.net/doc/4c13324573.html,/journal/amc https://https://www.360docs.net/doc/4c13324573.html,/10.12677/amc.2020.83006 Study on the Quasi-Ternary Phase Diagram of OP-10 Microemulsion Region Bounmyxay Malayphone1, Qingluo Meng1, Yiwen Zeng2*, Nong Wang1* 1School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 2College of Materials and Chemical Engineering, Hezhou University, Hezhou Guangxi Received: Jun. 2nd, 2020; accepted: Jun. 19th, 2020; published: Jun. 30th, 2020 Abstract A series of quasi ternary phase diagrams of alkyl phenol polyoxyethylene ether (OP-10) + alcohols (n-butanol, isopentyl alcohol or n-octanol) + n-hexane + water (calcium chloride aqueous solution) system have been drawn based on experiments. We investigated the influence of cosurfactant al- cohol with different addition and CaCl2solution with different molar concentrations on the mi-croemulsion region respectively. In pure water quasi-ternary phase diagram, we found that the relative area of microemulsion region in the ternary system increases at the beginning and then decreases with the mass ratios of OP-10 and cosurfactant n-butanol, isopentyl alcohol or n-octanol increase. When the OP-10:n-butanol = 1.5:1, OP-10:isopentyl alcohol = 2:1, and OP-10:n-octanol = 2.5:1, it has the largest area of microemulsion region. In general, the change tendency of micro- emulsion region relative areas increased at the beginning and then decreased in calcium chloride aqueous solution quasi-ternary phase diagram. The influence of relative area of microemulsion region is also different from adding different alcohols. Among them, the concentrations of CaCl2 with the largest relative area of microemulsion region corresponding to n-butanol, isopentyl al-cohol, and n-octanol are 0.1 mol/L, 0.5 mol/L and 0.1 mol/L respectively. This study has important reference value for the drawing of quasi-ternary phase diagram, preparation of microemulsion and synthesis of nanomaterials by microemulsion method. Keywords OP-10, Quasi-Ternary Phase Diagram, Microemulsion Region, Relative Area OP-10拟三元体系微乳区域相图研究 井小莲1,孟庆络1,曾一文2*,王农1* 1兰州交通大学化学与生物工程学院,甘肃兰州 2贺州学院材料与环境工程学院,广西贺州 *通讯作者。

【实验】【二组分固液系统相图的测定】

同济大学物理化学实验报告 实验名称:____二组分固液系统相图的测定___姓名:_________李健___________学号:________1251654___________合作者:________靳凯___________院系:______材料科学与工程________专业班级:___材料科学与工程2012级2班___实验日期:________2014/5/6__________

一、摘要: 本实验采用热分析法来绘制铅-锡相图。将系统加热熔融成均匀的液相,然后让系统缓慢冷却,得到时间对温度的步冷曲线,曲线的转折点温度和系统组成可确定相图上的一个点,本实验通过测定十个不同组分系统。 二、关键词: 热分析法、步冷曲线、相变点温度、系统组成、相图 三、内容简介: 本实验测定含锡百分数为0、10%、15%、20%、35%、50%、62%、80%、95%、100%的铅锡混合样品的步冷曲线,读取步冷曲线上的相变点温度,以组成比对相变点温度作图得到相图。 四、实验原理: 二组分固-液相图是描述体系温度与二组分组成之间关系的图形。 若二组分体系的两个组分在固相完全不溶,在液相可完全互溶,一般具有简单低共熔点,其相图具有比较简单的形式。根据相律,对于具有简单低共熔点的二组分体系,其相图可分为三个区域,即液相区、固液共存区和固相区。 绘制相图时,由步冷曲线法可以根据不同组成样品的相变温度(即凝固点)绘制出这三个区域的交界线—液相线,即图1(b)中的T1E和T2E,并找出低共熔点E所处的温度和液相组成。 步冷曲线法又称热分析法,是绘制相图的基本方法之一。它是将某种组成的样品加热至全部熔融,再均速冷却,测定冷却过程中样品的温度–时间关系,即步冷曲线。根据步冷曲线上的温度转折点获得该组成的相变点温度。 (原理图)

