幂级数求和函数方法概括与汇总

幂级数求和函数方法概括与汇总
幂级数求和函数方法概括与汇总

幂级数求和函数方法概括与汇总

————————————————————————————————作者:————————————————————————————————日期:

常见幂级数求和函数方法综述

引言

级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。

幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。

一、幂级数的基本概念

(一)、幂级数的定义 [1] 1、设()(1,2,3

)n u x n =是定义在数集E 上的一个函数列,则称

12()()(),n u x u x u x x E ++++

为定义在E 上的函数项级数,简记为1

()n n u x ∞=∑ 。 2、具有下列形式的函数项级数

2

00102000

()()()()n n

n n n a x x a a x x a x x a x x ∞

=-=+-+-+

+-+

称为在点0x 处的幂级数。

特别地,在00()n

n n a x x ∞

=-∑中,令0x x x -=,即上述形式化为

2

0120

n n n n n a x a a x a x a x ∞

==+++

++

称为在0点的幂级数。 (二)、幂级数的和函数 [2]

若对幂级数中的每一个x 都有23

0123()a a x a x a x s x ++++

=,则称()s x 为幂级数的

和函数。 幂级数的部分和记为

2

30123()n

n n s x a a x a x a x a x =++++

+

且部分和()n s x 有如下性质 lim ()()n n s x s x →∞=

二、幂级数求和函数的几种方法

以下所要介绍的几种方法旨在分析不同类型的幂级数该如何进行求和,并且帮助大家掌握解题技巧。 (一)、定义法 [3]

对于幂级数0

n

n n a x ∞

=∑,若前n 项和函数列{()}n s x 有极限,即

lim ()n n s x →∞

存在,则此幂级数收敛,且0

()lim n

n n n n a x s x ∞

→∞

==∑ 。

例1:求幂级数0n

n a x ∞

=∑的和函数,其中0a ≠,1x <。

解:当1x <时

()lim ()lim()lim 11n n

n n n n a ax a s x s x a ax ax x x

→∞

→∞

→∞-==++

+==

--

(二)、分项组合法

我们通过观察可以发现有些幂级数具有某些明显的特征,比如可以将已知级数的通

项拆项组合,再计算所拆得各项的和函数,从而求得该级数的和函数。

例2:求3

0()(1)!

n n n s x x n ∞

==∑+的和函数。 解:易知该级数的收敛域为(,)-∞+∞ 当0x =时,()0s x = 当0x ≠时

2(1)(1)11()2(1)!

n n x

n n n n s x x n ∞=+-++-=+∑+

212

22212(2)!!(1)!n n n n

n n x x x x x n n x n -+∞∞∞====+++∑∑∑-+

211

(1)2x e x x x x

-=++---

0 0x = 所以()s x =

211

(1)2x e x x x x

-++--- 0x ≠

(三)、逐项求导与逐项积分法

若幂级数的通项系数是自然数或相邻的自然数相乘的形式,可考虑用“先积分,再求导”的做法;若幂级数的通项系数是自然数的倒数或相邻的自然数乘积的倒数,可考虑用“先求导,再积分”的做法。

定理 [4]

:设幂级数0

n

n n a x ∞

=∑在(,)R R -内的和函数为()s x ,则

1、

()s x 在(,)R R -内每一点都是可导的,且有逐项求导公式:

'

'

'

10

1

()()()n

n

n n n n n n n s x a x a x na x ∞

-======∑∑∑ 求导后的幂级数与原幂级数有相同的收敛半径R 。 2、 ()s x 在(,)R R -内可以积分,且有逐项积分公式:

1

0()t ()1

x x x n

n n n n n n n n a s t d a t dt a t dt x n ∞

+======∑∑∑

???+

其中x 是(,)R R -内任意一点,积分后的幂级数与原幂级数有相同的收敛半径R 。

在函数项级数一致收敛的前提下,对其进行逐项微分或积分。通过逐项求导或逐项积分将给定的幂级数化为已知和函数的级数形式,从而得到新级数的和函数;将得到的和函数做与之前相反的分析运算,便得到所求幂级数的和函数。 例3:求幂级数1(1)(2)n

n n n n x ∞

=++∑的和函数()s x 。

解:易知该级数的收敛域为(1,1)-+,在任意区间上可以逐项积分

11

()(1)(2)n n s x x n n n x ∞

-==++∑

令 1

1

1()(1)(2)n n s x n n n x ∞

-==++∑

2101

()()(1)(2)x

n n s x s t dt n n x ∞

===++∑?

1

32

01

()()(2)x

n n s x s t dt n x ∞

+===+∑? 32

4301

()()1x

n n x s x s t dt x

x ∞

+===

=

-∑?

