基本不等式 Word版含答案

基本不等式 Word版含答案
基本不等式 Word版含答案

第四节 基本不等式

1.基本不等式

(1)了解基本不等式的证明过程.

(2)会用基本不等式解决简单的最大(小)值问题. 2.不等式的综合应用

会运用不等式性质解决比较大小、值域、参数范围问题.

知识点 基本不等式 1.基本不等式ab ≤a +b

2

(1)基本不等式成立的条件:a >0,b >0.

(2)等号成立的条件:当且仅当a =b 时等号成立.

(3)其中a +b

2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.

2.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值).

那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值).

那么当x =y 时,xy 有最大值S 2

4

.(简记:“和定积最大”)

易误提醒 (1)求最值时要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件.(2)多次使用基本不等式时,易忽视取等号的条件的一致性.

必记结论 活用几个重要的不等式: (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +a

b ≥2(a ,b 同号). (3)ab ≤??

??a +b 22

(a ,b ∈R ).

(4)????a +b 22≤a 2

+b 2

2(a ,b ∈R ). (5)

a 2+

b 22≥a +b 2≥ab ≥2

1a +1

b

(a >0,b >0,当且仅当a =b 时取等号).

[自测练习]

1.下列不等式中正确的是( ) A .若a ∈R ,则a 2+9>6a B .若a ,b ∈R ,则a +b

ab

≥2

C .若a ,b >0,则2lg a +b

2≥lg a +lg b

D .若x ∈R ,则x 2+1

x 2+1>1

解析:∵a >0,b >0,∴a +b

2≥ab .

∴2lg a +b 2≥2lg ab =lg (ab )=lg a +lg B.

答案:C

2.已知f (x )=x +1

x -2(x <0),则f (x )有( )

A .最大值为0

B .最小值为0

C .最大值为-4

D .最小值为-4

解析:∵x <0,∴-x >0,∴x +1

x -2=-????(-x )+1(-x )-2≤-2

(-x )·1

(-x )

-2=-4,

当且仅当-x =-1

x

,即x =-1时等号成立.

答案:C

3.下列函数中,最小值为4的是( ) A .y =x +4

x

B .y =sin x +

4

sin x

(0

x D .y =x 2+1+

2

x 2

+1

解析:∵y =x +4

x 中x 可取负值,

∴其最小值不可能为4; 由于0

sin x

>2

sin x ·4

sin x

=4,

其最小值大于4;由于e x >0, ∴y =e x +4e -

x ≥2e x ·4e -

x =4,

当且仅当e x =2时取等号, ∴其最小值为4;∵x 2+1≥1, ∴y =x 2+1+2

x 2+1

≥22,当且仅当x =±1时取等号,∴其最小值为22,故选C. 答案:C

4.已知x >1,则x +4

x -1的最小值为________.

解析:∵x >1,∴x -1>0,

∴x +4x -1=(x -1)+4

x -1+1≥4+1=5,

当且仅当x -1=4x -1即x =3时等号成立.

答案:5

考点一 利用基本不等式证明简单不等式|

(1)已知a >0,b >0,a +b =1,

求证:????1+1a ???

?1+1

b ≥9. (2)设a ,b 均为正实数,求证:1a 2+1

b 2+ab ≥2 2.

[证明] (1)法一:∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+b a .同理,1+1b =2+a

b

.

∴????1+1a ????1+1b =????2+b a ????2+a b =5+2????b a +a b ≥5+4=9.当且仅当b a =a b ,即a =b =12时取“=”.

∴????1+1a ????1+1b ≥9,当且仅当a =b =1

2

时等号成立. 法二:????1+1a ????1+1b =1+1a +1b +1ab =1+a +b ab +1ab =1+2

ab ,∵a ,b 为正数,a +b =1, ∴ab ≤??

??a +b 22=14

,当且仅当a =b =1

2时取“=”.

于是1ab ≥4,2ab ≥8,当且仅当a =b =1

2时取“=”.

∴????1+1a ???

?1+1

b ≥1+8=9, 当且仅当a =b =1

2时等号成立.

(2)由于a ,b 均为正实数, 所以1a 2+1b

2≥2

1a 2·1b 2=2ab

, 当且仅当1a 2=1

b 2,即a =b 时等号成立,

又因为2

ab

+ab ≥2

2ab

·ab =22, 当且仅当2

ab =ab 时等号成立,

所以1a 2+1b 2+ab ≥2

ab

+ab ≥22,

当且仅当???

