2011高教社杯全国大学生数学建模竞赛全国一等奖A题城市表层土壤重金属污染分析

2011高教社杯全国大学生数学建模竞赛全国一等奖A题城市表层土壤重金属污染分析
2011高教社杯全国大学生数学建模竞赛全国一等奖A题城市表层土壤重金属污染分析

2011高教社杯全国大学生数学建模竞赛

城市表层土壤重金属污染分析

摘要

本文主要研究重金属对城市表层土壤污染的问题,我们根据题目所给定的一些数据和信息分析并建立了扩散传播模型、权重分配模型、对比模型和转换模型解决问题。

首先,我们利用Matlab 软件拟出该城区地势图(图1),根据所给数据绘出该地区的三维地势及采样点在其上的综合空间分布图。之后将8种重金属的浓度等高线投影到该地区三维地形图曲面上,接着分别计算8种重金属在五个区域的平均值,立体图和平面图(图1附件)相结合便可得出8种重金属元素在该城区的空间分布。

其次,在确定该城区内不同区域重金属的污染程度时,我们运用两种方法进行解答。先假设各重金属毒性及其它性质相同,运用公式ij

ij P C P

=

'求出各区域各金属相对于背景平均值的比值作为金属污染程度,再运用1

j

i ij j C C ==∑求出各区域重金属污染程度,并将各区进行比较。之后,我们加上

各重金属的毒性,对各重金属求出权数,再结合国标重金属污染等级和已知的各组数据来确定金属

的污染程度。由上述两种方法的对比,更准确地得出重金属对各区的影响程度。

即: 工业区>交通区>生活区>公园绿地区>山区 并根据第一个模型的数据来说明重金属污染的主要原因。

再次,对重金属污染物的传播特征进行了分析,判断出重金属污染物主要是通过大气、土壤和水流进行传播。在分析之中,我们得出这三种状态的传播并不是孤立存在的,而是可以相互影响和叠加的,因此,我们分别建立三个传播模型,再对这三个传播模型进行了时间和空间上的拟合,得出重金属浓度最高的区域图,并结合各重金属的分布图(图6)来确定各污染源的位置。

最后,本题中只给出了重金属对土壤的污染,对于研究城市地质环境的演变模式,还需要搜集一些信息(图7)。根据每种因素对地质环境的影响程度进行由定性到定量的转化。建立同一地质时期地质环境中各因素的正影响和负影响的权重分配模型,再对这些权重进行验算和修正。从而,根据这些权重再建立预测模型便可反向推出各重金属对不同时期地质环境的影响,得出随时间变化的地质环境的演变模式。

结论:在本次模型建立中,我们得出以下结论:

1.重金属在各个区域中的污染严重程度为:工业区>交通区>生活区>公园绿地区>山区

2.各重金属的污染源主要分布在工业区和交通区

关键词:重金属污染 三维地形图 时空结合 地质环境演变 影响因子权重

一.问题重述

1.问题背景

目前,社会经济发展迅速,人口数量不断增加,环境污染现象日显突出,尤其重金属对土壤的污染更受广泛关注。土壤状况直接影响着动植物的生长和安全,甚至通过食物链进入人体,导致一些慢性疾病的发生。

对于具有独立的系统来说,人们的生活和生产将会给环境和土壤造成污染,而且,每一个区域的功能不同,如山区、生活区、工业区、主干道路区和绿地区等,对环境和土壤的污染程度也不同。所以,做好调查分析,控制污染源是现今的关键。 2.提出问题:

