几个精彩的数论问题

几个精彩的数论问题
几个精彩的数论问题

几个精彩的数论问题

从同事那里借来了一本单墫教授?主编的《初等数论》奥数书,看到很多精彩的问题,在这里做个笔记,与大家一同分享。不少问题和答案都有过重新叙述,个别问题有所改动。

问题:找出所有使得 2n - 1 能被 7 整除的正整数 n 。

答案:由于 2n的二进制表达为1000…00 (n 个 0),因此 2n - 1 的二进制表达为111…11 (n 个 1)。而 7 的二进制表达是 111 ,要想让它整除 n 个1 ,显然 n 必须是也只能是 3 的倍数。

问题:是否存在 100 个数,使得它们的和等于它们的最小公倍数?

答案:是的。考虑3, 2 × 3, 2 × 32, 2 × 33, …, 2 × 398, 399,它们的和为:

3 + 2 × 3 + 2 × 32+ 2 × 33+ … + 2 × 398 + 399

= 3 × (1 + 2) + 2 × 32+ 2 × 33+ … + 2 × 398 + 399

= 32+ 2 × 32+ 2 × 33+ … + 2 × 398 + 399

= 32× (1 + 2) + 2 × 33+ … + 2 × 398 + 399

= 33+ 2 × 33+ … + 2 × 398 + 399

= ... ...

= 399 + 399

= 2 × 399

而这 100 个数的最小公倍数正是 2 × 399。

问题:能否找出 100 个不同的正整数,使得其中任意 2 ≤ k ≤ 100 个数的算术平均数都恰为整数。

答案:能。这个问题非常唬人,它的答案异常简单: 1 · 100!, 2 · 100!, 3 · 100!, …, 100 · 100! 显然满足要求。

问题:求证,存在任意长的连续正整数,使得其中任何一个数都不是质数的幂(当然更不能是质数)。

答案。有一个经典的问题是,求证存在任意长的连续正整数,它里面不包含任何质数。换句话说,相邻质数的间隔可以达到任意大。构造的方法堪称经典。显然n! + 2 是 2 的倍数(因为我们可以提出一个 2 来), n! + 3 是 3 的倍数,等等。因此,n! + 2, n! + 3, n! + 4, …, n! + n 就是 n - 1 个连续的正整数,其中任意一个数都不是质数。由于 n 可以任意大,因此这个数列可以任意长。

现在,我们要证明的是一个更强的结论。我们可以把刚才的构造方案简单地修改一下。只需要考虑 (n!)2 + 2, (n!)2 + 3, (n!)2+ 4, …, (n!)2 + n ,则其中每一个数都不是质数的幂。比如说 (n!)2 + 5 ,显然它是 5 的倍数,因为我们可以提出一个 5 来;然而提出一个 5 之后将会得到

5 · (12· 22· 32· 42· 5 · 62· … · n2 + 1) ,括号里的数显然不再是 5 的倍数,它除以 5 余 1 。

利用中国剩余定理,我们还能给出另一种非常巧妙的构造方案,它能找出 n 个不含质数幂的连续正整数数列,其中 n 可以任意大。我们只需要保证,每个数

都含有至少两个不同的质因数即可。取 2n 个不同的质数 p

1, p

2

, …, p

n

, q

1

,

q 2, …, q

n

,显然 p

1

· q

1

, p

2

· q

2

, …, p

n

· q

n

是两两互质的 n 个数。由

中国剩余定理,我们能找到一个正整数 M ,使得 M 除以 p

1· q

1

余 1 ,并且

M 除以 p

2· q

2

余 2 ,并且 M 除以 p

3

· q

3

余 3 ,一直到 M 除以 p

n

· q

n

余 n 。于是, M - 1, M - 2, M - 3, …, M - n 就是 n 个连续的正整数,其中每一个都含有两个不同的质因数。

问题:求证,对于任意大的 n ,我们都能够找出 n 个两两互质的数,使得任意2 ≤ k ≤ n 个数之和都不是质数

答案:如果只要求任意多个数之和都不是质数,这很好办:让所有数都是某个数的倍数即可。但是,如果这些数必须两两互质,同样的要求还能办到吗?可以的。考虑n! + 1, 2 · (n!) + 1, 3 · (n!) + 1, …, n · (n!) + 1 这 n 个数,显然任意 k 个数之和都是 k 的倍数,因而不是质数。下面说明这 n 个数两两互质。假设i · (n!) + 1 和j · (n!) + 1 有公共的质因数 p ,其中 1 ≤ i < j ≤ n ,那么它们的差 (j - i) · (n!) 也能被 p 整除,说明 p 只能是不超过 n 的质数。这与 p 能整除i · (n!) + 1 矛盾。

问题:证明,对于任意正整数 n ,方程 x2 + y2 = z n都有无穷多组正整数解。

答案:考虑 x + yi = (a + bi)n,其中 i 为虚数单位。对于每一个固定的 n ,只要 a 和 b 都是整数,那么展开后得到的 x 和 y 也都一定是整数。我们选取充分大的 a ,让 a + bi 的辐角非常小非常小(小于π/2 的 n 分之一),从而让 (a + bi)n不会与坐标轴重合,因而保证 x 和 y 都是非零整数。等式两边同时取模,便有 x2 + y2 = (a2 + b2)n