1a 2=1b 2

,2

ab =ab ,

即a =b =4

2时取等号.

考点二 利用基本不等式求最值|

(1)已知x >0,y >0,lg 2x +lg 8y =lg 2,

则1x +1

3y

的最小值是( ) A .2 B .2 3 C .2 2

D .4

(2)(2015·高考重庆卷)设a ,b >0,a +b =5,则a +1+b +3的最大值为________. [解析] (1)由lg 2x +lg 8y =lg 2得,2x ×23y =2x

+3y

=2,即x +3y =1,1x +1

3y =????1x +13y ×(x +3y )=2+3y x +x

3y

≥2+2

3y x ×x

3y

=4,当且仅当?????

3y

x =x

3y ,x +3y =1,x >0,y >0,

即最小值为4.故选D.

(2)(a +1+b +3)2=a +b +4+2

a +1·

b +3≤9+2·(a +1)2+(b +3)2

2

=9+a +b

+4=18,所以a +1+b +3≤32,当且仅当a +1=b +3且a +b =5,即a =72,b =3

2时

等号成立.所以a +1+b +3的最大值为3 2.

[答案] (1)D (2)3 2

1.若两个正实数x ,y 满足2x +1

y =1,并且x +2y >m 2+2m 恒成立,则实数m 的取值范

围是( )

A .(-∞,-2)∪[4,+∞)

B .(-∞,-4]∪[2,+∞)

C .(-2,4)

D .(-4,2)

解析:x +2y =(x +2y )????2x +1y =2+4y x +x y +2≥8,当且仅当4y x =x

y ,即4y 2=x 2时等号成立.由x +2y >m 2+2m 恒成立,可知m 2+2m <8,m 2+2m -8<0,解得-4

答案:D

2.(2016·洛阳统考)若正实数x ,y ,z 满足x 2+4y 2=z +3xy ,则当xy z 取最大值时,1x +

1

2y -1

z

的最大值为( ) A .2 B.32 C .1

D.12

解析:∵z =x 2+4y 2-3xy ,x ,y ,z ∈(0,+∞),∴xy z =xy x 2+4y 2-3xy =1

x y +4y

x -3≤1(当

且仅当x =2y 时等号成立),此时1x +12y -1z =1y -12y 2,令1y =t >0,则1x +12y -1z =t -12t 2≤1

2(当且

仅当t =1时等号成立).故选D.

答案:D

考点三 基本不等式的实际应用|

某化工企业2015年年底投入100万

元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x 年的年平均污水处理费用为y (单位:万元).

(1)用x 表示y ;

(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.

[解] (1)由题意得,

y =100+0.5x +(2+4+6+…+2x )x ,

即y =x +100

x +1.5(x ∈N *).

(2)由基本不等式得: y =x +100

x

+1.5≥2

x ·100

x

+1.5=21.5, 当且仅当x =100

x

,即x =10时取等号.

故该企业10年后需要重新更换新的污水处理设备.

3.某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD 的周长为4,沿AC 将△ABC 翻折,使点B 落到点B ′的位置,AB ′交DC 于点P .研究发现当△ADP 的面积最大时最节能,则最节能时△ADP 的面积为( )

A .22-2

B .3-2 2

C .2- 2

D .2

解析:设AB =x ,DP =y ,则BC =2-x ,PC =x -y .因为x >2-x ,故1

x ,即x =2时,S 取得最大值3-2 2.

答案:B

11.忽视等号成立条件致误

【典例】 (1)已知x >0,y >0,且1x +2

y =1,则x +y 的最小值是________.

(2)函数y =1-2x -3

x (x <0)的最小值为________.

[解析] (1)∵x >0,y >0,

∴x +y =(x +y )????1x +2y =3+y x +2x

y ≥3+22(当且仅当y =2x 时取等号) ∴当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)∵x <0,∴y =1-2x -3

x

=1+(-2x )+????-3x ≥1+2(-2x )·3

-x

=1+26,当且仅当

x =-

6

2

时取等号,故y 的最小值为1+2 6. [答案] (1)3+22 (2)1+2 6

[易误点评] (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2

y ≥2

2

xy

, ∴xy ≥22,∴x +y ≥2xy ≥42,得(x +y )min =4 2. (2)没有注意到x <0这个条件误用基本不等式得2x +3

x

≥2 6.