(1).根据题中所给各区域点的坐标,绘制中该区的空间分布图,计算不同重金属对该区的影响。

(2).分析数据,考虑浓度分布和客观因素,说明重金属的来源。

(3).分析重金属产生后的传播特性,并建立模型确定污染源的位置。

(4).考虑重金属浓度和客观因素优化模型并推广,以便对城市地质环境的演变做更准确的分析和预测。

二.问题分析

(1).由于各种重金属在各个区域的浓度都不同,所以对不同区域的影响程度也不同,根据题中所给采样点的坐标和各重金属的浓度,用MATLAB软件绘制出重金属在该区的空间分布图及8种重金属的浓度等高线在该地区三维地形图曲面的投影图。利用平均数法求得各种金属在不同区域的影响。在考虑重金属毒性的情况下,利用加权平均数求出各种金属的污染程度。两种方案作对比,找出最优化方案。

(2).在上题的结论基础上,依据各种重金属在不同区域的浓度大小,通过分析比较,并考虑各区域的特点,可以分析出重金属的主要来源。

(3).由于重金属产生后的传播途径有很多,本题忽略其它因素,只考虑水体、大气和土壤传播,分别建立水体传播模型,大气沉降模型和固体传播模型,并结合三者在传播过程中在时间和空间上的相互影响和制约,对污染源的位置进行准确的定位。

(4).在研究城市地质环境演变的过程中,除运用到重金属的浓度之外,还应搜集重金属的沉积和埋藏深度、生活污水,废气污染、地壳运动植物和微生物的净化。根据污染毒性的大小确定各项的权重,。由此建立模型推出不同时期地质环境的变化,即演变模式。

三.问题假设

1.假设重金属元素在土壤和水中化学反应均匀。

2.假设各区域成土母质中含重金属的浓度是相同的。

3.假设各地区重金属分布稳定,污染源排放量不变

4.假设各数据拟合的函数是光滑曲线,且各外在因素都忽略。

5.计算重金属在空气中传播速度不考虑风速过大的影响。

四、名词解释及符号说明

1.名词解释:1.地质环境:包括岩石、水、气和生物在内的互相关联的系统。

2.时空结合:将金属传播的三种模型进行拟合,找出污染源。

2.符号说明

ij

P i区域中j重金属元素的浓度

ij

P i 区域中j重金属元素的平均浓度

n i 区域中调查重金属的点数

ij

C i 区域中j重金属元素污染程度

N 区域金属对评价等级的隶属度

R各金属因子的权重构成的向量D 各金属因子对评价等级的隶属度m 土壤环境质量级别

jk

X金属因子的隶属度

jk

S某区域各金属因子j在k级指标P 各金属因子的实测浓度

jk

x某地区第j个重金属污染物的实测浓度;

j

f第j个重金属污染物的毒性级别指数;

j

r某地区第j个重金属污染物的权重值

()F j ε 土颗粒表面所吸附的溶质(j )的质量分数

()j ρ 孔隙中的溶质的质量浓度(g/L);

e 土壤孔隙比

0ρ 土样干密度(3/g cm )

? 土壤孔隙率

S 土壤容重

g ρ 气体密度 p ρ 粒子密度

r 粒子半径 t 时间

d R 阻滞因子

(()D j ρ) 扩散系数,v 为孔隙流体的

流速

η 动力粘性系数

W 粒子垂直方向速度

F 浮 粒子受到的浮力 F 阻 粒子受到的流体阻力

()t Γ 随机力及大气流动引起的

随机加速度

五、 模型的建立及求解

一、 重金属元素的空间分布及污染程度模型 1. 重金属元素的空间分布:

a 、根据已知数据,我们运用MATLAB 软件将该地区的三维地势及采样点在其上的综合空间分布图绘制如下图(1)所示

在此图中,我们能清晰的分出生活区、工业区、山区、交通区、公园绿地区。 将生活区、工业区、山区、交通区、公园绿地区用i 表示。i=(1、2、3、4、5) b 、对八种重金属元素的浓度进行处理:

设八种重金属元素的浓度用ij P 表示,As (μg/g)、Cd (ng/g)、Cr (μg/g )、Cu (μg/g)、Hg (ng/g)、 Ni (μg/g)、 Pb (μg/g)、 Zn (μg/g)分别为j=(1、2、 (8)