所以 323

'

'34

232()()()1(1)x x x s x s x x x -===--

23

'23

3

662()()(1)x x x s x s x x -+==-

'

1

246()()(1)s x s x x ==-

从而可得所求和函数

4

16()

(1)()x x x s x xs =

-=

(11)x -<<

例4:求幂级数21(1)(21)n n

n x n n ∞

=-∑+的和函数()s x 。

解:易知收敛区间为[1,1]- 当0x =时,()0s x = 当0x ≠时

设 211(1)()()2

2(21)n n n x

x y x s x n n +∞=-==∑+ 2'

1(1)()2n n

n x y x n

=-=∑

212

1

''()(1)1n n n x

y x x x ∞

-=-=

-=∑+ 得出

2

021'()l n (1)

12x t y x dt x t -==-+?+ 20

1()l n (1)2

x

y x t d t

=-+?

21

l n (1)a r c t a n 2x x x x

=-+- 22a r c t a n

()2l n (1)x s x x x

=-+

-

0 0x = 综上所述 ()s x =

2

2arctan 2ln(1)x

x x

-+-

0x ≠

(四)、代数方程法

此种方法目的在于建立以所求幂级数的和为变量的代数方程,并解之,从而得到原幂级数的和函数。

例5:设有等差数列 : ,,2,3,,(1),

a a

b a b a b a n b ++++-

等比数列 : 2

3

1,,,,,,

n c cx cx cx cx - 则各项为等差数列、等比数列对应项的乘积

所构成的级数为

231()(2)(3),,[(1)],

n ac a b cx a b cx a b cx a n b cx -+++++++-

求其和函数()s x ,其中,,a b c 为常数。 解:易知此级数的收敛域为(1,1)-+

1

(){[(1)]}n n xs x a n b cx ∞

==+-∑

23(1)()x s x ac bcx bcx bcx -=++++

1bcx ac x

=+-

所以 2

()1(1)ac bcx s x x x =+--

例6:求幂级数 0

()n

m n H n x ∞

=∑ 的和函数,其中 ()m H n 为 n 的 m 次多项式。 解:记 0

()()n

m m

n s x H n x ∞

==∑ 1

0()()n m m n xs x H n x ∞

+==∑ 则 1

(1)()(0)[(1)()]n m m m m n

x s x H H n H n x ∞

+=-=++-∑

10

(0)()n m m n H x H n x ∞

-==+∑ ①

其中1()m H n - 为n 的1m -次多项式 再使用一次以上的运算方法可得

110

(1)()(0)()n m m m n x x s x xH x H n x ∞

+-=-=+∑ ②

① - ② 得

2

1

11

(1)()(0)(1)[()()]n

n m m m m n n x s x H x x H n x H n x ∞

+--==-=-+-∑∑ 11110

(0)(1){(0)[(1)()]}

n m m m m n H x x H H n H n x ∞

+---==-+++-∑

120

(0)(1)[(0)()]n m m m n H x x H x H n x ∞

--==-++∑

其中2()m H n - 为n 的2m -次多项式 反复使用以上的方法可以得到

12312(1)()(1)(0)(1)(0)(1)(0)m m m m m m m m x s x x H x xH x xH ------=-+-+-

21211

(1)(0)[(0)]m m n n x x H x H x ∞

--=+

+

+-++∑

这样就可以求得 ()m s x 。

(五)、微分方程法

在幂级数中,有一类含有阶乘运算的幂级数,这种幂级数的和函数的求法,在现行高等数学教材中涉及的不多,因此成为很多同学学习的一个盲点。此方法将通过实例介绍这类幂级数和函数的求法,把幂级数求和问题划归为求解微分方程的问题,也就是把幂级数的和函数微分后,再与原来幂级数作某种运算,得到一个含有幂级数和函数以及和函数导数的关系式,即微分方程。最后求解此微分方程即得和函数。

例7:求幂级数 0()!

n

n f n x n ∞

=∑

在下列情况下的和函数()s x : ① ()(1)f n n d =+,即公差为d 的等差数列,其中d 为常数;

② ()n

f n q =,即公比为q 的等比数列,其中q 为常数。

解:①易知该级数的收敛域为(,)-∞+∞

0(1)()!

n

n n d s x x n ∞

=+=∑

则 '

1

1(1)()(1)!

n n n d s x x n ∞

-=+=-∑

'23

()()2!3!

d d s x s x d dx x x -=++

++

x de =

这是一个满足初始条件(0)s d =的一阶常系数的线性微分方程,解此微分方程得

()(1)

x s x de x =+

② 易知该级数的收敛域为(,)-∞+∞

0()!

n n

n q s x x n ∞

==∑

'

1

1()(1)!

n n n q s x x n ∞

-==∑- '

22

()()(1)(1)(1)s x s x q q qx q q x -=-+-+-

+

(1)qx

q e

=-

这是一个满足初始条件(0)1s =的一阶常系数的线性微分方程,解此微分方程得

()qx s x e =

(六)、柯西方法[5]