[防范措施] (1)利用基本不等式求最值,一定要注意应用条件.(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.

[跟踪练习] 已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________. 解析:∵12=4x +3y ≥24x ×3y ,

∴xy ≤3.当且仅当?????

4x =3y ,

4x +3y =12,

即?????

x =32,y =2时xy 取得最大值3. 答案:3

1.“a ≥0,b ≥0”是“a +b 2≥ab ”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

解析:由a ≥0,b ≥0可得a +b 2≥ab ,当且仅当a =b 时取等号.反之,若a +b

2≥ab ,

则ab ≥0,可得a ≥0,b ≥0,故选C.

答案:C

2.(2016·杭州一模)设a >0,b >0.若a +b =1,则1a +1

b 的最小值是( )

A .2 B.14 C .4

D .8

解析:由题意1a +1b =a +b a +a +b b =2+b a +a

b

≥2+2

b a ×a b =4.当且仅当b a =a

b

,即a =b

七年级数学下册不等式与不等式组单元测试卷

2 4 -2 第10题 不等式与不等式组测试卷 姓名 班级 一、填空题(共9小题,每题3分,共27分) 1.不等式7-x >1的正整数解为: . 2.当y ________时,代数式 4 23y -的值至少为1. 3.若方程m x x -=+33的解是正数,则m 的取值范围是_________. 4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为 . 5.若 11 | 1|-=--x x ,则x 的取值范围是 . 6.当0<? 的解集表示在数轴上,正确的是( ) 12.若方程3m (x+1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ). A.m>-1.25 B.m<-1.25 C.m>1.25 D.m<1.25 13.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后, 每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ). A.5千米 B.7千米 C.8千米 D.15千米 三、解答题(共10题,共61分) 14.(5分)解不等式1)1(22π---x x . 15.(5分)解不等式3 41221x x +≤ --. 16.(5分)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x x x --?? ?--

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

基本不等式专题 ---完整版(非常全面)

创作编号:BG7531400019813488897SX 创作者: 别如克* 基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅 当b a =时取“=”) (4)若 R b a ∈,,则 2)2(2 22b a b a ab +≤ +≤ ( 5 ) 若 * ,R b a ∈,则 2 2111 22b a b a ab +≤+≤≤+ ( 1 ) 若 ,,,a b c d R ∈,则 22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+) 22212) n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等

一元一次不等式单元测试题

《一元一次方程》试题 【巩固练习】 一、选择题 1.下列方程中,是一元一次方程的是( ). A .250x += B .42x y +=- C .162x = D .x =0 2. 下列变形错误的是( ) A.由x + 7= 5得x+7-7 = 5-7 ; B.由3x -2 =2x + 1得x= 3 C.由4-3x = 4x -3得4+3 = 4x+3x D.由-2x= 3得x= - 32 3. 某书中一道方程题:213 x x ++=W ,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是 2.5x =-,那么□处应该是数字( ). A .-2.5 B .2.5 C .5 D .7 4. 将(3x +2)-2(2x -1)去括号正确的是( ) A 3x +2-2x +1 B 3x +2-4x +1 C 3x +2-4x -2 D 3x +2-4x +2 5. 当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( ) A.-8 B.-4 C.-2 D.8 6.解方程121153 x x +-=-时,去分母正确的是( ). A .3(x+1)=1-5(2x -1) B .3x+3=15-10x -5 C .3(x+1)=15-5(2x -1) D .3x+1=15-10x+5 7.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为( ). A .4 B .5 C .6 D .7 8.某超市选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克混合成杂拌糖后出售,在总销售额不变的情况下,这种杂拌糖平均每千克售价应是( ). A .18元 B .18.4元 C .19.6元 D .20元 二、填空题 9.在0,-1,3中, 是方程3x -9=0的解. 10.如果3x 52a -=-6是关于x 的一元一次方程,那么a = ,方程的解=x . 11.若x =-2是关于x 的方程324=-a x 的解,则a = . 12.由3x =2x +1变为3x -2x =1,是方程两边同时加上 . 13.“代数式9-x 的值比代数式x 3 2-1的值小6”用方程表示为 .