对数据进行处理分别求出各地区各金属元素的平均浓度ij P ,根据公式 ij ij P P n

=

(1)

下图(图1附件): 结合图(1)、图(1)附件和表(1)清晰地看出8种主要重金属元素在该城区各区域的空间分布。

2. 重金属元素污染程度模型:

1)、在不考虑重金属毒性的情况下:

已知的背景区重金属平均浓度P '如表(2):

8种主要重金属元素的背景值

设重金属元素污染程度ij C ,则,

ij

ij P C P =

'

(2)

污染程度ij C

即: 1

j

i ij j C C ==∑ (3)

所以:1 1.74 2.36 2.23 3.74 2.66 1.49 2.23 3.4319.88C =+++++++= 经计算,可以得到以下关系式;

2C >4C >1C >5C >3C ;

即: 该城区内不同区域重金属的污染程度

工业区>交通区>生活区>公园绿地区>山区

2)在考虑重金属的毒性的情况下:

目前大多数人在确定污染程度时仅仅考虑了重金属污染物浓度超标的情况,未考虑重金属本身的毒性作用,这就有可能掩盖有些浓度低但毒性大的有毒物的污染作用。 本模型法用隶属度来描述模糊的污染分级界线,各评价等级的隶属度再以各金属因子的权重修正,则得到金属因子对评价等级的隶属度。则得到如下数学模型:

N R D =? (4)

式中:N — 区域金属对评价等级的隶属度 R — 各金属因子的权重构成的向量

D — 各金属因子对评价等级的隶属度

a 、金属因子隶属度D 的建立:

为了运算,我们需要建立隶属度函数,并用隶属度来描述土壤污染状况的模糊界线。设土壤环境质量分为m 个级别,则 V = (1,2, , m )

在这里我们用降半梯形分布来刻画隶属度:

111()1()()0jk jk jk jk jk jk jk jk P S S P

X S P S S S P S +++?≤?

-?=?

<≤-??>?

(5) 式中:jk X — 金属因子的隶属度

jk S — 某区域各金属因子j 在k 级指标(j = 1, 2, ,n; k = 1, 2, 3, m )中的标准值;

P — 各金属因子的实测浓度 由此可得评价因子j 对不同级别k 的隶属度矩阵D:

11

118m n m P P D P P ??

??=??????

L M

M L

(6) b 、金属因子权重向量R 的确定:

将污染物浓度和毒性级别指数加权叠加,并作归一化处理,得到某污染组分的权重公式:

1

j

j

n

j

j

j C f j C f r ==

∑ (7)

1

1

1

n

j

jk

j m

m

j jk

jk

k k x x C S

S

====

∑∑ (8)

式中, jk x — 某地区第j 个重金属污染物的实测浓度;

j f — 第j 个重金属污染物的毒性级别指数;

j r — 某地区第j 个重金属污染物的权重值,且 1

1n j j C ==∑,1

1n

j j r ==∑

将各金属因子的实测浓度值、毒性系数和选定的评价标准分别代入上式,可得到各金属因子的权重值,由此组成某个区域各金属因子的权重向量:

R = [ 1r 、2r , 3r , ,n r ] (9)

将权重向量R 和隶属度矩阵D 带入模型(4)可得区域金属对评价等级的隶属度N C 、隶属度函数的确定 :

本文所选用的八种元素,选用国家《土壤环境质量标准》[ 18 ] ( GB15618 -

1995)进行土壤环境评价,土壤环境质量标准见表(4)。根据表(1)和表(5)的数据,利用公式(5)计算各重金属元素对应于各土壤重金属环境质量等级的隶属函数,得到 关系模糊矩阵。

级别指数赋值:Zn=l , Cr=2,Cu=5,Pb=5,Ni=5, As=10,Cd=30,Hg=40,指数越大,代表毒性越大。按照(7)、(8)两式,将表(1)的数据和毒性指数代入计算,得各区域各重金属权重值,其中