问题:我们把平面直角坐标系上所有横纵坐标互质的整格点(也就是和原点的连线不经过其他点的整格点)叫做“既约格点”。证明,对于任意大的正整数 n ,总存在一个整格点,它到任意既约格点的距离都大于 n (换句话说,既约格点集的“空洞”可以达到任意大)。

答案:列一张(2n + 1) × (2n + 1) 的表,每个格子里面填写一个不同的质数(由于质数无穷多,这是总可以办到的)。现在,找出这样的一个 a ,它除以第 i 行的质数总是余 i (其中 - n ≤ i ≤ n )。找出这样的一个 b ,它除以第 j 列的质数总是余 j (其中 -n ≤ j ≤ n)。中国剩余定理保证了这样的 a 和 b 是存在的。下面说明,点 (a, b) 满足要求。

假如 (a, b) 到 (x, y) 的距离不超过 n ,则 (a - x)2 + (b - y)2≤ n2。因而, a - x 和 b - y 都必须在 - n 到 n 的范围内。把 a - x 的值记作 i ,把 b - y 的值记作 j ,那么 x 就等于 a - i , y 就等于 b - j ,由 a 、 b 的构造可知, x 和 y 都是表格中第 i 行第 j 列的那个质数的倍数,故 (x, y) 不是既约格点。

问题:找出所有这样的正整数序列 (a

1, a

2

, …, a

n

) ,它们的和为 2n ,但我

们无法把它们分成和相等的两组。

答案:考虑 a

1, a

2

, a

1

+ a

2

, a

1

+ a

2

+ a

3

, …, a

1

+ a

2

+ a

3

+ … + a

n

,除了

a 1和 a

2

以外,这些数除以 n 的余数不允许相等,否则它们的差就是 n 的倍数,

我们就找到了和为 n 的子集。然而,上面一共有 n + 1 个数,它们除以 n 的

余数必然有相等的,因而一定是 a

1和 a

2

除以 n 的余数相等。类似地, a

2

a 3除以 n 的余数也相等, a

3

和 a

4

除以 n 的余数也相等,因而事实上从 a

1

a

n

所有的数除以 n 的余数都是相等的。

但是这 n 个数加起来只有 2n ,可见所有的数除以 n 的余数只可能都是 1 或者都是 2 。于是我们得到了所有满足要求的数列:(1, 1, 1, …, 1, n + 1) ,以及(2, 2, 2, …, 2) 。其中后者要求 n 为奇数。

问题:证明,存在无穷多个正整数三元组 (a, b, c) ,使得 a2+ b2、 b2+ c2、a2 + c2都是完全平方数。

答案:任取一组勾股数 (x, y, z) ,令 a = x|4y2 - z2| , b = y|4x2 - z2|,c = 4xyz 。于是,

a2 + b2 = x2(3y2 - x2)2 + y2(3x2 - y2)2

= x6 + 3x2y4 + 3x4y2 + y6

=(x2 + y2)3 = (z3)2

a2 + c2 = x2(4y2 + z2)2

b2 + c2 = y2(4x2 + z2)2

从而 a 、 b 、 c 满足要求。由于勾股数有无穷多组,因此满足要求的 (a, b, c) 也有无穷多组。

这相当于给出了 Euler 砖块(所有棱长和所有面对角线都是整数的长方体)的一种构造解。当 (x, y, z) = (3, 4, 5) 时,我们将得到棱长分别为 117 、 44 、240 的 Euler 砖块,这就是最小的 Euler 砖块,它是由 Paul Halcke 在 1719 年发现的。

大家或许会想,有没有什么长方体,不但所有棱长和所有面对角线都是整数,连体对角线也是整数呢?这样的长方体就叫做完美长方体。有趣的是,虽然 Euler 砖块有无穷多种,但是人们目前还没有找到哪怕一个完美长方体。完美长方体究竟是否存在,目前仍然是一个未解之谜。

问题:证明,若正整数 a 和 b 互质,则[b / a] + [2b / a] + [3b / a] + … + [(a - 1) b / a] = (a - 1)(b - 1) / 2 。其中, [n] 是 n 的整数部分,即对 n 取下整。

答案:我们先举一个例子来说明这个问题的复杂性。数列 [b / a], [2b / a], [3b / a], …, [(a - 1) b / a] 的规律并不一定非常明确。例如,当 a = 17 且 b = 12 时,[12 / 17], [2 · 12 / 17], [3 · 12 / 17], … [16 · 12 / 17] 分别为 0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11 ,但这 16 个数之和为 88 ,正好是 16 和 11 乘积的一半。

结论的证明很有意思。在平面直角坐标系的第一象限摆放一个宽为 a ,高为 b 的矩形。则[k · b / a] 就是图中第 k 条红色竖直线上的整格点数目,所有[k · b / a] 之和也就是阴影三角形内的整格点总数。然而由于 a 和 b 互质,矩形的对角线不会经过矩形内部的任何格点,因此阴影三角形内的整格点数就应该是矩形内的整格点数的一半,即 (a - 1)(b - 1) / 2。