如果级数 0

n n a ∞=∑与 0

n n b ∞=∑都绝对收敛,作这两个级数的乘积0

n n c ∞

=∑,其中

0110n n n n c a b a b a b -=++

+,则0n n c ∞=∑也绝对收敛,且必有000

n n n n n n c a b ∞∞∞

====?∑∑∑。

例8:求幂级数的和函数1

111

()(1),123n n s x x x n

∞==-+

+++<∑。 解:令,0,1,2,

,1n

n a x n x ==<

则 0

1

(1)1n

n n n a x x x

∞∞

====

<∑∑- 为绝对收敛级数 再令0

n n b ∞

=∑为 ln(1)x - 的泰勒级数:

23

ln(1)(0),123

n

x x x x x x n

-=-++++

++<

此级数在(1,1)-+内是绝对收敛的。

从而 1

1(1)1

n n n n n x x c x x x x o n n --=-?+?++?+?-

111

(1)23n x n

=-+

+++

所以0

ln(1)

()1n n n n n n x s x c a b x

===-==?=

∑∑∑-

(七)、差分算子求和法

此方法适用于通项系数是以n 为自变量的有限次多项式的幂级数求和问题。若

()f x 为任意实函数,?为差分算子,则定义函数()f x 的一阶差分为

()(1)()f x f x f x ?=+-

n 阶差分为 1()(()),2,3,

n n f x f x n -?=??

=

定理[6]

:设()p x 为m 次多项式,则当1x <时0

()n

n p n x ∞

=∑收敛,而且其和函数

1

0()(0)

(1)k m

k k k x

s x p x +==?∑-

定理证明:当1x <时,幂级数 0

()n

n p n x ∞

=∑ 收敛,现在定义单位算子I 及位移算子E 分

别为 ()()If x f x = ()(1)Ef x f x =+ 则 ()()()f x Ef x If x ?=- 即E I

=?+

由于 ()(0)()(0)n n

p n E p I p ==?+

(1)

(1)(0)!

n

k

k n n n k p k =--+=?∑

(1)

(1)(0)!

m

k

k n n n k p k =--+=?∑

所以 0

(1)

(1)()()(0)!

m

n

k

n k n n n n n k s x p n x p x k ∞

===--+==?∑

∑∑

0(1)

(1)(0)!

m k

n n k n n n k p x k ∞

==--+=?∑

0(0)[1223(1)]!

k m

k

k p x k k k =?=?+?++∑

2

0(0)(1)!k k m

k k

k p d x x x k dx =?=+++∑

0(0)1()!1k k m

k k k p d x k x

dx =?=∑- 10(0)!!(1)k m

k k k p k x k x +=?=∑-

1

0(0)(1)k

m

k

k k x p x +==?∑- 例9:求幂级数 21

1n

n n n x n ∞

=++∑的和函数()s x 解:令211

()(1)n n

s x n n x ∞

==++∑ 则 '1()()s x xs x = 2()1p n n n =++

故 ()22p n n ?=+ 2

()2p n ?=

所以由定理得

22123

(0)(0)(0)

()1(1)(1)p x p x p s x x x x ??=++

---

2

23122,(1)1(1)(1)

x x x x x x =++<---

2

'

23

1122()[]1(1)(1)x x s x x x x x =++---

则 2

21()ln

,(1)11(1)

x s x x x x x =++<---

三、幂级数求和函数各种方法特点分析与评价

以上介绍了七种求幂级数和函数的方法,这也只是若干种求幂级数和函数方法中一部分,其他更多的方法还有待探索发现,在此不再进一步探究。下面就以上七种方法再做一点讨论:

(一)定义法的特点:此方法是根据求幂级数部分和函数列的极限得出的,所以它自然适用于一切形式的幂级数求和。但是问题在于,对于一些通项比较复杂的幂级数,

幂级数部分和数列的极限很难求出,则此方法就会失效。例如幂级数

3

(1)

(1)!

n

n

n

n

x

n

=

-

+

∑的

部分和数列是否收敛就难以判断,假如要用定义法进行求和,那么就会相当困难而得不出结果。

(二)分项组合法特点:要运用这一方法我们首先要对所求幂级数的各项进行细心的观察。当逐项观察时发现不了什么规律,这时可以隔一项甚至两项、三项再次观察,也可以把通项稍作变形再观察。如果发现了一题中存在不止一种规律,那么就把符合同一种规律的各项组合在一起进行分别计算,最终再联列得出所求级数的和函数。这种方法在对通项进行拆项上技巧性很强,一般可以利用已知和函数的幂级数来进行。

(三)逐项求导与逐项积分法,这一方法使用起来比较简单。遇到一个级数,第一步将其通项单独拿出来分析。如果开始比较复杂无从下手,可以试着进行逐次求导、逐次积分、先求导再积分、先积分再求导,经过几次运算以后可以变成比较简单、容易求和的级数的话,那么先求出新级数的和,接着再做与之前所做的相反的运算就可以得出原来的级数的和函数。这种方法运用时要熟记常见函数的麦克劳林展开式,此时的展开式就是常见幂级数的和函数公式,这种求幂级数和函数的方法还可以用来求一些简单的数项级数的和。