R = [ 1r 、2r , 3r , ,8r ]= [0. 0962 、0. 2838、 0. 0680、 0. 0585、 0. 3723、 0. 0211、、] (10)

结合公式(4)、(6)、(10)及表(1)可得: 1N = 2N =

3N = 4N = 5N =

所以:2N >4N >1N >5N >3N ,即,工业区>交通区>生活区>公园绿地区>山区 结合1)、2)两个模型可以得到该城区各区域重金属的污染程度为工业区>交通区>生活区>公园绿地区>山区 二.重金属污染成因:

根据上述两个模型的结合与对比,我们可以得出下面的关系式: 工业区>交通区>生活区>公园绿地区>山区 1.从整体的角度分析:

工业区污染最大,占整体区域的36%。分析其污染的主要来源有金属矿山的开采、冶炼、重金属尾矿、冶炼废渣和矿渣堆放等。而且其扩散和传播污染的途径也是非常广泛的。

交通区重金属的污染程度相对也较大,其污染主要体现为大气污染,来自工业生产排放的废气、汽车尾气排放生的大量含重金属的有害气体和粉尘。 生活区重金属污染居中,重金属的主要来源有生活垃圾、污水、医疗垃圾和细菌等。 公园绿地区重金属污染程度较轻,其主要来源有农业农药和化肥。但是,植物有吸收金属矿物的作用,相对减轻了重金属的危害。

山区重金属污染最轻,只占到整体区域的8%,表明不仅重金属的来源相对较少,而且,重金属污染与重力和海拔也有一定关系,山区中植物和一些微生物都有净化的作用。 2.从局部的角度分析:

从表(3)可以看出八种重金属的主要分布区域,再根据这些区域的区别可以分析

影响重金属污染物传播的因素有很多,如:地质条件(如海拔,地壳运动,土质情况等)、气候条件(如降雨量,气温,季风等)、工业发展情况、人口密度、河流流向等。在这里,我们由于条件有限我们仅考虑地势、河流等。

重金属污染物的传播有许多种,但主要有三种方式,即:水体传播、土壤传播、大气沉降。在此,我们将模型理想化,假设只有这三种方式,分别对其建立模型,之后再

将三种模型进行时间和空间上的几何叠加。 1.水体传播模型的建立及求解:

在此模型中,我们将问题理想化,认为水体传播仅仅是靠河流传播的。假设河流没有多大的改变。

在河流中,重金属污染物部分以可溶状态存在,随水流运动,部分以沙粒为载体,随沙运动,两者不断地发生化学和生物化学反应,一般情况下,泥沙吸附—解吸是重金属污染物从不饱和液相转移到固相的主要途径。因此,在考虑重金属在水环境中的物理迁移过程下,我们用水力学和泥沙运动学的原理处理。

假设,泥沙浓度和水相金属离子浓度反应分布均匀。在天然河流中, 水环境化学条件对某一河段、某一时段基本不变,变化较大并难处理的是水流泥沙因素。

泥沙颗粒在水溶液中对重金属污染物的吸附遵循兰格茂尔吸附运动学方程

12()N

t

d K c b N K N d =--,将其对时间的偏微分 ,即对均匀沙有: 12()N

k c b N k N t

?=--? (11) 水流泥沙运动数学模拟研究已有较长的历史,在水流泥沙运动确定后, 根据建立的重金属迁移转化方程, 吸附动力学方程及边界、初始条件就可确定河流重金属污染物迁移转化过程, 构成河流一维重金属污染物迁移转化数学模型的基本方程如下:

水流连续方程 ()0y

Bhu B x t

??+=?? (12)

水流运动方程 2

210u u y u u g g t x t c k

???+++=??? (13)