问题:若正无理数α和β满足 1 / α+ 1 / β= 1 ,求证数列[1 · α], [2 · α], [3 · α], … 和[1 · β], [2 · β], [3 · β], … 既无重复又无遗漏地包含了所有的正整数。这里 [ ] 同样是取下整的意思。

答案:让我们先来看一个例子吧。考虑黄金比例φ= (√5 + 1) / 2 ≈ 1.618 ,我们有 1 / φ+ 1 / (φ+ 1) = 1 。数列[1 · φ], [2 · φ], [3 · φ], … 为1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, … ,而数列[1 · (φ+ 1)], [2 · (φ+ 1)], [3 · (φ + 1)], … 则为2, 5, 7, 10, 13, 15, 18, 20, 23, 26, … 。你会发现,前一个数列里没有的数,正好都在后一个数列里,而后一个数列里没有的数,前一个数列里正好都有。两个数列合在一起,就是整个正整数序列。

这个定理叫做 Beatty-Rayleigh 定理,它有很多种证明,其中两种证明参见Wikipedia。这里给出一种我非常喜欢的证明,它出自Using your Head is Permitted。

首先注意到,如果 x 和 y 都不是整数,那么 [x] 严格地小于 x ,[y] 严格地小于 y ,从而 [x] + [y] < x + y 。另外,[x] 一定严格地大于 x - 1 , [y] 一定严格地大于 y - 1 ,从而 [x] + [y] 一定严格地大于 x + y - 2。这说明,当 x 和 y 都不是整数时, [x] + [y] 将介于 x + y - 2 和 x + y 之间。

回到原问题。显然,在第一个数列中,小于 n 的正整数有 [n / α] 个。显然,在第二个数列中,小于 n 的正整数有 [n / β] 个。因此,在这两个数列中,小于 n 的正整数共有 [n / α] + [n / β] 个。由于α和β都是无理数,因此 n / α和 n / β不可能为整数,由刚才的结论, [n / α] + [n / β] 一定介于 n / α + n / β - 2 和 n / α + n / β之间,即 n - 2 和 n 之间。但是, [n / α] + [n / β] 是个整数,因而它精确地等于 n - 1 。

这说明,前 n - 1 个正整数在两个数列中一共出现了 n - 1 次,这对于所有 n 都成立。于是,正整数 1 必须且只能出现在其中一个数列中,正整数 2 必须且只能出现在其中一个数列中,以此类推,每一个新的正整数都必须且只能出现在其中一个数列中。

这种取整函数的处理技巧也可以用到上一个问题里:对上一个问题里的数头尾配对,你会发现每一对数之和都是 b - 1 。

问题:把10, 100, 1000, 10000, … 分别写成二进制数和五进制数:

原数列:10, 100, 1000, 10000, 10000, …

二进制:1010, 1100100, 1111101000, 10011100010000, …

五进制:20, 400, 13000, 310000, 11200000, ...

你会发现,对于任意正整数 n > 1 ,后两个数列里恰好有一个数是 n 位数。这是为什么?

答案:这是 Beatty-Rayleigh 定理的一个非常漂亮的直接推论。 10k的二进制

表达恰好有 [log

210k] + 1 位,即[k · log

2

10] + 1 位。10k的五进制表达恰

好有 [log

510k] + 1 位,即[k · log

5

10] + 1 位。我们只需要证明,数列

[1 · log

210], [2 · lo g

2

10], [3 · log

2

10], … 和[1 · log

5

10],

[2 · log

510], [3 · log

5

10], … 既无重复又无遗漏地包含了所有正整数。注

意到 log

210 和 log

5

10 是两个倒数和为 1 的无理数,用一下 Beatty-Rayleigh

定理就出来了。

如果你喜欢这些问题,这里还有另一个类似的小合集:https://www.360docs.net/doc/4c7758239.html,/blog/archives/3172

奥数赠品数论50题

数论50题 1.由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】各位数字和为1+3+4+5+7+8=28 所以偶数位和奇数位上数字和均为14 为了使得该数最大,首位必须是8,第2位是7,14-8=6 那么第3位一定是5,第5位为1 该数最大为875413。 2.请用1,2,5,7,8,9这六个数字(每个数字至多用一次)来组成一个五位数,使得它能被75整除,并求出这样的五位数有几个? 【分析】 75=3×25 若被3整除,则各位数字和是3的倍数,1+2+5+7+8+9=32 所以应该去掉一个被3除余2的,因此要么去掉2要么去掉8 先任给一个去掉8的,17925即满足要求 1)若去掉8 则末2位要么是25要么是75,前3位则任意排,有3!=6种排法 因此若去掉8则有2*6=12个满足要求的数 2)若去掉2 则末2位只能是75,前3位任意排,有6种排法 所以有6个满足要求 综上所述,满足要求的五位数有18个。 3.已知道六位数20□279是13的倍数,求□中的数字是几? 【分析】根据被13整除的判别方法,用末三位减去前面的部分得到一个两位数,十位是7,个位是(9-□),它应该是13的倍数,因为13|78,所以9-□=8 □中的数字是1 4.某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是?(2005全国小学数学奥赛)【分析】可以表示成连续9个自然数的和说明该数能被9整除,可以表示成连续10个自然数的和说明该数能被5整除,可表示成连续11个自然数的和说明该数能被11整除 因此该数是[9,5,11]=495,因此符合条件的最小自然数是495。 111考了优秀,一次考试中,某班同学有考了良好,考了及格,剩下的人不及格,已知该5.723班同学的人数不超过50,求有多少人不及格? 【分析】乍一看这应该是一个分数应用题,但实际上用到的却是数论的知识,由于人数必须是整数,所以该班同学的人数必须同时是2,3,7的倍数,也就是42的倍数,又因为人数不超过50,111--)×42=1人 1-所以只能是42人,因此不及格的人数为(7326.(1)从1到3998这3998个自然数中,有多少个能被4整除? (2)从1到3998这3998个自然数中,有多少个数的各位数字之和能被4整除? (第14届迎春杯考题) 【分析】(1)3998/4=999….6所以1-3998中有996个能被4整除的

