《数学分析》第十七章 多元函数微分学

《数学分析》第十七章 多元函数微分学
《数学分析》第十七章 多元函数微分学

第十七章 多元函数微分学 ( 1 6 时 ) §1 可微性 ( 4 时 )

一. 可微性与全微分:

1. 可微性:由一元函数引入.

))()((22y x ?+?ο亦可写为y x ?+?βα,

→??) , (y x ) 0 , 0 (时→) , (βα) 0 , 0 (.

2. 全微分:

例1 考查函数xy y x f =),(在点) , (00y x 处的可微性. [1]P 105 E1

二. 偏导数:

1. 偏导数的定义、记法:

2. 偏导数的几何意义: [1]P 109 图案17—1.

3. 求偏导数:

例2 , 3 , 4 . [1]P 142—143 E2 , 3 , 4 .

例5 设 . 0

, 0, 0 ,),(222222

2

3?

????=+≠+++=y x y x y x y x y x f

证明函数),(y x f 在点) 0 , 0 (连续 , 并求) 0 , 0 (x f 和) 0 , 0 (y f .

ρ

θθρρρθ

ρθρ)

sin cos (lim ),(lim

2320sin ,cos )

0,0(),(+===========→==→y x y x y x f

=)0,0(0)sin cos (lim 2

30

f ==+→θθρρρ. ),(y x f 在点) 0 , 0 (连续 .

) 0 , 0 (x f =0||lim )0,0()0,(lim

300==-→→x x x x f x f x x , ) 0 , 0 (y f ||lim )0,0(),0(lim 2

00y y y y

f y f y y →→=-= 不存在 .

Ex [1]P 116—117 1⑴—⑼,2 — 4 .

三. 可微条件:

1. 必要条件:

Th 1 设) , (00y x 为函数),(y x f 定义域的内点.),(y x f 在点) , (00y x 可微?

) , (00y x f x 和) , (00y x f y 存在, 且

==),(00)

,(00y x df df

y x ) , (00y x f x +?x ) , (00y x f y y ?. (证)

由于dy y dx x =?=? , ,微分记为=),(00y x df ) , (00y x f x +dx ) , (00y x f y dy . 定理1给出了计算可微函数全微分的方法.

两个偏导数存在是可微的必要条件 , 但不充分.

例6 考查函数?????

=+≠++=

0 , 0, 0 , ),(2

2222

2y x y x y x xy y x f 在原点的可微性. [1]P 110 E5 .

2. 充分条件:

Th 2 若函数),(y x f z =的偏导数在的某邻域内存在, 且x f 和y f 在点) , (00y x 处连续 . 则函数f 在点) , (00y x 可微. (证) [1]P 111 Th 3 若),(y x f y 在点) , (00y x 处连续, ),(y x f x 点) , (00y x 存在,则函数f 在点

) , (00y x 可微.

证 f y y x x f -?+?+) , (00) , (00y x

[][]) , () , () , () , (00000000y x f y x x f y x x f y y x x f -?++?+-?+?+= 0 1,0 ),() , (0000→<

x x y x f y y x f x y ?+?+?+=αβ),(),(0000 0→β y x y y x f x y x f y x ?+?+?+?=βα) , () , (0000.

即f 在点) , (00y x 可微 .

要求至少有一个偏导数连续并不是可微的必要条件 .

例7 设?????=+≠+++=.

0 , 0, 0 ,1sin )(),(2

22

22

222y x y x y x y x y x f

验证函数),(y x f 在点) 0 , 0 (可微, 但x f 和y f 在点) 0 , 0 (处不连续 . 证

).0 , 0(),( , 01sin

)

,(2

2

22→→++=y x y

x y x y x f ρ

因此)(),(ρο=y x f ,即 )(00)0,0(),(ρο+?+?=-y x f y x f ,f 在点)0 , 0(可微,

0)0,0( , 0)0,0(==y x f f . 但≠),(y x ) 0 , 0 (时, 有

2

2

2

2

2

2

1cos

1sin

2),(y

x y x x y

x x y x f x ++-

+=,

沿方向,kx y = 2

2

2

1||lim

lim

k

x x

y x x x x +=+→→不存在, ?沿方向,kx y = 极限

22

2

2

1cos lim

y

x y x x x ++→不存在; 又→),(y x ) 0 , 0 (时, 01sin

22

2

→+y

x x ,

因此,

),(lim

)

0,0(),(y x f x y x →不存在, x f 在点) 0 , 0 (处不连续.由f 关于x 和y 对称,y f 也在

点) 0 , 0 (处不连续 .