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

必修五不等式单元测试题

人教版必修五《不等式》单元测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x の解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2} D .{x |x ≤0或x ≥2} 2.下列说法正确の是( ) A .a >b ?ac 2>bc 2 B .a >b ?a 2>b 2 C .a >b ?a 3>b 3 D .a 2>b 2?a >b 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域の是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 4.不等式x -1 x +2 >1の解集是( ) A .{x |x <-2} B .{x |-2N B .M ≥N C .M 2 B .m <-2或m >2 C .-20时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-11 D .0log 1 2(x +13)の解集是_________. 13.函数f (x )=x -2 x -3 +lg 4-x の定义域是__________. 14.x ≥0,y ≥0,x +y ≤4所围成の平面区域の周长是________. 15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份 销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、

《不等式》单元测试卷(含详解答案)

试卷第1页,总4页 不等式测试卷 (各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程 序拍照发给老师检查。) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若0a b <<,则下列不等式不能成立的是( ) A .11a b > B .11a b a >- C .|a|>|b| D .22a b > 2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( ) A .[7,26]- B .[1,20]- C .[4,15] D .[1,15] 3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .152 4.设集合{}220A x x x =-->,{} 2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( ) A .()2,0- B .()(),02,∞∞-?+ C .()0,2 D .()(),20,∞∞--?+ 6.已知关于x 的不等式 101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12 - 7.不等式20ax x c -+>的解集为}{ |21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .

广东高考数学(理)一轮题库:7.4-基本不等式(含答案)

第4讲基本不等式一、选择题 1.若x>0,则x+4 x 的最小值为( ). A.2 B.3 C.2 2 D.4 解析∵x>0,∴x+4 x ≥4. 答案 D 2.已知a>0,b>0,a+b=2,则y=1 a + 4 b 的最小值是( ). A.7 2 B.4 C. 9 2 D.5 解析依题意得1 a + 4 b = 1 2? ? ? ? ? 1 a + 4 b( a+b)= 1 2? ? ? ? ? ? 5+ ? ? ? ? ? b a + 4a b≥ 1 2? ? ? ? ? 5+2 b a × 4a b =9 2 ,当且仅当 ?? ? ?? a+b=2 b a = 4a b a>0,b>0 ,即a= 2 3 , b=4 3 时取等号,即 1 a + 4 b 的最小值是 9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a和b(a

又v -a =2ab a + b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2+b 2有最小值 22 解析 由基本不等式,得ab ≤a 2+b 2 2 = a +b 2 -2ab 2 ,所以ab ≤1 4 ,故B 错; 1 a +1 b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=1 2, 故D 错. 答案 C 5.已知x >0,y >0,且2x +1 y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ???? 2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 222 222 2 1 2311 23112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ??????---≥ ??????????? 6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 2 2 3 3 22-≥- 题型二:利用不等式求函数值域 1、求下列函数的值域 (1)2 2 21 3x x y += (2))4(x x y -=

(完整word版)中职不等式单元测试题一

不等式单元测试题(一) 一、选择题:本大题共12小题,每小题3分,共36分 1、不等式的解集的数轴表示为( ) (A )(B ) (C ) (D ) 2、设,A=(0,+∞),B=(-2,3],则A ∩B= ( ) (A )(-2,+∞) (B ) (-2,0) (C ) (0,3] (D )(0,3) 3、已知a 、b 、c 满足c a c B 、c (b -a )<0 C 、c 2b 0 4、不等式|x +1|(2x -1)≥0的解集为 ( ) A 、{x |x ≥ 21} B 、{x |x ≤-1或x ≥21} C 、{x |x =-1或x ≥21} D 、{x |-1≤x ≤2 1} 5、若a b 1 B 、b a -1>a 1 C 、a ->b - D 、|a |>b - 6、不等式x 2 >x 的解集是 ( ) A (-∞,0) B (0,1) C (1,+∞) D (-∞,0)∪(1,+∞) 7、已知0a b +>,0b <,那么,,,a b a b --的大小关系是 ( ) A .a b b a >>->- B .a b a b >->->C .a b b a >->>- D .a b a b >>->- 8、已知下列不等式:①x 2+3>2x ;②a 5+b 5 >3 223b a b a +;③22b a +≥2(a -b -1),其中正确的个 数为 ( ) A 、0 B 、1 C 、2 D 、3 9、已知A ={x |-1≤x ≤1},B ={x |1-a ≤x ≤2a -1},若B ?A ,则a 的范围为 ( ) A 、(-∞,1] B 、[1,+∞) C 、[2,+∞) D 、[1,2] 10、下列不等式中,对任意x ∈R 都成立的是 ( ) A . 244x x +≤1 B .x 2+1>2x C .lg(x 2 +1)≥lg2x D .2111 x <+ 11、 不等式 的解集是( ) (A )(2,4) (B ) (C )(-4,-2) (D ) 12.在R 上定义运算:x *y =x (1-y ).若不等式(x -a )*(x +a )<1对任意实数x 恒成立,则( ) A .-10的解集为(- 21,3 1),则a +b =. 16、不等式 204 x x ->+的解集是 . 17、022=+b a 是0=a 条件 18、设A=(-1,3],B=[3,6],则A ∩B= ; 三、解答题:本大题共6小题,共36分。 19、解下列不等式:(1)|3x -5|<8, (2)3|2x -1|≤2. 20、解下列不等式:(1);(2) .