实验四三元液液平衡数据的测定 (1)

实验四三元液-液平衡数据的测定 液-液平衡数据是液-液萃取塔设计及生产操作的主要依据,平衡数据的获得目前尚依赖于实验测定。 一、实验目的 (1)测定醋酸水醋酸乙烯在25℃下的液液平衡数据 (2)用醋酸-水,醋酸-醋酸乙烯两对二元系的汽-液平衡数据以及醋酸-水二元系的液-液平衡数据,求得的活度系数关联式常数,并推算三元液-液平衡数据,与实验数据比较。(3)通过实验,了解三元系液液平衡数据测定方法掌握实验技能,学会三角形相图的绘制。 二、实验原理 三元液液平衡数据的测定,有两不同的方法。一种方法是配置一定的三元混合物,在恒定温度下搅拌,充分接触,以达到两相平衡;然后静止分层,分别取出两相溶液分析其组成。这种方法可以直接测出平衡连接线数据,但分析常有困 难。 另一种方法是先用浊点法测出三元系的溶解度曲 线,并确定溶解度曲线上的组成与某一物性(如折光率、 密度等)的关系,然后再测定相同温度下平衡接线数据。 这时只需要根据已确定的曲线来决定两相的组成。对于 醋酸-水-醋酸乙烯这个特定的三元系,由于分析醋酸最 为方便,因此采用浊点法测定溶解度曲线,并按此三元 溶解度数据,对水层以醋酸及醋酸乙烯为坐标进行标 绘,画成曲线,以备测定结线时应用。然后配制一定的 三元混合物,经搅拌,静止分层后,分别取出两相样品,图1 Hac-H2O-Vac的三元相图示意分析其中的醋酸含量,有溶解度曲线查出另一组分的含量,并用减量法确定第三组分的含量。 三、预习与思考 (1)请指出图1溶液的总组成点在A,B,C,D,E点会出现什么现象? (2)何谓平衡联结线.有什么性质? (3)本实验通过怎样的操作达到液液平衡? (4)拟用浓度为0.1mol/L的NaOH定法测定实验系统共轭两相中醋酸组成的方法和计算式。 取样时应注意哪些事项,H2O及V Ac的组成如 何得到? 四、实验装置及流程 (1)木制恒温箱(其结构如图2所示)的作用原理是: 由电加热器加热并用风扇搅动气流,使箱内温度 均匀,温度有半导体温度计测量,并由恒温控制 器控制加热温度。实验前先接通电源进行加热, 使温度达到25℃,并保持恒温。 (2)实验仪器包括电光分析天平,具有侧口的100mL 三角磨口烧瓶及医用注射器等。

二组分金属相图的绘制.

实验六二组分金属相图的绘制 【实验目的】 1. 学会用热分析法测绘Sn—Bi二组分金属相图。 2. 了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。 3. 了解热电偶测量温度和进行热电偶校正的方法。 【基本要求】 (1)学会用热分析法测绘Sn-Bi二组分金属相图。 (2)掌握步冷曲线的绘制和利用。 【实验原理】 测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或两种金属混合物熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线称为步冷曲线。当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一平滑的步冷曲线;当体系内发生相变时,则因体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。利用步冷曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。二元简单低共熔体系的冷却曲线具有图2-5-1所示的形状。 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。见图2-5-2。遇此情况,可延长dc线与ab线相交,交点e即为转折点。