四. 中值定理:

Th 4 设函数f 在点) , (00y x 的某邻域内存在偏导数. 若),(y x 属于该邻域, 则存在

)(010x x x -+=θξ和)(020y y y -+=θη, 10 , 1021<<<<θθ, 使得

))( , ())( , (),(),(00000y y x f x x y f y x f y x f y x -+-=-ηξ. ( 证 ) 例8 设在区域D 内0==y x f f . 证明在D 内c x f ≡)(.

五. 连续、偏导数存在及可微之间的关系:

六.

可微性的几何意义与应用:

1. 可微性的几何意义: 切平面的定义. [1]P 115.

Th 5 曲面),(y x f z =在点)) , ( , , (0000y x f y x P 存在不平行于Z 轴的切平面的充要条件是函数),(y x f 在点),(000y x P 可微 . (证略) 2. 切平面的求法: 设函数),(y x f 在点),(000y x P 可微,则曲面),(y x f z =在点

)) , ( , , (0000y x f y x P 处的切平面方程为 (其中),(000y x f z =)

))(,())(,(0000000y y y x f x x y x f z z y x -+-=-, 法线方向数为()

1 , ),( , ),( 0000-±y x f y x f y x , 法线方程为

1

),(),(0

000000--=

-=-z z y x f y y y x f x x y x . 例9试求抛物面 2

2by ax z +=在点),,(000z y x M 处的切平面方程和法线方程 .

[1] P 115 E6

3.

作近似计算和误差估计: 与一元函数对照, 原理.

例10 求96

.308.1的近似值. [1] P 115 E7

例11 应用公式C ab S sin 2

1

=

计算某三角形面积.现测得50.12=a , 30 , 30.8==C b . 若测量b a , 的误差为C , 01.0±的误差为

1.0± . 求用此公式计算该三角形面积时的绝对误差限与相对误差限. [1] P 116 E8 Ex [1]P 116—117 5—14 ;

§ 2

复合函数微分法 ( 5 时 )

简介二元复合函数 : ),( , ),( , ),(t s y t s x y x f z ψφ===. 以下列三种情况介绍复合线路图: 参阅[4] P 327—328 . ),( , ),( , ),(t s y t s x y x f z ψφ===;

, ),,(z y x f u =),( , ),( t s y t s x ψφ==, ),(t s z η=;

, ),,(z y x f u = ),,( , ),,( z t s y z t s x ψφ==.

一. 链导法则: 以“外二内二”型复合函数为例.

Th 设函数),( , ),( t s y t s x ψφ==在点∈),(t s D 可微, 函数),(y x f z =在点

=),(y x ()),( , ),(t s t s ψφ可微 , 则复合函数f z =()),( , ),(t s t s ψφ在点),(t s 可微, 且

)

,()

,()

,()

,()

,(t s y x t s y x t s s y y z s x x z s z ????+

????=

??,

)

,(),()

,(),()

,(t s y x t s y x t s t

y y

z t

x x

z t

z ????+

????=

??. ( 证 ) [1] P 155

称这一公式为链导公式. 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”(或“并联加,串联乘”)来概括.

对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.

链导公式中内函数的可微性可减弱为存在偏导数. 但对外函数的可微性假设不能减弱. 如[1] P 156的例.

对外m 元),,,(21m u u u f , 内n 元),,,(21n i k x x x u φ= ) , , 2 , 1(m k =, 有

∑=????=??m

k i

k

k i x u u f x f 1 , n i , , 2 , 1 =. 外n 元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数. 例1 y x v e u v u z y x +==+=+22 , , )ln(2

. 求

x z ??和y z

??. [1] P 157 E1 例2 2

2uv v u z -=, y x v y x u sin , cos ==. 求

x z ??和y

z ??. 例3 (

)

)

3(2

22y x y

x z ++=, 求

x z ??和y

z ??. 例4 设函数),,(w v u f 可微 . ),,(),,(xyz xy x f z y x F =. 求x F 、y F 和z F . 例5 用链导公式计算下列一元函数的导数 :

ⅰ> x

x y = ; ⅱ> x

x x

x y cos sin ln )1(2++= . [1] P 158 E4

例6 设函数),(y x u u =可微. 在极坐标变换θθsin , cos r y r x ==下 , 证明

2

2

2221???