(四)代数方程法,看到所求幂级数时,要仔细观察相邻两项之间是否存在有明显的关系,比如:前后两项之间只相差一个倍数,前一项乘以自变量、自变量的倍数或自变量的幂得到后一项。一旦发现这些规律时我们就可以果断的运用代数方程法求此幂级数的和函数,这样可以节约大量计算时间、带来很大的方便、提高效率。同样对于微分方程法,所求幂级数的一般项中通常含有阶乘因子,使用之前先对原来的和函数做一定的变形,求其一阶导数、必要时还要求其二阶导数、三阶导数,将所得结果与原来和函数联列。如果容易得到一个微分方程,那么就可以转化为求解此微分方程的初值问题解:容易求出初值解,则此解为要求的幂级数的和函数;若不易求初值解,此法就不再适用。

(五)柯西方法、差分算子求和法,这两种方法的适用条件比较明显。只要所求级数的通项可以表示为另外两个级数前 n 项相应乘积之和,且这两个级数的和函数容易求得,那么就可以使用柯西方法将已求得的两个和函数相乘而得到所求幂级数的和函数。

如果遇到通项系数是以 n 为自变量的有限次多项式的幂级数,那么就可以尝试使用差分算子求和法对其进行求解。

上面是对七种求和函数的方法分别介绍的,但不是说对于任何一题只要使用其中的一种方法就可以得出结果,有时候会碰到稍微复杂的题目,这时可能使用以上任何一种方法都不能得出结果,而是要综合使用其中的两种、三种甚至四种方法才可以顺利解答。

例10:求幂级数和函数

362

2

45

1

()25(1)3!6!

(2)!

n n n x x x s x x x x x x n x

n ++=+++++

+++++

其中 1,4,7,10,1n x =<

解:令 123()()()()s x s x s x s x =++

其中 4

1(),1,4,7,

n s x x x x n =++

++=

3

1x

x =

-

25

2()25,2,5,8,

n s x x x nx n =++++

=

358

32()25,2,5,8,n x s x x x nx n +=++

++=

3225

2(1)()333,2,5,8,

n x s x x x x x n -=-+++

++

=

22

3

31x x x =--

所以 22

232

33()(1)1x x s x x x =---

36

3(),3,6,9,3!6!!n

x x x s x n n =

++++=

25

1'

3(),3,6,9,

2!5!

(1)!

n x x x s x n n -=++++=-

4

2

''3(),3,6,9,

4!

(2)!

n x x s x x n n -=++++=-

以上三式相加得 '

''

333

1()()()1!

n x

n x s x s x s x e n ∞

=++==-∑ 这是一个满足初始条件'

33(0)0,(0)0s s ==的二阶常系数的线性微分方程,解此微分方程得

23231

()cos 1323

x

x s x e x e -=+-

从而 32223323231()cos 13

2311(1)x

x

x x x s x e x e x x x -=-+++----

例11:求 211n

n n x n

=+∑ 的和函数 ()s x 。 解:易知该幂级数的收敛域为(1,1)-

111()n

n

n n s x nx x n

===+∑∑ 令 1

11()n n s x nx

-==∑

1

1

00

1

1

()1x x n n

n n x s x dx nx dx x x

-=====

∑∑??- 则 122

11()()=,=1n

n x x s x nx x x x ∞==∑-,(1-)(1-)

令 2

11()n

n s x x n

==∑ 1

2

1

1()1n n s x x x

-===

-∑, 201

()ln(1)1x

s x dx x x

==---?

所以 111()n

n

n n s x nx x n

===+∑∑

2

ln(1)(1)

x

x x =

--- (11)x -<<

这两题分别综合用到了以上七种方法中的三个,这样才得以成功解答。从中我们可以得到启示,做题时自己的想法不能太单一、闭塞,所谓条条大路通罗马,要敢于尝试,相信肯定会有一种相对比较适合的方法的。

参考文献:

[1] 李铮、周放.高等数学 [ M] .科学出版社,2001:391

[2] 腾桂兰、杨万禄.高等数学 [ M] .天津大学出版社,2000:245-246

[3] 王金金、李广民、于力.高等数学学习辅导(第二版)[ M] .西安电子科技大学出版社,2002. [4] 陆少华.微积分(第二版)[ M] .上海交通大学出版社,2002. [5] 卢丁著,赵慈庚等译.数学分析原理 [ M] .机械工业出版社,2004:64

[6] 黎力军. 幂级数的算子求和法[ J] . 邵阳高专学报, 1994, 7( 4 ) :311-313. [7] 欧阳光中、姚允龙、周渊.数学分析[ M] .上海:复旦大学出版社,2003. [8] 华东师范大学数学系. 数学分析( 第三版) [ M] . 北京: 高等教育出版社, 2002. [9] 同济大学应用数学系. 高等数学( 第四版) [ M] . 北京: 高等教育出版社, 2004. [10] 菲赫金哥尔茨.微积分学教程[ M] .北京:高等教育出版杜,1054. [11] 裴礼文.数学分析中的典型问题与方法[ M] .北京:高等教育出版杜,1993.