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

一元一次不等式单元测试题

第八章一元一次不等式测试题 一、选择题: 1、如果,那么下列不等式不成立的是() A、B、C、D、 2、不等式的解集是() A、B、C、D、 3 、下列各式中,是一元一次不等式的是() A、E、C、D、 4、已知不等式,此不等式的解集在数轴上表示为() 5、在数轴上从左至右的三个数为a, 1 + a,—a,则a的取值范围是() A a v B a v 0 C、a> 0 D、a v — 6、(2007 年湘潭市)不等式组的解集在数轴上表示为() 7、不等式组的整数解的个数是() A、1 个 B、2 个 C、3 个 D、4 个 8、在平面直角坐标系内, P(2x—6, x—5)在第四象限,则x 的取值范围为() A、3v x v 5 B、—3v x v 5 C、—5v x v 3 D、—5v x v— 3 9、方程组的解x、y满足x>y,贝U m的取值范围是() A. B. C. D. 10、、(2013?荆门)若关于x的一元一次不等式组有解,则m的取值范围为() A. < C. D. me

11、(2013?孝感)使不等式x - 1>2与3x - 7 v 8同时成立的x的整数值是() A.3, 4 D.不存在 12、某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法 第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售?你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买 ()块肥皂? 二、填空题 13、若不等式组无解,则m的取值范围是 _______________ . 14、不等式组的解集为x >2,则a的取值范围是________________ . 15、(2013?厦门)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全 区域?甲工人在转移过程中,前40米只能步行,之后骑自行车. 已知导火线燃烧的速度为米/秒,步行的速度为1米/秒,骑车的速度为4米/秒?为了确保甲工人的安全,则导火线的长要大于______________________ 米 16、(2013?白银)不等式2x+9》3 (x+2)的正整数解是 ____________ ? 17、(2013?宁夏)若不等式组有解,则a的取值范围是______________ ? 18、(2013?南通)关于x的方程mx 1 2x的解为正实数,则m的取值范围是 _____________ 19、(2013?包头)不等式(x - m) > 3 - m的解集为x > 1,贝U m的值为 _______ . 三、解答题: 20、解不等式(组) x v 1 —x< x + 5 (1)

不等式单元测试题及答案回顾.doc

第三章 章末检测(B) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.若a <0,-1ab >ab 2 B .ab 2>ab >a C .ab >a >ab 2 D .ab >ab 2>a 2.已知x >1,y >1,且14ln x ,1 4 ,ln y 成等比数列,则xy ( ) A .有最大值e B .有最大值 e C .有最小值e D .有最小值 e 3.设M =2a (a -2),N =(a +1)(a -3),则( ) A .M >N B .M ≥N C .M b ,则下列不等式中恒成立的是( ) A .a 2>b 2 B .(12)a <(1 2)b C .lg(a -b )>0 D.a b >1 6.当x >1时,不等式x +1 x -1 ≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 7.已知函数f (x )=???? ? x +2, x ≤0-x +2, x >0 ,则不等式f (x )≥x 2的解集是( ) A .[-1,1] B .[-2,2] C .[-2,1] D .[-1,2] 8.若a >0,b >0,且a +b =4,则下列不等式中恒成立的是( ) A.1ab >12 B.1a +1b ≤1 C.ab ≥2 D.1a 2+b 2≤1 8 9.设变量x ,y 满足约束条件???? ? x -y ≥0,2x +y ≤2, y +2≥0, 则目标函数z =|x +3y |的最大值为( ) A .4 B .6 C .8 D .10 10.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( ) A .甲先到教室 B .乙先到教室 C .两人同时到教室 D .谁先到教室不确定

基本不等式(含答案)