?

????+??? ????=??? ????+??? ????y u x u u r r u θ. [1] P 157 E2 例7 设函数)(u f 可微 , )(2

2

y x yf z -=. 求证

xz y

z

xy x z y

=??+??2

. 二. 复合函数的全微分: 全微分和全微分形式不变性 .

例8 )sin(y x e z xy

+=. 利用全微分形式不变性求dz , 并由此导出

x z ??和y

z

??. [1] P 160 E5

Ex [1]P 160—161 1—5.

三. 高阶偏导数:

1. 高阶偏导数的定义、记法: 例9 ,2y

x e

z += 求二阶偏导数和2

3x

y z

???. [1]P 167 E1 例10 x

y

arctg

z =. 求二阶偏导数. [1]P 167 E2 2. 关于混合偏导数: [1]P 167—170.

3. 求含有抽象函数的二元函数的高阶偏导数: 公式 , [1]P 171

例11 ) , (y x

x f z =. 求22x

z ??和y x z ???2. [1]P 171 E3

4. 验证或化简偏微分方程:

例12 2

2

ln y x z +=. 证明22x z ?? + 2

2y z

??0=. ( Laplace 方程 )

例13 将方程0=??-??x

u y y u x

变为极坐标形式. 解 x

y

arctg

y x r r y r x =+=?==θθθ , .sin , cos 22.

r x

y x x x

r =

+=??2

2, r y y r =?? , 2r

y x -=??θ ,

2r x y =??θ. θ

θθ??-??=????+????=??u

r y r u r x x u x r r u x u 2

, θθθ??+??=????+????=??u r x r u r y y u y r r u y u 2; 因此, θθθθ??=??+=??+??-??+??=??-??u

u r

y x u r y r u r xy u r x r u r xy x u y y u x 2222222 . 方程化简为

0=??θ

u

. 例14 试确定a 和b , 利用线性变换 by x t ay x s +=+= , 将方程

0342222

2=??+???+??y

u y x u x u 化为

02=???t

s u

. 解

t

u

s u x t t u x s s u x u ??+

??=????+????=?? , t u b s u a y t t u y s s u y u ??+??=????+????=??. 2

2x u ??=x

??=??? ????+??t u s u 2

2s u ??x s ??+t s u ???2x t ??+s t u ???2

x s ??+22t u ??x

t

??= =22s u

??+2t s u ???2+22t u ??.

y x u ???2=

y

??

=??? ????+??t u s u 2

2s u ??y s ??+t s u ???2y t ??+s t u ???2

y s ??+22t u ??y

t

??= =22s u

a ??+)(

b a +t s u ???2+b 2

2t

u ??.

22y u ??=y ??==??

? ????+?? t u b s u a 22

2s u a ??+ab 2t s u ???2+2b 2

2t u ??. 因此 , =??+???+??2222234y

u

y x u x u

)341(2

a a ++=2

2s u ?? + ()6442ab b a +++t s u ???2 + )341(2b b ++2

2

t u ??. 令 03412=++a a , 1 , 31 , 03412

-=-=?=++b a b b 或3

1 , 1-

=-=b a 或 ……, 此时方程03422222=??+???+??y

u

y x u x u 化简为

02=???t s u .

Ex [1]P 183 1,2 .

§3 方向导数和梯度 ( 3 时 )

一. 方向导数:

1. 方向导数的定义:

定义 设三元函数f 在点),,(0000z y x P 的某邻域)(0P ?3

R 内有定义.l 为从点0P 出发

的射线.),,(z y x P 为l 上且含于)(0P 内的任一点,以ρ表示P 与0P 两点间的距离.若极限 ρ

ρ

ρρf

P f P f l ?=-+

+

→→0

00

lim )

()(lim

存在,则称此极限为函数f 在点0P 沿方向l 的方向导数,记为

P l

f ??或)(0P f l 、

),,(000z y x f l .

对二元函数),(y x f z =在点),(000y x P , 可仿此定义方向导数. 易见,

x f ??、y f ?? 和 z

f ??是三元函数f 在点0P 分别沿X 轴正向、Y 轴正向和Z 轴正向的方向导数 .