例谈一类幂级数和函数的求法

即i薹I、蠢≤妻鍪主委 羹萋矍鍪萋羲鬃戋 姜孽耋爱薹;霎蓁囊爹至雩12毛』三:f毒耋辜耋!姜萼鬟鬻鹱|;曼彗 囊摹l!,∑叁L:: 2垂≤=引●r毛 翼蓁蘩鏊蓁篓鋈篓鋈襄錾鋈鬟黍冀羹 翻N肇 ;萋藿薹摹j霎耋誊薹摹蠹繁型篱篓薹菱垂羹零i i萋莹荔差薹;00i_;蓦毒到}:Ⅱ:而;羹i霎霎萋囊!i雾霎蚕~;;i71专00三;}i—ll蓄;一妻i 薹{重髻硫终;密萋霉童霉羹。囊至■摹吾||争霪 耋嘉霪藿薹。一薹~。霉篓薹薹●,萋一芝___一一誊摹一 藉鏊鼋,尊甾藿姜耋■囊≤||甲琴嘉囊髦鋈薹妻囊囊冀 霎=i薹■||j妻瞻i兰霎薹罨。蓦薹耋j.;蔓i三 雪差薹薹。墨雾萋毫妻季耋蘑二雾薹姜一琴囊冀狐囊竖 萋罄蠹郛萎篓囊霆姿鬣萋,匿鬻i囊磊些羹蘑鍪雾静蒸 蕊蓑鬟霎;雾妻薹羹蠢捞鬓秀鍪彳萄辇雾薹篓篓髫雾刍 譬誊囊善墓量!≤竖羹囊霪鏊雾管基蓥蠢鉴鏊澍m嗜: 奏鸯耋羹暨奎妻錾蕊捆掌囊4-疟~。晡鏊翼蠹藩题÷囊 旨篓霎萋萎萋萋薹蓦。胤耋:~篓雾鋈菱薹薹璺羹荔警

例谈一类幂级数和函数的求法 作者:杜炜 作者单位:濮阳广播电视大学,河南,濮阳,457000 刊名: 濮阳教育学院学报 英文刊名:JOURNAL OF PUYANG COLLEGE OF EDUCATION 年,卷(期):2002,15(1) 被引用次数:0次 参考文献(1条) 1.朱有清.贺才兴高等数学复习十五讲 1986 相似文献(10条) 1.期刊论文解烈军求幂级数和函数的微分方程方法-高等数学研究2009,12(3) 按照通常求幂级数和函数的思路,对一些幂级数并不能奏效.在某些情况下,可以引入求幂级数和函数的微分方程方法.其主要思路是通过建立和函数的微分方程,将幂级数求和函数问题化为微分方程初值问题来求解. 2.期刊论文徐凤林.张秀丽.XU Feng-lin.ZHANG Xiu-li幂级数和函数的解法综述-山东轻工业学院学报(自然科学版)2006,20(1) 本文总结了求幂级数和函数的四种方法.一种方法是将待求级数分解成己知和函数的级数的运算(一般是加减)表达形式,然后逐一求和新的级数;第二种方法是"先求导,再积分"或"先积分,再求导";第三种方法是把待求级数用基本初等函数的幂级数展开式表示出来;第四种方法是列写出和函数满足的微分方程,解此微分方程得到和函数. 3.期刊论文张锦来.ZHANG Jin-lai幂级数∞∑n=1x2n/(2n)k和函数的递推公式及其应用-延边大学学报(自然科学版)2008,34(2) 根据收敛级数的分析性质研究了幂级数∞∑n=1x2n/(2n)k(k≥2)的和函数问题,用数学归纳法证明了其和函数的递推公式,由此得出k=2,3,4,…时幂级数和函数的具体表达式,进而导出几个与之相关的非初等积分的值或近似值. 4.期刊论文张玉灵由通项公式求一类幂级数的和函数-高等数学研究2009,12(3) 利用和函数的定义对形如∞∑anbn(x)的幂级数,其中{an}是一等差数列,{bn(x)}是一等比函数列,推导出了求该类幂级数和函数的一个通项公式. 5.期刊论文桂曙光.GUI Shu-guang利用差分法求一类幂级数的和函数-安庆师范学院学报(自然科学版)2001,7(4) 利用差分法导出了求幂级数和函数的一个通项公式,用它能求出系数为高阶等差数列和高阶等比数列的幂级数∞∑n=0anxn的和函数. 6.期刊论文周宏安.ZHOU Hong-an幂级数和函数分析性质的一种证明-陕西工学院学报2000,16(2) 作者在文[1]中给出了幂级数在收敛区内连续性的一种证明,本文直接利用幂级数的收敛性,给出幂级数和函数在收敛区间上的分析性质的一种简捷证明.并举例说明方法的实用性. 7.期刊论文朱双荣例谈求幂级数和函数的一题多解-高等函授学报(自然科学版)2010,23(2) 借助于已知级数的和函数,通过观察或逐项求导、逐项积分等方法得到需要求出和函数的级数所满足的式子,从而求出级数的和函数. 8.期刊论文李高明利用拆项法求一类幂级数的和函数-高等数学研究2009,12(3) 利用拆项法,给出一类系数为和式的幂级数和函数的求法.并对此类幂级数收敛半径计算,给出一个一般性结论. 9.期刊论文金少华.宛艳萍求幂级数的和函数时应注意的几个问题-高等数学研究2007,10(3) 讨论求幂级数的和函数时应注意的几个问题. 10.期刊论文刘永莉.李曼生.LIU Yong-li.LI Man-sheng两类幂级数的和函数求法-甘肃联合大学学报(自然科学版)2005,19(2) 利用差分算子与微分方程导出了两类系数含有高阶等差数列的幂级数的求和公式,并举例介绍了公式的应用. 本文链接:https://www.360docs.net/doc/4e9777097.html,/Periodical_pyjyxyxb200201036.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:1b3522eb-5036-489c-8ded-9dcf00c128de 下载时间:2010年8月11日