学而思 小升初专项训练__数论篇(1) 教师版

名校真题 测试卷10 (数论篇一) 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (05年人大附中考题) 有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2 (05年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是__。 3 (05年首师附中考题) 211+2121202+21212121 13131313212121505 =__。 4 (04年人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 5 (02年人大附中考题) 下列数不是八进制数的是( ) A 、125 B 、126 C 、127 D 、128 【附答案】 1 【解】:6 2 【解】:设原来数为ab ,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为211+212+215+21 13=1 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。 5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D 。

第十讲 小升初专项训练 数论篇(一) 一、小升初考试热点及命题方向 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 二、2007年考点预测 2007年的小升初考试将继续以填空和大题形式考查数论,命题的方向可能偏向小题考察单方面的知识点,大题则需综合运用数的整除,质数与合数,约数倍数以及整数的分拆等方法,希望同学们全面掌握数论的几大知识点,能否在考试中取得高分解出数论的压轴大题是关键。 三、基本公式 1)已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c 。 [讲解练习]:若3a75b 能被72整除,问a=__,b=__.(迎春杯试题) 2)已知c|ab ,(b,c)=1,则c|a 。 3)唯一分解定理:任何一个大于1的自然数n 都可以写成质数的连乘积,即 n= p11a × p22a ×...×p k ak (#) 其中p1

ACM经典算法及配套练习题

POJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,p oj2255,poj3094) 初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. (5)构造法.(poj3295) (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996) 二.图算法: (1)图的深度优先遍历和广度优先遍历. (2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra) (poj1860,poj3259,poj1062,poj2253,poj1125,poj2240) (3)最小生成树算法(prim,kruskal) (poj1789,poj2485,poj1258,poj3026) (4)拓扑排序(poj1094) (5)二分图的最大匹配(匈牙利算法) (poj3041,poj3020) (6)最大流的增广路算法(KM算法). (poj1459,poj3436) 三.数据结构. (1)串(poj1035,poj3080,poj1936) (2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299) (3)简单并查集的应用. (4)哈希表和二分查找等高效查找法(数的Hash,串的Hash) (poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503) (5)哈夫曼树(poj3253) (6)堆 (7)trie树(静态建树、动态建树) (poj2513) 四.简单搜索 (1)深度优先搜索(poj2488,poj3083,poj3009,poj1321,poj2251) (2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414) (3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129) 五.动态规划 (1)背包问题. (poj1837,poj1276) (2)型如下表的简单DP(可参考lrj的书page149): 1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533) 2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159) 3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题) 六.数学 (1)组合数学:

小学奥数数论专题知识总结

数论基础知识 小学数论问题,起因于除法算式:被除数÷除数=商……余数 1.能整除:整除,因数与倍数,奇数与偶数,质数与合数,公因数与公倍数,分解质因数等; 2.不能整除:余数,余数的性质与计算(余数),同余问题(除数),物不知数问题(被除数)。 一、因数与倍数 1、因数与倍数 (1)定义: 定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。 定义2:如果非零自然数a、b、c之间存在a×b=c,或者c÷a=b,那么称a、b是c的因数,c是a、b 的倍数。 注意:倍数与因数是相互依存关系,缺一不可。(a、b是因数,c是倍数) 一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。 一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。 (2)一个数的因数的特点: ①最小的因数是1,第二小的因数一定是质数; ②最大的因数是它本身,第二大的因数是:原数÷第二小的因数 (3)完全平方数的因数特征: ①完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。 ②完全平方数的质因数出现次数都是偶数次; ③1000以内的完全平方数的个数是31个,2000以内的完全平方数的个数是44个,3000以内的完 全平方数的个数是54个。(312=961,442=1936,542=2916) 2、数的整除(数的倍数) (1)定义: 定义1:一般地,三个整数a、b、c,且b≠0,如有a÷b=c,则我们就说,a能被b整除,或b能整除a,或a能整除以b。 定义2:如果一个整数a,除以一个整数b(b≠0),得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。(a≥b) (2)整除的性质: 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。 如果a能被b整除,c是整数,那么a×c也能被b整除。 如果a能被b整除,b又能被c整除,那么a也能被c整除。 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。 (3)一些常见数的整除特征(倍数特征): ①末位判别法 2、5的倍数特征:末位上的数字是2、5的倍数。 4、25的倍数特征:末两位上的数字是4、25的倍数。 8、125的倍数特征:末三位上的数字是8、125的倍数。 ②截断求和法(从右开始截) 9(及其因数3)的倍数特征:一位截断求和 99(及其因数3、9、11、33)的倍数特征:两位截断求和 999(及其因数3、9、27、37、111、333)的倍数特征:三位截断求和 ③截断求差法(从右开始截) 11的倍数特征:一位截断求差 101的倍数特征:两位截断求差 1001(及其因数7、11、13、77、91、143)的倍数特征:三位截断求差