例1 ),,(z y x f =3

2z y x ++. 求f 在点0P ) 1 , 1 , 1 (处沿l 方向的方向导数,其中

ⅰ> l 为方向) 1 , 2 , 2 (-; ⅱ> l 为从点) 1 , 1 , 1 (到点) 1 , 2 , 2 (-的方向.

解 ⅰ> l 为方向的射线为令

===-=--=-1

12121z y x )0 ( >t . 即

)

0 ( , 1 , 12 , 12≥+=+-=+=t t z t y t x .

3

) 1, 1 , 1 ()(0==f P f ,

37) 1 () 12 () 12 ( ) 1 , 12 , 12 ()(2332+++=+++-++=++-+=t t t t t t t t t f P f

t t t t z y x 3)2()2()1()1()1(222222=+-+=-+-+-=ρ.

因此 ,

.3

137lim )

()(lim 23000

=++=-=??++

→→t t t t P f P f l

f

t P ρ

ρ ⅱ> 从点) 1 , 1 , 1 (到点) 1 , 2 , 2 (-的方向l 的方向数为), 0 , 3 , 1 (-l 方向的 射线为 ) 0 ( , 1 , 13 , 1≥=+-=+=t z t y t x .

359) 1 , 13 , 1()(2+-=+-+=t t t t f P f , 3) 1, 1 , 1 ()(0==f P f ;

t t t z y x 10)3()1()1()1(22222=-+=-+-+-=ρ.

因此 ,

.10

51059lim )

()(lim 20

00

-

=-=-=??+

+

→→t

t t P f P f l

f

t P ρ

ρ

2. 方向导数的计算:

Th 若函数f 在点),,(0000z y x P 可微, 则f 在点0P 处沿任一方向l 的方向导数都存在, 且 =)(0P f l )(0P f x αcos +)(0P f y βcos +)(0P f z γcos ,

其中αcos 、βcos 和γcos 为l 的方向余弦. ( 证 ) [1]P 163

对二元函数),(y x f , =)(0P f l )(0P f x αcos +)(0P f y βcos , 其中α和β是l 的方向角.

注:由=)(0P f l )(0P f x αcos +)(0P f y βcos +)(0P f z γcos

=(

)(0P f x , )(0P f y , )

(0P f z )(

?αcos , βcos , γ

cos ),

可见, )(0P f l 为向量()(0P f x , )(0P f y , )

(0P f z )在方向l 上的投影.

例2 ( 上述例1 )

解 ⅰ> l 的方向余弦为αcos =

3

2

1)2(222

22=

+-+, βcos =32-, γcos =31.

)(0P f x =1 , )(0P f y =221

==y y , )(0P f z =331

2

==z z .

因此 ,

l f ??=)(0P f x αcos +)(0P f y βcos +)(0P f z γcos =3

1

313) 32(232=?+-?+. ⅱ> l 的方向余弦为

αcos =

10

1)

11()12()12(1

22

2

2

=

-+--+--, βcos =10

3-

, γcos =0 .

因此 ,

l f

??=10

510321011-=?-?.

可微是方向导数存在的充分条件 , 但不必要 .

例3 [1]P 164 E2 .

二. 梯度 ( 陡度 ):

1. 梯度的定义: =gradf (

)(0P f x , )(0P f y , )

(0P f z ) .

||gradf =

()()()202020)()()(P f P f P f z y x ++.

易见, 对可微函数f , 方向导数是梯度在该方向上的投影.

2. 梯度的几何意义: 对可微函数 , 梯度方向是函数变化最快的方向 . 这是因为

=)(0P f l =?l gradf ||)(0P gradf θcos .

其中θ是l 与)(0P gradf 夹角. 可见0=θ时)(0P f l 取最大值 , 在l 的反方向取最小值 . 3. 梯度的运算:

ⅰ> grad =+)(c u grad u .

ⅱ> grad (αu +βv ) = αgrad u +βgrad v .

ⅲ> grad (u v ) = u grad v +v grad u . ⅳ> grad

2

u

vgradu

ugradv u v -=. ⅴ> grad f (u ) = gradu u f )('.

证ⅳ> 2u v u uv u v x x x -=??? ?? , 2

u v u uv u v y y y

-=???

??. grad

=--=) , (1

2v u uv v u uv u

u v y y x x []

=-=) , ( ) , (1

2v u v u v u uv u y x y x

[]

=-=) , () , (12y x y x u u v v v u u 2

u

vgradu

ugradv -.