幂级数求和

求幂级数的和函数()S x 1.1 (1) (1) n n n x n n ∞ =-+∑ 解:易知收敛域为[]1,1-。当()()1,00,1x ∈-?时,1 1 1 (1) ()(1) n n n S x x x n n ∞ +=-= +∑。 令1 11 (1) ()(1) n n n S x x n n ∞ +=-= +∑,则 11 (1)()n n n S x x n ∞ =-'= ∑ ,() 1 1 11 11()(1)1n n n n n S x x x x ∞∞ --==''= -=--=- +∑ ∑。 两边取积分,则 111()()(0)S x S x S '''=-=10 ()ln(1)1x x dt S t dt x t ''=-=-++? ? 。 再取一次积分,则 11110 ()()(0)()ln(1)(1)ln(1)x x S x S x S S t dt t dt x x x '=-= =-+=-++? ?, 从而当()()1,00,1x ∈-?时有 1()1l n (1)x S x x x +=- +。 (*) 当1x =-时,()1 11 1 111(1) 1n n S n n n n ∞ ∞ ==??-= = -= ?++? ?∑∑。 当0x =时,(0)0S =。 当1x =时, ()() ()()() () 1 1 1 1 1 11111112ln 2(1) 11 n n n n n n n n n S n n n n n n +∞ ∞ ∞ ∞ ====?? -----== -=+ =-??+++??? ? ∑ ∑ ∑ ∑ 。 注意:上面第三个等式成立是因为等式右边的两个级数都收敛; 最后一个等式利用了下列麦克劳林展开式: () 1 1 ln(1)1n n n x x n ∞ -=+=-∑ (11x -<≤)。 将1x =代入,即得 () () () 1 1 1 1 1 111ln 211 n n n n n n n n n -+∞ ∞ ∞ ===---= =-=-+∑ ∑ ∑ 。也可以利用幂 级数和函数的分析运算性质(1)(见P262)直接得出(1)S 也满足(*)的结论。

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3)n u x n =L 是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++∈L L 为定义在E 上的函数项级数,简记为1()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 200102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-++-+∑L L

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

考研数学之幂级数展开与求和

考研数学之幂级数展开与求和 来源:文都图书 级数在考研数学中属于数一和数三要考查的内容,其核心内容为幂级数展开与求和,今天我们就来详细学习一下幂级数的展开与求和步骤。 幂级数展开与求和在考试中常以解答题形式出现。要学好展开与求和,首先,我们需要两大工具:1、常见泰勒级数及收敛域;2、逐项展开与逐项求导。其次,要掌握常用方法。 展开常用方法,一是直接展开,这种考法较少,二是间接展开,以这种考法居多。间接展开解题的要点如下: (1)转化,将函数f(x)在某非零点处展开,转化到在x=0处展开。 (2)拆项,将函数拆成两项之和或差,然后利用常见函数的幂级数展开将两个展开式求和或者求差便可。 (3)因式分解,将函数分解成两项之积,一般其中一个因式为低次(至多为二次)多项式,另一个用常见幂级数展开式展开。 (4)求导法,先对函数求导,再用常见幂级数展开式展开,最后逐项积分。 (5)积分法,先对函数积分,再用常见幂级数展开式展开,最后逐项求导。 幂级数求和是展开的逆问题,比展开要难,考研中常用到的方法如下。 (1)直接套用已知的基本展开式,后者拆后套用。 (2)系数的分母中含有n的阶乘的,考虑用指数函数,或者正弦函数与余弦函数的某种组合。 (3)系数的分母中含有n、n+1、n+2的可以先逐项求导。系数的分子中含有n、n+1、n+2的可以先逐项积分。 除此之外,展开与求和部分还会考一些综合性题目,如跟微分方程结合在一起考查。总之主要方法还是如上综述的方法。望考生们多