小升初数学专项解析+习题-数论篇-通用版(附答案)

小升初重点中学真题之数论篇 数论篇一 1 (人大附中考题) 有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2 (101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。 3(人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 4 (人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 预测 1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?

预测 2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。2004年元旦三个网站同时更新,下一次同时更新是在____月____日? 预测 3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______. 数论篇二 1 (清华附中考题) 有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____. 2 (三帆中学考题) 140,225,293被某大于1的自然数除,所得余数都相同。2002除以这个自然数的余数是 . 3 (人大附中考题)

数论题目

浙江师范大学《初等数论》考试卷(A1卷) (2004——2005学年第一学期) 考试类别使用学生数学专业**本科 考试时间120分钟表出卷时间*年*月*日 说明:考生应有将全部答案写在答题纸上,否则作无效处理。 一、填空(30分) 1、d(1000)= 。φ(1000)= 。()=______ 。 2、ax+bY=c有解的充要条件是。 3、被3除后余数为。 4、[X]=3,[Y]=4,[Z]=2,则[X—2Y+3Z]可能的值为。 5、φ(1)+φ(P)+…φ()=。 6、高斯互反律是。 7、两个素数的和为31,则这两个素数是。 8、带余除法定理是。 答案 1、16.2340,1 2、(a,b)|c 3、1 4、3,4,5,6,7,8,9,10,11 5、 6、,p,q为奇素数 7、2,29 8、a,b是两个整数,b>0,则存在两个惟一的整数q,r使得 二、解同余方程组(12分) 答案 解:因为(12,10)|6-(-2),(10,15)|6-1,(12,15)|1-(-2) 所以同余式组有解 原方程等价于方程 即 由孙子定理得 三、A、叙述威尔逊定理。 B.证明若,则m为素数(10分)

答案 A.(威尔逊定理)整数是素数,则 证:若m不是素数,则m=ab,,则,则有 不可能,所以m是素数。 四.解方程≡0(mod27)(10分) 答案 解:由≡0(mod3)得得x=1+3t代入 ≡0 (mod9)有有代入x=1+3t得 代入≡0 (mod27)有代入有 , 即 设2P+1为素数,试证(10分) 答案 证:因n=2P+1为素数,由威尔逊定理即有 即证 六、设P=4n+3是素数,证明当q=2p+1也是素数时,梅森数不是素数。(10分) 答案 证:因q=8n+7,由性质2是q=8n+7的平方剩余,即 所以梅森数不是素数。 七、证无正整数解。(8分) 答案 证:假设有解,设(x,y,z)是一组正整数解,则有x是3的倍数,设x=3x1,又得到y为3的倍数,设,又有,则有解且z>z1 这样可以一直进行下去,z>z1>z2> z3>z4>… 但是自然数无穷递降是不可能的,于是产生了矛盾 八、设n是大于2的整数,证明为偶数(10分) 答案 证:因为(-1,n)=1,由欧拉定理有 ,因为n大于2,只有为偶数。

(2020年编辑)ACM必做50题的解题-数论

poj 1061 青蛙的约会 这题用的是解线性同余方程的方法,之前没接触到过,搜索资料后看到一个人的博客里面讲的很好就拷贝过来了。内容如下: 对于方程:ax≡b(mod m),a,b,m都是整数,求解x 的值,这个就是线性同余方程。符号说明: mod表示:取模运算 ax≡b(mod m)表示:(ax - b) mod m = 0,即同余 gcd(a,b)表示:a和b的最大公约数 求解ax≡b(mod n)的原理:对于方程ax≡b(mod n),存在ax + by = gcd(a,b),x,y是整数。而ax≡b(mod n)的解可以由x,y来堆砌。具体做法如下: 第一个问题:求解gcd(a,b) 定理一:gcd(a,b) = gcd(b,a mod b) 欧几里德算法 int Euclid(int a,int b) { if(b == 0) return a; else return Euclid(b,mod(a,b)); } 附:取模运算 int mod(int a,int b) { if(a >= 0) return a % b; else return a % b + b; } 第二个问题:求解ax + by = gcd(a,b) 定理二:ax + by = gcd(a,b)= gcd(b,a mod b) = b * x' + (a mod b) * y' = b * x' + (a - a / b * b) * y' = a * y' + b * (x' - a / b * y') = a * x + b * y 则:x = y' y = x' - a / b * y' 以上内容转自https://www.360docs.net/doc/4c7758239.html,/redcastle/blog/item/934b232dbc40d336349bf7e4.html