图6-1 根据步冷曲线绘制相图 图6-2 有过冷现象时的步冷曲线 【仪器试剂】 立式加热炉1台;保温炉1台;镍铬-镍硅热电偶1副;不锈钢样品管4个;250mL烧杯1个。 Sn(化学纯);Bi(化学纯);石腊油;石墨粉。 【实验步骤】 1. 样品配制 用感量0.1g的台称分别称取纯Sn、纯Bi各50g,另配制含锡20%、40%、60%、80%的铋锡混合物各50g,分别置于坩埚中,在样品上方各覆盖一层石墨粉。 2. 绘制步冷曲线 (1) 将热电偶及测量仪器如图2-5-3连接好。 (2) 将盛放样品的坩埚放入加热炉内加热(控制炉温不超过400℃)。待样品熔化后停止加热,用玻璃棒将样品搅拌均匀,并在样品表面撒一层石墨粉,以防止样品氧化。 图6-3 步冷曲线测量装置 1.加热炉; 2.不锈钢管; 3.套管; 4.热电偶 (3) 将坩埚移至保温炉中冷却,此时热电偶的尖端应置于样品中央,以便反映

二组分固液相图

5.4二组分系统的固~液平衡 5.4.1形成低共熔物的固相不互溶系统 当所考虑平衡不涉及气相而仅涉及固相和液相时,则体系常称为"凝聚相体系"或"固液体系"。固体和液体的可压缩性甚小,一般除在高压下以外,压力对平衡性质的影响可忽略不计,故可将压力视为恒量。由相律: 因体系最少相数为Φ=1,故在恒压下二组分体系的最多自由度数f *=2,仅需用两个独立变量就足以完整地描述体系的状态。由于常用变量为温度和组成,故在二组分固液体系中最常遇到的是T~x(温度~摩尔分数)或T~ω(温度~质量分数)图。 二组分固~液体系涉及范围相当广泛,最常遇到的是合金体系、水盐体系、双盐体系和双有机物体系等。在本节中仅考虑液相中可以完全互溶的特殊情况。这类体系在液相中可以互溶,而在固相中溶解度可以有差别。故以其差异分为三类:(1)固相完全不互溶体系;(2)固相部分互溶体系和(3)固相完全互溶体系。进一步分类可归纳如下: 研究固液体系最常用实验方法为“热分析”法及“溶解度”法。本节先在“形成低共熔物的固相不互溶体系”中介绍这两种实验方法,然后再对各种类型相图作一简介。 (一)水盐体系相图与溶解度法

1.相图剖析 图5-27为根据硫酸铵在不同温度下于水中的溶解度实验数据 绘制的水盐体系相图,这类构成相图的方法称为"溶解度法"。 纵坐标为温度t(℃),横坐标为硫酸铵质量分数(以ω表 示)。图中FE线是冰与盐溶液平衡共存的曲线,它表示水 的凝固点随盐的加入而下降的规律,故又称为水的凝固点降 低曲线。ME线是硫酸铵与其饱和溶液平衡共存的曲线,它 表示出硫酸铵的溶解度随温度变化的规律(在此例中盐溶解 度随温度升高而增大),故称为硫酸铵的溶解度曲线。一般 盐的熔点甚高,大大超过其饱和溶液的沸点,所以ME不可 向上任意延伸。FE线和ME线上都满足Φ =2,f *=1,这意 味温度和溶液浓度两者之中只有一个可以自由变动。 FE线与ME线交于E点,在此点上必然出现冰、盐和盐溶液三相共存。当Φ=3 时,f *=0 ,表明体系的状态处于E点时,体系的温度和各相的组成均有固定不变的数值;在此例中,温度为 -18.3℃,相应的硫酸铵浓度为 39.8%。换句话说,不管原先盐水溶液的组成如何,温度一旦降至 -18.3℃,体系就出现有冰(Q 点表示)、盐(I点表示)和盐溶液(E点表示)的三相平衡共存,连接同处此温度的三个相点构成水平线QEI,因同时析出冰、盐共晶体,故也称共晶线。此线上各物系点(除两端点Q和I外)均保持三相共存,体系的温度及三个相的组成固定不变。倘若从此类体系中取走热量,则会结晶出更多的冰和盐,而相点为E的溶液的量将逐渐减少直到消失。溶液消失后体系中仅剩下冰和盐两固相,Φ=2,f *=1,温度可继续下降即体系将落入只存在冰和盐两个固相共存的双相区。若从上向下看E点的温度是代表冰和盐一起自溶液中析出的温度,可称为"共析点"。反之,若由上往下看E点温度是代表冰和盐能够共同熔化的最低温度,可称为"最低共熔点"。溶液E凝成的共晶机械混合物,称为"共晶体"或"简单低共熔物"。不同的水盐体系,其低共熔物的总组成以及最低共熔点各不相同,表5-7列举几种常见的水盐体系的有关数据。 表5-7 某些盐和水的最低共熔点及其组成 盐最低共熔点((℃)最低共熔物组成ω x100 NaCl NaBr NaI KCl KBr KI (NH 4) 2 SO 4 MgSO 4 Na 2SO 4 KNO 3 CaCl 2-21.1 -28.0 -31.5 -10.7 -12.6 -23.0 -18.3 -3.9 -1.1 -3.0 -5.5 23.3 40.3 39.0 19.7 31.3 52.3 39.8 16.5 3.84 11.20 29.9