联系,以体会上述方法。此外建议考生找一些类似的题目,强化练习。学会利用其方法和技巧,考研数学会涉及很多题目考察很多知识点,对待这些题目,我们要从运用的基本知识,及其解题方法,从理论到实践系统性的掌握,建议参考一下汤家凤的2017《考研数学复习大全》认真备考吧,预祝考试顺利。 When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you, And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled And paced upon the mountains overhead And hid his face amid a crowd of stars. The furthest distance in the world Is not between life and death But when I stand in front of you

幂级数求和函数方法概括与汇总

幂级数求和函数方法概括与汇总

————————————————————————————————作者:————————————————————————————————日期:

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

论文_幂级数求和的方法

长沙学院信息与计算科学系本科生科研训练 幂级数求和的方法 系(部):信息与计算科学系 专业:数学与应用数学 学号: 2009031110 学生姓名:范庆勇 成绩: 2012年 6月

幂级数求和的方法 范庆勇 长沙学院 信息与计算科学系 湖南长沙 410022 摘要:幂级数是无穷级数中的一种.本文主要总结了幂级数的多种求和方法.主要有逐项微分与逐项积分法,代数方程法,公式法等.同时通过举例说明了不同方法在解题中的应用. 关键词:幂级数,和函数,微分,积分 1 引言 幂级数是微积分中十分重要的内容之一,而求幂级数的和函数是一类难度较高、技巧性较强的问题,因此是有必要对这类问题进行研究和探讨.求解幂级数的和函数时,我们通常用幂级数的有关运算,综合运用求导,求积分,拼凑,分解等技巧来解决.也可以利用幂级数的有关公式求解. 本文通过具体例子介绍了幂级数求和的几种方法.文献[1]主要介绍了利用逐项积分与逐项微分的思想,计算部分和的极限以及转化为微分方程求幂级数的和.文献[2]主要是讲述了裂项组合法,逐项积分与逐项微分法,有限递推法,代数方程法,微分方程法求幂级数的和,同时还介绍了化归思想在幂级数求和中的应用.文献[3]主要是介绍通过逐项微分推导出几种公式,利用公式求和函数. 本文主要介绍逐项积分与逐项微分法,代数方程法,公式法求幂级数的和. 2 幂级数求和的几种方法 2.1 逐项微分[1] 幂级数在其收敛区间内其和函数是可导的,且有逐项求导公式 )x ('s =(n n n x a ∑∞ =)'= x a n n n )(∑ ∞ ==1 -n 1 n n x na ∑∞ =, 通过对幂级数的逐项求导将其转化为能求出和函数的幂级数,再积分即可.

幂级数求和函数方法概括与总结-幂级数总结

幂级数求和函数方法概括与总结-幂级数总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

幂级数求和法的归纳总结与推广

幂级数求和法的归纳总结与推广 摘要:本文研究的是如何对幂级数进行求和,主要从数学专业中的三个学科(常微分方程、初等数学、高等代数),分别通过微分方程法、初等数学中的杨辉三角法以及矩阵法对幂级数进行求和。对那些能用这三种方法进行求和的幂级数进行了一定的归纳和总结,并展开了一定的推广。通过对这三类方法的典型例题的求解,加深对方法的了解和运用,完善级数求和的知识体系。 关键词:级数求和,微分方程,矩阵,杨辉三角 引言 级数是高等数学的一个重要组成部分, 其理论是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期杰出的数学家刘徽于公元263 年创立了“割圆术”, 其要旨是用圆内接正多边形去逐步逼近圆, 从而求得圆的面积。这种“割圆术”就已建立了级数的思想方法, 即无限多个数的累加问题。而今, 级数的理论已发展的相当丰富和完整, 在工程实践中有着广泛的应用, 可用来表示函数、研究函数的性质, 也是其进行数值计算的一种工具。 同时级数也是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数。在各种有力的解析工具中按其简单.灵活.明确以及使用的方便而言,毫无疑问第一位应属于函数级数。这个最重要的解析工具的思想很简单:我们想要研究的函数可以表示为其它的更为简单的。容易研究的函数的系列(即表示此函数为级数的部分和的极限。如果这个部分和在整个所研究的区间上完全趋近于所研究的函数,则我们就有理由从整个近似的部分和的性质来估计所研究函数的一些性质——尽管只是近似的研究。特别地,会对自变量的某个值近似计算这些部分和的值,我们同时也有办法近似计算所研究函数的相应的值。 用什么样的函数作为我们的展开式的元素最方便.最适合呢?即选什么函数作为表示所研究函数级数的项,最便于帮助我们研究函数?对此问题,当然不指望有唯一的答案适用于所有情形。这几乎完全取决于所研究的函数的性质以及我们对函数所提出的问题的性质,只是必须指出,有一种最重要的函数级数类值得推荐起作用,因为每一步都可以应用它们,这样就自然地要求创立相应的一般理论。这种函数级数就是幂级数(其中展开式的元素是自变量的整数次数幂——首先是非整数次幂)。 在幂级数收敛性的判断,求和问题等性质中,求和问题不免也是一处重要的知识点。幂级数求和的求解是一类难度较大技巧性较高的问题,更好地了解和掌握幂级数求和的方法和技巧对于学习幂级数具有更好的指导意义和学习价值。 幂级数求和,包括求某些数项级数的和,利用技术性质,展开定理、收敛定理等求函数项级数的和函数,函数的幂级数展开式、Fourier级数等,无疑是级数理论学习中的重要内容,在一定意义上对这部分知识掌握的程度,也是衡量学生数学能力、数学素质的一项检验指标。 而作为特殊函数项级数的幂级数,由于具有结构形式简单和近似表达函数的灵活性的优点,而作为一个极为有用的计算工具,数项级数的求和就是一个重要的应用。它的基本理论依据是在一致收敛条件下,函数项级数的和函数连续,可导、可积,即求和运算与极限运算求积运算、求导运算可以换序。而幂级数更具有收敛半径易求,在(-R,R)上内闭一致收敛以及在逐项求导或逐项积分收敛