Ex [1]P 165 1,2 ,3 ,6 .

§4 Taylor

公式和极值问题 ( 4 时 )

一. 中值定理: 凸区域 .

Th 1 设二元函数f 在凸区域D 2

R ?上连续, 在D 的所有内点处可微. 则对D 内任意两点

int ) , ( , ),(∈++k b h a Q b a P D , 存在) 10 ( <<θθ, 使

k k b h a f h k b h a f b a f k b h a f x ) , () , (),() , (θθθθ+++++=-++. 证 令 , ) , ()(tk b th a f t ++=Φ.

在闭凸区域上的情况: [1]P 173—174.

推论 若函数f 在区域D 上存在偏导数 , 且x f ≡y f ≡0, 则f 是D 上的常值函数.

二. Taylor 公式:

Th 2 (Taylor 公式) 若函数f 在点),(000y x P 的某邻域)(0P 内有直到1+n 阶连续偏导数, 则对)(0P 内任一点) , (00k y h x ++,存在相应的) 1 , 0(∈θ, 使

∑=+++???

?

????+??++???? ????+??=

++n

i n i k y h x f y k x h n y x f y k x h i k y h x f 0001

0000).

, ()!1(1),(!1 ) , (θθ

证 [1]P 175

例1 求函数y

x y x f =),(在点) 4 , 1 (的Taylor 公式 ( 到二阶为止 ) . 并用它计算

.) 08.1 (96.3 [1]P 175—176 E4 .

三. 极值问题:

1. 极值的定义: 注意只在内点定义极值. 例2 [1]P 176 E5

Ex [1]P 183 5,6,7⑴⑷.

2. 极值的必要条件:与一元函数比较 .

Th 3 设0P 为函数)(P f 的极值点. 则当)(0P f x 和存在时,有)(0P f x =)(0P f y 0=. (证) 函数的驻点、不可导点 , 函数的可疑点 . 3. 极值的充分条件:

代数准备: 给出二元( 实 )二次型 2

2

2),(cy bxy ax y x g ++=. 其矩阵为

???

?

??c b b a .

ⅰ> ),(y x g 是正定的,? 顺序主子式全0 >, ),(y x g 是半正定的,? 顺序主子式全 0 ≥;

ⅱ> ),(y x g 是负定的,? 0||) 1(1>-k

ij k

a , 其中k

ij a 1||为k 阶顺序主子式. ),(y x g 是半负定的, ? 0||) 1(1≥-k

ij k

a . ⅲ> ???

?

??c b b a < 0时, ),(y x g 是不定的. 充分条件的讨论: 设函数),(y x f 在点),(000y x P 某邻域有二阶连续偏导数.由Taylor

公式, 有

)()(!21)(),() , (2

02

00000ρ +???? ????+??+???? ?

???+??=-++P f y k x h P f y k x h y x f k y h x f =)(0P f x h +)(0P f y k +

[]

)()()(2)(!

21

220020ρ +++k P f hk P f h P f yy xy xx . 令 )(0P f A xx = , )(0P f B xy =, )(0P f C yy =, 则当0P 为驻点时, 有

[]

)(22

1

),() , (2220000ρ +++=

-++Ck Bhk Ah y x f k y h x f . 其中22k h +=ρ. 可见式),() , (0000y x f k y h x f -++的符号由二次型2

22Ck Bhk Ah ++完全决定.

称该二次型的矩阵为函数),(y x f 的Hesse 矩阵. 于是由上述代数准备, 有 ⅰ> 0 , 02

>->B AC A , 0 P ?为 ( 严格 ) 极小值点 ; ⅱ> 0 , 02>- 0 2

<-B AC 时, 0P 不是极值点;

ⅳ> 0 2

=-B AC 时, 0P 可能是极值点 , 也可能不是极值点 .

综上, 有以下定理.

Th 4 设函数)(P f 在点0P 的某邻域内有连续的二阶偏导数, 0P 是驻点. 则

ⅰ> ()

0)( , 0)(02

0>->P f f f P f xy yy xx xx 时 , 0P 为极小值点;

ⅱ> (

)

0)( , 0)(02

0>-

(

)

0)( 02

<-P f f f xy yy xx 时 , 0P 不是极值点;

ⅳ> (

)

0)( 02

=-P f f f xy yy xx 时 , 0P 可能是极值点 , 也可能不是极值点 . 例3—7 [1]P 179—182 E6—10 .