二组分简单共熔系统相图的绘制

实验报告 课程名称: 大学化学实验(P ) 指导老师: 成绩:_______________ 实验名称: 二组分简单共熔系统相图的绘制 实验类型: 物性测试 同组学生姓名: 【实验目的】 1. 用热分析法测绘Zn-Sn 相图。 2. 熟悉热分析法的测量原理 3. 掌握热电偶的制作、标定和测温技术 【实验原理】 本实验采用热分析法中的步冷曲线方法绘制Zn-Sn 系统的固-液平衡相图。将系统加热熔融成一均匀液相,然后使其缓慢冷却,每隔一定时间记录一次温度,表示温度与时间的关系曲线,称为冷却曲线或步冷曲线。当熔融系统在均匀冷却过程中无相变化时,其温度将连续下降,得到一条光滑的冷却曲线,如在冷却过程中发生相变,则因放出相变热,使热损失有所抵偿,冷却曲线就会出现转折点或水平线段。转折点或水平线段对应的温度,即为该组成合金的相变温度。对于简单共熔合金系统,具有下列形状的冷却曲线[图a(a)],由这些冷却曲线,即可绘出合金相图[图a(b)]。 在冷却过程中,常出现过冷现象,步冷曲线在转折处出现起伏[图a(c)]。遇此情况可延长FE 交曲线BD 于点,G 点即为正常的转折点。 用热分析法测绘相图时,被测系统必须时时处于或接近相平衡状态,因此,系统的冷却速度必须足够慢,才能得到较好的结果。 图a 步冷曲线(a )、对应相图(b )及有过冷现象出现的步冷曲线(c ) 【试剂与仪器】 仪器 镍铬-镍硅热电偶1支;UJ-36电位差计1台;小保温瓶1只;盛合金的硬质玻璃管7只;高 温管式电炉2只(加热炉、冷却炉);调压器(2KW )1只; 坩埚钳1把;二元合金相图计算机测试系统1套。 试剂 锡、锌、铋(均为AR );石墨粉。 【实验步骤】 1. 热电偶的制作:取一段长约0.6m 的镍铬丝,用小瓷管穿好,再取两段各长0.5m 的镍硅丝,制作热 电偶(此步骤一般已事先做好)。 2. 配置样品:在7只硬质玻璃管中配制各种不同质量分数的金属混合物:100%Bi ;100%Sn ;100%Zn ; 45%Sn+55%Zn ;75%Sn+25%Zn ;91.2%Sn+8.8%Zn ;95%Sn+5%Zn 。为了防止金属高温氧化,表面放置石墨粉(此步骤由实验室完成)。 3. 安装:安装仪器并接好线路。 4. 加热溶化样品,制作步冷曲线:依次测100%Zn ,100%Bi ,100%Sn ,45%Sn+55%Zn ,