幂级数求和问题的几种转化

幂级数求和问题的几种转化 数学与计算机科学学院 数学与应用数学专业 【摘要】本文通过具体例子,介绍了幂级数求和的若干种转化和方法,例如其中的代数方程法, 、微分方程法等.同时对幂级数求和的化归途径进行了分析和实践,探讨了利用化归思想求幂级数和函数的几种方法. 【关键词】幂级数;和函数;微分;化归思想 The power series summation of several transformation Major in Pure and Applied Mathematics College of Mathematics and Computer Science [Abstract] This article through a concrete example, introduces the power series summation of several kinds of transformation and methods, such as one of the algebraic equation method, and differential equation method, etc. Meanwhile to the power series summation of change to approach is analyzed and practiced, this paper has discussed the use of be thought for the power series and the function of several methods. [Key words] power series; And functions; Differential;Change be thought 1.引言 幂级数是微积分中十分重要的内容之一,而求幂级数的和函数是一类难度较高、技巧性较强的问题,因此是有必要对这类问题进行研究和探讨.求解幂级数的和函数时,我们通常用幂级数的有关运算,综合运用求导,求积分,拼凑,分解等技巧来解决.也可以利用幂级数的有关性质求解. 本文把幂级数求和和化归思想联系在一起,介绍了化归思想在幂级数求和中的应用. 2.预备知识 2.1 幂级数 定义[1] 由幂级数列{0()n n a x x -}所产生的函数项级数 20 0102000 () ()()...()...n n n n n a x x a a x x a x x a x x ∞ =-=+-+-++-+∑, (1) 它称为幂级数,是一类最简单的函数项级数,从某种意义上说,它可以看做是多项式函

幂级数求和函数方法概括与总结-幂级数总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++ ++ ∈ ! 为定义在E 上的函数项级数,简记为1 ()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

级数求和常用方法

级数求和的常用方法 摘要 级数理论及应用无论对数学学科本身还是在其他科学技术及理论的发展中都有极为重要的影响和作用,而级数求和是级数理论及应用的主要内容之一.由于级数求和的方法比较多,技巧性很强,一般很难掌握其规律,是学习的一个难点,因此掌握一些常用的级数求和方法就显得尤为重要.通过例题,分别针对常用的数项级数和函数项级数求和进行分析和讨论,试图通过对例题的分析和解决,展示级数求和的常用方法和思想,进而探索级数求和的规律,理解级数理论即合理应用,打下良好的基础,为学习者起到抛砖引玉的方法. 关键词:数项级数;函数项级数;求和;常用方法

Summation of series method in common use Abstract Progression theory and application still are having the most important effect and function on the development of science and technology and theory disregarding logarithmic discipline per se, but summation of series is one of progression theory and applicative main content. Method of summation of series is comparatively many, the dexterity is very strong, in general very difficult to have its law in hand, be a difficult point studying, have some summation of series in common use method in hand therefore appearing especially important right away. Carry out analysis and discuss that by the fact that the example , difference are aimed at several progression and function item summation of series in common use, try to pass the analysis checking an example and solve, show summation of series method and thought in common use , probe and then the summation of series law , understand that progression theory is that reasonableness applies , lays down fine basis, in order the learner gets the method arriving at a modest spur to induce someone to come forward with his valuable contributions. Key words: Count progression; function series; Sue for peace; Method in common use

相关文档
最新文档