四. 函数的最值:

例8 求函数),(y x f y x y xy x 410242

2

+--+=

在域D = } 4 , 0 , 0 |),( {≤+≥≥y x y x y x 上的最值 .

解 令 ???=+-==-+=.04 44),(,

01042),(y x y x f y x y x f y

x 解得驻点为) 2 , 1 (. 1) 2 , 1 (-=f .

在边界) 40 ( 0≤≤=y x 上 , y y y f 42),0(2

+-=, 驻点为1=y , 2)1,0(=f ; 在边界) 40 ( 0≤≤=x y 上 , x x x f 10)0,(2

-=, 没有驻点;

在边界) 40 ( 4≤≤-=x x y 上 , 16185)4 , (2

-+-=-x x x x f , 驻点为8.1=x , 2.0)8.14 , 8.1(=-f .

又24)0,4( , 16)4,0( , 0)0,0(-=-==f f f .

于是 , )}0,4( , )4,0( , )0,0( , )2.2 , 8.1( , )1,0( , )2,1(max{),(max f f f f f f y x f D

=

2.0} 24 , 16 , 0 , 2.0 , 2 , 1 max{=---=. ),(min y x f D

24} 24 , 16 , 0 , 2.0 , 2 , 1 min{-=---=.

Ex [1]P 184 8⑴⑵,9⑴⑵,10,11 .

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

第七章 多元函数的微分学

第七章多元函数的微分学 一、多元函数微分学网络图 二、内容与要求 1.理解多元函数的概念,理解二元函数的几何意义。 2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。

4.掌握多元复合函数一阶、二阶偏导数的求法。 5.会求多元隐函数的偏导数。 6.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件, 了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值, 会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 重点多元函数偏导数和全微分的概念,多元复合函数一阶、二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 难点多元复合函数二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 三、概念、定理的理解与典型错误分析 1.求多元函数极限的方法 (1)利用初等多元函数的连续性,即若是初等函数,在的定义域中,则 注:所谓的初等多元函数就是用一个数学表达式给出的解析式. (2)利用多元函数极限的四则运算。 (3)转化为一元函数的极限,利用一元函数的极限来计算. (4)对于证明或求时,感觉极限可能时零, 而直接又不容易证明或计算,这时可用夹逼定理,即而 由夹逼定理知从而 2.判断多元函数极限不存在的方法 (1)选取两条特殊的路径,而函数值的极限存在,但不相等,则不存在。

注意: 与的区别,前面两个本质是两次求一元函数的极限, 我们称为求累次极限,而最后一个是求二元函数的极限,我们称为求二重极限。 例1 而知不存在. 例2 在原点的两个累次极限都不存在,但是 由于,因此. 由例1知两个累次极限存在,但二重极限不存在,由例2知两个累次极限不存在, 但二重极限存在,但我们有下面的结论。 定理7。1 若累次极限和二重极限都存在,则三者相等。 (2)推论。若存在且不相等,则不存在。 3.求多元函数的偏导数

第十七章多元函数微分学习题课

第十七章 多元函数微分学习题课 一 疑难问题与注意事项 1.(,)z f x y =在),(000y x P 可微的等价定义: 1)0000(,)(,)()z f x x y y f x y A x B y o ρ?=+?+?-=?+?+,0 () lim 0o ρρρ →=; 2)00000 [(,)(,)] lim 0x y z f x y x f x y y ρρ →?-?+?=; 3), y x y B x A z ?+?+?+?=?βα()() ()() ,0,0,0,0lim lim 0x y x y αβ??→??→= =. 2.求(,)f x y 在00(,)x y 处的偏导数方法小结: 答 1)利用定义求(主要适用于分段函数的分段点处的偏导数): 0000000 (,)(,) (,)lim x x f x x y f x y f x y x ?→+?-=?, 0000000 (,)(,) (,)lim y y f x y y f x y f x y y ?→+?-=?. 2)转化为一元函数的导数: ()0 000,(,)x x x df x y f x y dx ==,() 000,(,)y y y df x y f x y dy == . 例如,2(,)(f x y x y =+-(1,1)x f . 解 () ()211 ,1(1,1)2x x x d x df x f dx dx ==== =. 3)先求偏导函数,在代值,即 ()0 00(,)(,),x x x y f x y f x y =,0 00(,) (,)(,)y y x y f x y f x y =. 3.求(,)z f x y =(初等函数不含分段点)的偏导函数方法小结: 答 1)求 z x ??,把y 当常数,对x 求导,求z y ??,把x 当常数,对y 求导. 2)运用轮换性,若在(,)z f x y =中,把x 换成y , y 换成x ,(,)z f x y =不变,则称(,)z f x y =关于x 和y 具有轮换性.若已经求出 z x ??,只要在z x ??把x 换成y , y 换成x ,