Sn-Bi二组分固液相图的绘制

S n-B i二组分固液相图 的绘制 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

Sn-Bi 二组分固液相图的绘制 【实验目的】 1. 掌握热分析法绘制二组分固液相图的原理和方法。 2. 了解纯物质与混合物步冷曲线的区别并掌握相变点温度的确定方法。 3. 了解简单二组分固-液相图的特点。 4. 掌握数字控温仪及KWL-80可控升温电炉的使用方法。 【实验原理】 压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度-组成图。 热分析法:其原理是将系统加热融化,然后使其缓慢而均匀地冷却,每隔一定时间记录一次温度,绘制温度与时间的关系曲线——步冷曲线。若系统在均匀冷却过程中无相变化,其温度将随时间均匀下降;若系统在均匀冷却过程中有相变化,由于体系产生的相变热与体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。 由于冷却过程中常常发生过冷现象,其步冷曲线常如上图中虚线所示,由横轴表示混合物的组成,纵轴表示温度,利用步冷曲线所得到的一系列组成和所对应的相变温度数据,就可以绘出相图,如下图: (a )纯物质的步冷曲 (b )二组分混合物的步冷曲线 (c )二组分低共熔混合

【仪器与试剂】 SWKY 数字控温仪1台;KWL-08可控升降温电炉1台;不锈钢样品管1支;炉膛保护筒1个;传感器1支。 纯Bi ;纯Sn ;石灰粉等。 【实验步骤】 1. (配含铋分别为0、20%、40%、70%、80%、100%(质量分数)的铋-锡混合物各100g ,分别装入不锈钢样品管中,再加入少许石墨粉覆盖试样,以防加热过程中试样接触空气而氧化。) 2. 按图2-16连接SWKY 数字控温仪与KWL-08可控升降温电炉,接通电源,将电炉置于 外控状态。 T B t/min W B /% 简单低共熔混合物二组分系统步冷曲线及相图

物理化学实验报告二组分简单共熔合金相图绘制

一、实验目的 1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。 2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。 二、主要实验器材和药品 1、仪器:KWL-II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳 2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡 三、实验原理 压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图。 较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。 研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法。溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。此法适用于常温F易测定组成的系统,如水盐系统。 热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。根据步冷曲线可以判断体系有无相变的发生。当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分。这是因为相变时的热效应使温度随时间的变化率发生了变化。因此,由步冷曲线的斜率变化可以确定体系的相变点温度。测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。 图3- 15(b)是具有简单低共熔点的A- B二元系相图,左右图中对应成分点a.b.c、d.e 的步冷曲线。下面对步冷曲线作简单分析。 在固定压力不变的条件下,相律为: f=c-φ+1 (3-6-1) 式中:c为独立组分数;为相数。 对于纯组分熔融体系,c=1,q=1。在冷却过程中若无相变化发生,其温度随时间变化关系曲线为平滑曲线。到凝固点时,固液两相平衡,=2,自由度为0,温度不变,出现水平线段。等体系全部凝固后,其冷却情况同纯熔融体系一样,呈一平滑曲线。图3- 15(a)中曲线ave 属于这种情况。 曲线C是低共培体冷却曲线,情况与a.c相似.水平线段的出现是因为当冷却到头能点温度r。时,A和B同时标出,且固相中的比例与溶液中相同,因此溶液浓度不变,从街具备