小学奥数数论专题

名校真题测试卷10 (数论篇一) 1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2、(05年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是_____。 3 (05年首师附中考题) 1 21+ 202 2121 + 50513131313 21212121212121 =________。 4 (04年人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 (02年人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 【附答案】 1 【解】:6 2 【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为1 21 + 2 21 + 5 21 + 13 21 =1 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。 5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。 第十讲小升初专项训练数论篇(一) 一、小升初考试热点及命题方向 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 二、考点预测 的小升初考试将继续以填空和大题形式考查数论,命题的方向可能偏向小题考察单方面的知识点,大题

小升初之数论专题

数论 [知识要点]小学升初考试中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得 a=bq+r(0≤r<b), 且q,r是唯一的。 特别地,如果r=0,那么a=bq。这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。 2.若a|c,b|c,且a,b互质,则ab|c。 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是 唯一的。(1)式称为n的质因数分解或标准分解。 4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)=(a1+1)(a2+1)…(ak+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x<y与x≤y-1是等价的。 下面,我们将按数论题的内容来分类讲解。 第一节整除 【专题简析】:在数的整除中要熟记数整除的特点,在用整除的知识来解决相关 试题的时候要注意首先确定末尾那个数字,在确定其他的数字。 数整除的特征 数特点 被2整除一个整数的个位是0,2,4,6,8中的某一个 被3(或者9)整除一个整数的各位数字之和能被3(或者9)整除 被5整除一个整数的末尾不是5就是0 被4(或者25)整除一个整数的末两位能被4(或者25)整除 被8(或者125)整除一个整数的末三位能被8(或者125)整除 被11整除一个整数的奇数数位上的数字之和与偶数数位上的数 字之和的差(较大数减较小数)能被11整除 被7(或者11或者13)整除一个整数的末三位与末三位以前的数字所组成的数之差(较大数减较小数)能

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

小升初数论专题复习题

小升初数论专题复习题——数的认识 小升初数论专题复习题——数的认识 1. 9.4607是()位小数,精确到十分位是()。保留两位小数是()。 2. 60606000是一个()位数,从左向右数第2个“6”在()位上,第3个“6”表示6个()。 3. 一个数由2个亿,3个千万和6个百组成,把它写成用“万”做单位的数是()。 4. 用三个8和三个0组成的6位数中,一个0都不读的最小的6位数是(),读出一个0的最大的6位数是(),读出两个0的最大的6位数是()。 5. 一个两位小数用四舍五入法保留整数的得到的近似数是8,这个小数最大是(),最小是()。 6. 一个整数精确到万位是30万,这个数精确前可能是()。 A.294999 B.295786 C.305997 D.309111 7. 下列各数中最大的数是()。 A.3.1 B.10/3 C.330% D.3/2/5(三又五分之二) 8. 分数100/3和2000/m之间,恰好有11个自然数,那么整数m是()。 9. 已知a是真分数,括比较a与2a的大小是()。 A. a=2a B.a>2a C.a<2a D.a>2a或a=2a 10. 一个数四舍五入后是6万,那么这个数最大是()。 A.60999 B.64449 C.64999 D.69999 11. 用24 块相同的积木搭成长方体,表面积最小是()。 12. 2205乘以一个非零自然数a,积是一个整数的平方,那么a最小是()。

13. 慕容老师为了奖励六年级的学生,带了180元钱去文具店买同一种钢笔,钱刚好花完。她发现钢笔单价元数比购买的支数少3。每支钢笔()元。 14. 从0,1,2,5,8中选择三个数字,组成一个既是5的倍数又是偶数的最大三位数,这个数是();组成一个既是2的倍数又是3 的倍数的最小三位数,这个数是()。15.(星河区某重点小学小升初试题)三个连续奇数的和为51,则其中最小的数为()。 16.(高新区某重点小学分班测试题)1,3,5,7,…是从1开始的奇数,其中第2021个奇数是()。 17.(某重点中学附小潜能测试题)已知21 是若干连续奇数中最小的一个,32是若干连续偶数中最大的一个,奇数和偶数共有9个,它们的和是241,那么奇数有()个,偶数有()个。 18. 一堆桃子。3个3个的数,还剩2个;5个5个的数,还剩4个;7个7个的数,还剩6个。这堆桃子至少有()个。 19.(希望杯竞赛试题)1×2+3×4+5×6+…+199×200的和是()。 20.(小升初联考试题)在四位数1□20中的方框里填一个数字,使它能同时被 2,3,5 整除,最多有()种填法。 A.无数 B.2 C.3 D.4 21.(小升初试真题)元旦前,作文小组的12名同学互相送贺年卡片,如果每人收到贺年片后,要再赠送别人一张贺年卡片,问所有贺年卡片的总数是()张。 22.(某校园数学排位赛试题)如果一个合数加1后是质数,那么称这个合数是“第一类和数”,如果一个合数加3后是质数,那么称这个合数是“第二类和数”。问100以内的“第一类和数”有()个。100以内的“第二类和数”有()个。 23.(某实验外国语中学考前模拟题)一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,每一个数都是前面两个数的和,也就是:1,1,2,3,5,8,13,21,34,55,…,问:这串数的前100个数中(包括第 100 个数)有()个偶数,有()个3的倍数。 24. 在1,2,3,...,19,20中互质的数共有()对。