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A 6.函数 在点 处具有两个偏导数 是函数存在全

第7章 多元函数微分学

§7.1 空间解析几何基本知识 教学内容提要 1. 空间直角坐标系; 2. 空间两点间的距离公式与两点连线的中点坐标公式; 3. 简单的曲面方程。 教学目的与要求 1. 了解空间直角坐标系和空间两点间的距离公式及两点连线的中点公式; 2. 了解常用二次曲面的方程及其图形。 教学重点与难点 常用二次曲面的方程及其图形的简单描绘. 教学时数 4 教学过程: 一、空间直角坐标系 1.空间直角坐标系的建立 过空间定点0,作三条互相垂直的数轴,他们都以0为原点 且一般具有相同的长度单位。这三条轴分别称为x 轴,y 轴, z 轴,统称坐标轴。通常把x 轴和y 轴配置在水平面上,z 轴 z 在铅垂方向,他们的指向符合右手法则. 2、空间两点间的距离公式 空间任意两点),,(1111z y x M 和),,(2222z y x M 21221221221)()()(z z y y x x M M -+-+-= 特殊地,点),,(z y x M 与坐标原点)0,0,0(O 的距离为222z y x OM ++= 。 例1 在z 轴求与两点)7,1,4(-A 和)25,3(-B 等距离的点的坐标。 二、曲面及其方程的概念 1.曲面方程 在空间解析几何中,任何曲面都可以看作满足一定条件的点的几何轨迹 ,如果曲面S 上任一点的坐标都满足方程0),,(=z y x F ,不在曲面S 上的点的坐标都不满足该方程,则称此方程0),,(=z y x F 为曲面的方程,而曲面S 就叫做方程的图形。 例2 动点),,(z y x P 与两定点)1,3,2(),0,2,1(21-P P 的距离相等,求此动点P 的轨迹。 三、几种常见的曲面及其方程 1、平面的一般方程 任一平面都可以用三元一次方程来表示 .任一三元一次方程Ax +By +Cz +D =0的图形总是一个平面. 例3 求通过x 轴和点(4, -3, -1)的平面的方程. 解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为

数学考研:一元函数微分学的知识点和常考题型

数学考研:一元函数微分学的知识点和常考题型 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

一元函数微分学综合练习题 (1)

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

数学分析教案_(华东师大版)第十七章__多元函数微分学

第十七章多元函数微分学 教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及 偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。 教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。 教学时数:18学时 § 1 可微性 一.可微性与全微分: 1.可微性:由一元函数引入. 亦可写为, 时. 2.全微分: 例1 考查函数在点处的可微性 . P107例1 二.偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17—1.

3.求偏导数: 例2 , 3 , 4 . P109—110例2 , 3 , 4 . 例5. 求偏导数. 例6. 求偏导数. 例7. 求偏导数, 并求. 例8. 求和. 解=, =. 例9 证明函数在点连续 , 并求和. 证 . 在点连续 . ,

不存在 . 三.可微条件: 1.必要条件: Th 1 设为函数定义域的内点.在点可微 , 和存在 , 且 . ( 证 ) 由于, 微分记为 . 定理1给出了计算可微函数全微分的方法. 两个偏导数存在是可微的必要条件 , 但不充分. 例10考查函数 在原点的可微性 . [1]P110 例5 . 2.充分条件:

Th 2 若函数的偏导数在的某邻域内存在 , 且和在点处连续 . 则函数在点可微 . ( 证 ) P111 Th 3 若在点处连续, 点存在 , 则函数在点可微 . 证 . 即在点可微 . 要求至少有一个偏导数连续并不是可微的必要条件 . 例11 验证函数在点可微 , 但和在点处不连续 . (简证,留为作业) 证

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞∞或00型,) ()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

多元函数微分学练习题完整版

多元函数微分学练习题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1(,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? .