§3.4 基本不等式:ab ≤ a + b 2 材拓展 1.一个常用的基本不等式链 设a >0,b >0,则有: min{a ,b }≤21a +1b ≤ ab ≤a +b 2≤ a 2+b 22≤max{a ,b }, 当且仅当a =b 时,所有等号成立. 若a >b >0,则有: b <21a +1b 0,则a b +b a ≥2. 3.利用基本不等式求最值的法则 基本不等式ab ≤a +b 2 (a ,b 为正实数)常用于证明不等式或求代数式的最值. (1)当两个正数的和为定值时,它们的积有最大值,即ab ≤????a +b 22,当且仅当a =b 时, 等号成立. (2)当两个正数的积为定值时,它们的和有最小值,即a +b ≥2ab ,当且仅当a =b 时,等号成立. 注意:利用基本不等式求代数式最值,要注意满足三个条件:①两个正数;②两个正数的积或和为定值;③取最值时,等号能成立.概括为“一正、二定(值)、三相等”. 4.函数f (x )=x +k x (k >0)的单调性在求最值中的应用 有些最值问题由于条件的限制使等号取不到,其最值又确实存在,我们可以利用函数f (x )=x +k x (k >0)的单调性加以解决. 利用函数单调性的定义可以证明函数f (x )=x +k x (k >0)在(0,k ]上单调递减,在[k ,+∞)上单调递增. 因为函数f (x )=x +k x (k >0)是奇函数,所以f (x )=x +k x (k >0)在(-∞,-k ]上为增函数,在[-k ,0)上为减函数.

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

初一不等式单元测试

七年级数学《不等式与不等式(组)》练习题 班级_______姓名________成绩_________ 一、 选择题(4×8=32) 1、下列数中是不等式x 3 2>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60 A、5个 B、6个 C、7个 D、8个 2、下列各式中,是一元一次不等式的是( ) A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( ) A、b a +-+-33 B、0 b a - C、b a 3 131 D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( ) A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2- 5、不等式组???2 2 x x 的解集为( ) A 、x >2- B 、2-83+x 的解集为( ) A 、x >21 B 、x <0 C 、x >0 D 、x <2 1 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个 8、下图所表示的不等式组的解集为( ) -2 A 、x 3 B 、32 x - C 、 2- x D 、32 x - 二、 填空题(3×6=18) 9、“x 的一半与2的差不大于1-”所对应的不等式是 10、不等号填空:若a

不等式与不等式组单元测试题(新人教版)含答案

不等式与不等式组单元测试题 班级 座号 姓名 一、填空题(每题3分,共30分) 1、 不等式组1 2 x x -?的解集是 2、 将下列数轴上的x 的范围用不等式表示出来 3、 34125 x +-< ≤的非正整数解为 4、a>b,则-2a -2b. 5、3X ≤12的自然数解有 个. 6、不等式1 2 x >-3的解集是 。 7、用代数式表示,比x 的5倍大1的数不小于x 的 2 1 与4的差 。 8、若(m-3)x<3-m 解集为x>-1,则m . 9、三角形三边长分别为4,a ,7,则a 的取值范围是 10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛 二、选择题(每小题2分,共20分) 11、在数轴上表示不等式x ≥-2的解集,正确的是( ) A B C D 12、下列叙述不正确的是( )A 、若x<0,则x 2 >x B 、如果a<-1,则a>-a C 、若 43-<-a a ,则a>0 D 、如果b>a>0,则b a 1 1-<- 13、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为( ) A 、 ○□△ B 、 ○△□ C 、 □○△ D 、 △□○ 14、天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围,在数轴上可表示为( ) 15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ) .13 .3 1.2 2.22A m B m C m D m -<≤-≤<-≤<- <≤ 16、不等式 45 111 x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个 17、不等式组2.01x x x >-?? >??-><<-<< 18、如果关于x 、y 的方程组3 22 x y x y a +=?? -=-?的解是负数,则a 的取值范围是( ) A.-45 C.a<-4 D.无解 19、若关于x 的不等式组()20 2114x a x x ->???+>-?? 的解集是x>2a,则a 的取值范围是( ) A. a>4 B. a>2 C. a=2 D.a≥2 20、若方程组2123 x y m x y +=+?? +=?中,若未知数x 、y 满足x+y>0,则m 的取值范围是( ) .4 .4 .4 .4Am B m C m D m >-≥-<-≤- B A C D

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

相关文档
最新文档