小学奥数专题之-数论专题典型结论汇总

数论专题典型结论汇总 整除 一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2. 一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除. 4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除. 5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 【备注】(以上规律仅在十进制数中成立.) 二、整除性质 性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a , c ︱b ,那么c ︱(a ±b ). 性质2 如果数a 能被数b 整除,b 又能被数c 整除,那么a 也能被c 整除.即如果b ∣a , c ∣b ,那么c ∣a . 用同样的方法,我们还可以得出: 性质3 如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除.即如果bc ∣a ,那 么b ∣a ,c ∣a . 性质4 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b 与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a . 例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12. 性质5 如果数a 能被数b 整除,那么am 也能被bm 整除.如果 b |a ,那么bm |am (m 为 非0整数); 性质6 如果数a 能被数b 整除,且数c 能被数d 整除,那么ac 也能被bd 整除.如果 b | a ,且d |c ,那么bd |ac ; 质数合数 一、判断一个数是否为质数的方法 根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=?,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数. 二、唯一分解定理 任何一个大于1的自然数n 都可以写成质数的连乘积,即: 312123k a a a a k n p p p p =????

100个著名初等数论问题

100个著名初等数学问题 https://www.360docs.net/doc/4c7758239.html,/xyp 2003-10-26 数学园地 第01题阿基米德分牛问题Archimedes' Problema Bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成. 在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7. 在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7. 问这牛群是怎样组成的? 第02题德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物. 问这4块砝码碎片各重多少? 第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cows a头母牛将b块地上的牧草在c天内吃完了; a'头母牛将b'块地上的牧草在c'天内吃完了; a"头母牛将b"块地上的牧草在c"天内吃完了; 求出从a到c"9个数量之间的关系? 第04题贝韦克的七个7的问题Berwick's Problem of the Seven Sevens 在下面除法例题中,被除数被除数除尽: * * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢? 第05题柯克曼的女学生问题Kirkman's Schoolgirl Problem

ACM必做50题——数学

1、POJ 2249 Binomial Showdown 组合数学。 高精度,也可把分子分母的数组进行两两约分 #include using namespace std; double c(int c,int k) { double a=1; int i,j=2; for(i=c;i>c-k;i--) a=a*i/(c-i+1); return a; } int main() { int n,k; while(scanf("%d%d",&n,&k)!=EOF && (n!=0 || k!=0)) { if(k>n/2 )k=n-k; printf("%.0lf\n",c(n,k)); } return 0; } 2、poj 1023 the fun number system (经典进位制) 题意:一种由2进制衍生出来的进制方法(我们暂且称为“类2进制”); 标明'n'的位置上原2进制该位的权重要乘上-1,才是现在进制方法该位的权重; 譬如说;pnp对于的能表示的数2来说就是110;即1*2^2+(-1)*1*2^1+1*2^0=2; 算法:这是数论中的进位制问题,我们可以仿照原来的求一个数二进制表示方法; 但首先,我们应该考虑几个问题; ①k位这种类2进制的表示范围; 显然,当给出的'p','n'序列中,我们将所有p的位置都置为1其余位是0,此时最大;当我们将所有n的位置置为1,其余为0,此时最小;不过当我们求最大限max和最小限min时会

有一个溢出问题;比如64位全是p的序列,那么max会溢出,值为-1;同理min在全是n 时也会溢出,为1;显然是max>=0,min<=1,溢出时产生异常,依次可以判断; ②是否是最大限和最小限之间的数都能表示呢? 都可以,而且能够表示的数是2^k个,这个原始2进制是一样的;因为每个位上要么是0,要么是1,而且每个位上的权重唯一的,不能通过其他位的01组合获得;最后,我们就可以仿照原始二进制来算在类2进制下的表示;不断求N的二进制最后一位和右移;如果取余是1,则该位上一定是1,如果该位对于字母为‘n’,则高位应该再加1;这里对2取余可能会出错,因为对于负数,补码的表示,最后一位一定是和原码一样的每次的右移后(有时需先加1)补码表示正好符合要求(可找实例验证); #include using namespace std; __int64 N,M; char s[100],res[100]={'\0'}; int main() { int T;scanf("%d",&T); int i,j; __int64 _max,_min; char ch; while(T--) { scanf("%I64d",&N); scanf("%s",s); _max=0;_min=0; for(i=0;i_max&&_max>=0)) puts("Impossible"); //注意防止64位数的溢出; else { memset(res,'\0',sizeof(res)); for(i=N-1;i>=0;i--) { int flag=0; if(M&1) //这里不能是平常的%2; { res[i]='1';