物化实验思考题

1.物理化学实验技术 思考题、讨论题、作业:物理化学实验与其他化学课程实验有哪些异同点? 2,微乳柴油燃烧热的测定 思考题、讨论题、作业: 1.什么是燃烧热?它在化学反应热的计算中有何应用? 2.影响本实验准确度的主要有哪些因素?为什么? 3.什么是氧弹卡计的水当量?如何测得? 4.实验测得的温差为何经过雷诺校正? 3. 柴油-水微乳体系拟三元相图的绘制 7.问题思考 (1)柴油的主要成分是什么?其燃烧后可能形成的产物有那些? (2)乳化柴油与微乳柴油的区别?制备方法上有什么不同? (3)乳化柴油为什么不稳定?其对柴油发动机产生的损害是什么? (4)为什么要进行柴油微乳液的研究?形成微乳柴油的通常条件是什么?其中各组分的作用是什么? (5)什么是相图?什么是拟三元相图?通过拟三元相图的绘制与分析,你可以得到那些信息? (6)确定微乳液基本性质的简单方法(W/0型乳液或0/W型乳液)有那些?其原理是什么?(7)为什么将柴油微乳化可提高柴油的燃烧效率,减少尾气排放?其可能的机理有那些?(8)氧弹量热技术的基本测量原理是什么?如何通过氧弹量热计测定微乳柴油的燃烧值? 燃油的完全燃烧与不完全燃烧有什么区别? (9)本实验乳化剂配方中,各种物质的作用是什么? (10)你能否将本实验设计为中学教学中的课外化学实验?如何设计? 思考题 1、溶胶-凝胶粉末的细度、均匀性受什么因素的影响? 2、自查文献了解稀土纳米荧光粉的研究进展。 自查文献了解开展纳米材料研究所需要的各种仪器及相应的表征对象。 4.电动势的测定和应用 思考题、讨论题、作业: 1.为何测电动势要用对消法?原理是什么? 2.测电动势为什么要用盐桥?如何选用盐桥以适合不同体系? 3.使用醌氢醌电极的限制条件是什么? 4.在测量过程中,如果示零器总是正值或负值,而不能示零,可能的原因是什么? 5.乙酸乙酯皂化反应速率常数的测定 思考题、讨论题、作业: 1.如何减小恒温水浴温度的波动? 2.影响二级反应速率常数测定准确性的因素? 6. 洗涤剂的配制 思考题、讨论题、作业: 课后根据课堂讲解和实验操作,总结实验现象,记录实验数据并处理实验数据,分析实验产生误差的可能之处,完成实验报告。

二组分金属相图的绘制思考题汇总

二组分金属相图的绘制思考题汇总 1.有一失去标签的Pb-Sn合金样品,用什么方法可以确定其组成? 答: 将其熔融、冷却的同时记录温度,作出步冷曲线,根据步冷曲线上拐点或平台的温度,与温度组成图加以对照,可以粗略确定其组成。 2.总质量相同但组成不同的Pb-Sn混合物的步冷曲线,其水平段的长度有什么不同?为什么? 答: (1)混合物中含Sn越多,其步冷曲线水平段长度越长,反之,亦然。 (2)因为Pb 和Sn的熔化热分别为23.0和59.4jg-1,熔化热越大放热越多,随时间增长温度降低的越迟缓,故熔化热越大,样品的步冷曲线水平段长度越长。 3.有一失去标签的Pb-Sn合金样品,用什么方法可以确定其组成? 4.总质量相同但组成不同的Pb-Sn混合物的步冷曲线,其水平段的长度有什么不同?为什么? (查表: Pb 熔点327℃,熔化热23.0jg-1,Sn熔点232℃,熔化热59.4jg-1) 5、何谓热分析法?用热分析法绘制相图时应注意些什么? 热分析法是相图绘制工作中的一种常用的实验方法,按一定比例配制均匀的液相体系,让他们缓慢冷却,以体系温度对时间作图,则为步冷曲线。曲线的转折点表征了某一温度下发生的相变的信息。 6、为什么要控制冷却速度,不能使其迅速冷却? 答:

使温度变化均匀,接近平衡态,必须缓慢降低温度,一般每分钟降低5度。 7、如何防止样品发生氧化变质? 答: 温度不可过高,空气不能过多和样品接触。 8、用相律分析在各条步冷曲线上出现平台的原因。 答: 因为金属熔融系统冷却时,由于金属凝固放热对体系散热发生一个补偿,因而造成冷却曲线上 的斜率发生改变,出现折点。当温度达到了两种金属的最低共熔点,会出现平台。 9、为什么在不同组成融熔液的步冷曲线上,最低共熔点的水平线段长度不同?答: 不同组成,各组成的熔点差值不同,凝固放热对体系散热的补偿时间也不同。 10.样品融熔后为什么要保温一段时间再冷却? 答: 使混合液充分混融,减小测定误差。 11.对于不同成分混合物的步冷曲线,其水平段有什么不同? 答: 纯物质的步冷曲线在其熔点处出现水平段,混合物在共熔温度时出现水平段。而平台长短也不同。 12.作相图还有哪些方法?

相关文档
最新文档