12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 . 17. 曲线2226,2 x y z x y z ?++=?++=?在点(1,2,1)-处切线的方向向量s = . 18. 设2),,(yz e z y x f x =,其中),(y x z z =是由方程z y x e z y x --+=+确定的隐函数,则=)1,1,0(x f . 二、选择题 1. 设0x 是n R ?E 的孤立点,则0x 是E 的 ( ) (A)聚点; (B)内点; (C)外点; (D)边界点. 2. 设0x 是n R ?E 的内点,则0x 是E 的 ( ) (A)孤立点; (B)边界点; (C)聚点; (D)外点. 3. 设22 2, (,)(0,0)(,)0, (,)(0,0)x y x y f x y x y x y ?+≠?=+??=? ,则(0,0)y f =( ) (A) 0 (B) 1 (C) 2 (D) 1-

第七章多元函数微分高等数学

第七章 多元函数微分学 一、内容分析与教学建议 (一) 本章主要是把一元函数微分学中一些主要概念、理论和方法推广到多元函数,一方 面充实微分学,另一方面也给工程技术及自然科学提供一些处理问题的方法和工具。 在教学方法上,在一元函数微分学基础上,通过类比方法引入新的问题、概念、理论和方法,并注意比较它们的异同。 (二) 多元函数、极限、连续 先通过介绍平面点集的几个基础概念,引入二元函数由点函数再过渡到多元函数,并引入多元函数极限,讲清它的概念,并指出二元函数与一元函数极限点0P P →方式的异同,可补充一些简单例题给出二元函数求极限的一些常用方法,如换元化为一元函数两边夹准则,运用连续性等。在理解极限概念之基础上,不难得到求一个二元函数极限不存在之方法,最后可介绍累次极限与重极限之关系。 (三) 偏导数与全微分 1、可先介绍偏增量概念,类比一元函数,引入偏导数,通过例题说明,偏导与连续之关系,在偏导数的计算中,注意讲清分段函数分界点处的偏导数。 2、可由测量矩形相邻边长计算面积实例,类比一元函数的微分,引入全微分的定义,并指出用定义判断),(y x f z =可微,即求极限[ ]ρ y y x z x y x z z y x y x ?+?-?→?→?),(),(lim 0 是 否为0。 3、讲清教材中全微分存在的必要条件和充分条件,重点指出可微与偏导之关系,让学生理解关系式dy y z dx x z dz ??+??= 之意义,最后可通过列表给出多元函数连续、偏导存在、可微之相互关系。 (四) 复合函数求偏导 1、可先证明简单情形的全导数公式,画出函数关系图,通过关系图中“分线相加,连线相乘”法则推广至偏导数或全微分的各种情形),(v u f z =,)(x u ?=,)(x v ?=从中让学生理解口诀的含义。

多元函数微分学复习题及标准答案

多元函数微分学复习题及答案

————————————————————————————————作者:————————————————————————————————日期:

第八章 多元函数微分法及其应用 复习题及解答 一、选择题 1. 极限lim x y x y x y →→+00 242= (提示:令22 y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于 12 (D) 存在且不等于0或1 2 2、设函数f x y x y y x xy xy (,)sin sin =+≠=? ????1100 ,则极限lim (,)x y f x y →→0 = ( C ) (提示:有界函数与无穷小的乘积仍为无穷小) (A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数f x y xy x y x y x y (,)=++≠+=??? ? ?22 2222000 ,则(,)f x y ( A ) (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =, 2222 2 lim lim 0(0,0)1x x y kx kx f x k x k →→→===++ ,故在220x y +=,函数亦连续.所以, (,)f x y 在整个定义域内处处连续.) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件 (B)充分而非必要条件 (C)充分必要条件 (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22 + (B) - +y x y 22 (C) y x y 22 + (D) -+x x y 22 6、设f x y y x (,)arcsin =,则f x '(,)21= ( A ) (A )- 14 (B )14 (C )-12 (D )1 2

多元函数微分学及应用

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法? (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??=叫做微分形式不变性。 例1 设? ?? ??=x y xy f x z , 3 ,求y z x z ????,。 解:?? ? ?????? ??'+' +=+?=x y d f xy d f x fdx x df x dx x f dz 213 2 3 2 )(33 ?? ? ???-'++' +=22 13 2(3x ydx xdy f ydx xdy f x fdx x

相关文档
最新文档