小学奥数-数论专题知识总结

数论基础知识 小学数论问题,起因于除法算式:被除数÷除数=商……余数 1.能整除:整除,因数与倍数,奇数与偶数,质数与合数,公因数与公倍数,分解质因数等; 2.不能整除:余数,余数的性质与计算(余数),同余问题(除数),物不知数问题(被除数)。 一、因数与倍数 1、因数与倍数 (1)定义: 定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。 定义2:如果非零自然数a、b、c之间存在a×b=c,或者c÷a=b,那么称a、b是c的因数,c是a、b 的倍数。 注意:倍数与因数是相互依存关系,缺一不可。(a、b是因数,c是倍数) 一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。 一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。 (2)一个数的因数的特点: ①最小的因数是1,第二小的因数一定是质数; ②最大的因数是它本身,第二大的因数是:原数÷第二小的因数 (3)完全平方数的因数特征: ①完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。 ②完全平方数的质因数出现次数都是偶数次; ③1000以内的完全平方数的个数是31个,2000以内的完全平方数的个数是44个,3000以内的完 全平方数的个数是54个。(312=961,442=1936,542=2916) 2、数的整除(数的倍数) (1)定义: 定义1:一般地,三个整数a、b、c,且b≠0,如有a÷b=c,则我们就说,a能被b整除,或b能整除a,或a能整除以b。 定义2:如果一个整数a,除以一个整数b(b≠0),得到一个整数商c,而且没有余数,那么叫做a能被b 整除或b能整除a,记作b|a。(a≥b) (2)整除的性质: 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。 如果a能被b整除,c是整数,那么a×c也能被b整除。 如果a能被b整除,b又能被c整除,那么a也能被c整除。 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。 (3)一些常见数的整除特征(倍数特征): ①末位判别法 2、5的倍数特征:末位上的数字是2、5的倍数。 4、25的倍数特征:末两位上的数字是4、25的倍数。 8、125的倍数特征:末三位上的数字是8、125的倍数。 ②截断求和法(从右开始截) 9(及其因数3)的倍数特征:一位截断求和 99(及其因数3、9、11、33)的倍数特征:两位截断求和 999(及其因数3、9、27、37、111、333)的倍数特征:三位截断求和 ③截断求差法(从右开始截) 11的倍数特征:一位截断求差 101的倍数特征:两位截断求差

小升初第三讲――专题训练之数论问题.(优选)

小升初专项训练---数论 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。翻开任何一本数学辅导书,数论的内容都占据了不少的版面。在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题的题目分值大概占据整张试卷总分的12%左右,小学阶段的数论知识点主要有: 1、质数与合数、因数与倍数、分解质因数 2、数的整除特征及整除性质 3、余数的性质、同余问题 4、位值原理 5、最值问题 知识点一:质数与合数、因数与倍数、分解质因数 1.质数与合数 突破要点——质数合数分清楚,2是唯一偶质数 (1)质数:一个数除了1和它本身以外,没有其他的因数,这样的数统称质数。 (2)合数:一个数除了1和它本身以外,还有其他的因数,这样的数统称合数。 例如:4、6、8、10、12、14,…都是合数。 在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数 2约数与倍数 公因数短除法到一个不能除为止,公倍数除到海枯石烂为止,因数有限个,倍数无穷多。如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。自然数a1,a2,…,an的最大公约数通常用符号(a1,a2,…,an)表示,例如,(6,9,15)=3。

3.质因数与分解质因数 (1)如果一个质数是某个数的约数,那么就是说这个质数是这个数的质因数。 (2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如,把42分解质因数,即是42=2×3×7。其中2、3、7叫做42的质因数。 又如,50=2×5×5,2、5都叫做50的质因数。 4、要注意以下几条: (1)1既不是质数,也不是合数。 (2)质数有无限多个,最小的质数是2。 (3)在质数中只有2是偶数,其余的质数全是奇数。 (4)合数有无限多个。最小的合数是4。 (5)每个合数至少有三个约数:1、它本身、其他约数。例如,8的约数除1和8外,还有2、4,所以8是合数。 知识点二:数的整除特征及整除性质 突破要点——牢记特征是关键,常见特征背5遍,先看末尾再看和,然后分段求结果。 数的整除特征 (1)2末尾是0、2、4、6、8 (2)3各数位上数字的和是3的倍数 (3)5末尾是0或5 (4)9各数位上数字的和是9的倍数 (5)11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数 (6)4和25末两位数是4(或25)的倍数 (7)8和125末三位数是8(或125)的倍数 (8)7、11、13末三位数与前几位数的差是7(或11或13)的倍数 知识点三:余数的性质、同余问题 1.带余除法 一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r <b,使得a=b×q+r 当r=0时,我们称a能被b整除。

小学奥数专题之数论

1 (人大附中考题) 有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。1359 ,1935,3195,3915,9135,9315 2 (101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数45 是__。 3(人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 可以分析出甲甲是偶数,是135的倍数,且是完全平方数 而135=5*3*3*3,最小再乘以15即为完全平方数,若要为偶数则需再乘4 于是丙为60,甲为90,乙为4050 4 (人大附中考题) 下列数不是八进制数的是( D) A、125 B、126 C、127 D、128 预测 1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?4456 预测 2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。2004年元旦三个网站同时更新,下一次同时更新是在____月____日?4.14 预测 3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是____.1331 数论篇二 1 (清华附中考题) 有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.518=7=511 666-10=656 888,511,656除以这个数,余数相同 888-511=377 888-656=232 这个数为377与232的公因数,且大于10 377=13×29 232=8×29 所以这个自然数为29 2 (三帆中学考题)

相关文档
最新文档