泥沙连续方程

0()()()y

Bhu B hs B s s x t

αω??+=--?? (14) 河床变形方程 0()()0y y

Bhu B hs B x t t

ρ???'++=??? (15)

有30,L=2h A Bh A By B ==+及,则

()''31111131111()A N

N N c c c s u AE N N L s us E t x A x x A t A t x x x ρ???????????'+-=--+- ????????????(16) 假定悬浮泥沙的吸附量''11111

==0N N N N N N =++))

&&其中,,对(11)式全断面积分得:

1

1121()s s s N k c b N k N t

?=--? (17) 解决重金属迁移转换模型可将(12)至(17)式简化成:

根据静态吸附的结果,取b=kg,k 1= 1/(ppm ·s),

k 2= 1/s ,重金属污染物的初始条件为:

0000

()1x 0

c 1()=,0

x t

t c c x ppm

x N x δδ====?==?

≠?式中:

边界条件为:

201

2

01

t 0(),()=,0,0

0,

x x x L

c

c c t t N t x δδ====??===?

≠??

在相同条件下,污染物的运动遵循以下方程:

2

'221002000,(),(),0t x x L

c c c u E c c x c c t c x t x x

δ===???+-==?=??=???。用向后显式差分求解,结

果如下图2:

由图2可知:在不同时刻, 水相重金属浓度由于泥沙吸附, 峰值明显减少, 而且由于泥沙吸附需要时间, 因此河段上泥沙吸附量的峰值总是滞后于水相浓度的峰值。

从3中可以看出:污染物不受泥沙运动影响, 在输移过程中, 由于纵向综合紊动扩散作用, 峰型变化相同条件下重金属污染物输移, 尽管图形相似, 但重金属污染物的峰值因泥沙吸附而下降很多, 特别是后半部减小更为明显, 且随时间增加明显加大。

所以,重金属在水体中的传播特征是随着离污染源的距离增加而减少。速度也随之减小。

2.土壤传播模型的建立及求解:

重金属在土壤中的传播的影响因素也很多,不能单纯的看作是线性变化,在此,我们基于重金属在土壤中的质量分数,根据在水中传播的方式类似的定义了一个非线性沉淀模型。并推导出非线性沉淀情况下重金属速度的控制方程。

对于饱和土壤空隙内充填的溶液质量分数为w,而土粒表面会吸附溶质,因此,当溶质在土/水界面达到平衡之后,会存在以下关系:

0()()()/t F j F j e j ερρ=+ (18)

式中:()t F j — 土壤中溶质的总量在单位质量土粒上的质量分数,包括土粒

上吸附溶质和孔隙溶液中的溶质;

()F j ε — 土颗粒表面所吸附的溶质(j )的质量分数;

()j ρ — 孔隙中的溶质的质量浓度(g/L); e — 土壤孔隙比;

0ρ — 土样干密度(3/g cm )

当溶质在土粒上的吸附呈线性状况时,沉淀满足Henry 定律:

()()t d F j v j ρ=. (19)

式中:d v — 溶质在土水界面的分配系数.此时,满足下式:

()()()t F j A B j ρ=+ (20)

式中:A、B 均为模型参数,可表示为()/,b A e b s s B b ρρ??ρ=-=

? — 土壤空隙率;

S — 土壤容重. .

对于溶质在土壤介质上的吸附,其分配系数通常情况下并非常数,而是随溶质浓度变化而变化的参数.为了便于计算,本文对溶质在土柱中土水间的分配关系做出如下简化假定:

()(())n t F j j θρ=, (21)

传统的运移控制方程如下:

()()()

((()))d j j j R D j v

t x x x

ρρρρ????=+???? (22) 式中:t为时间,d R 为阻滞因子,(()D j ρ)表示随土壤孔隙中溶质的质量浓度 ()j ρ而变化的非线性的扩散系数,v 为孔隙流体的流速.

式(22)是以土壤孔隙中溶质的平衡浓度为基础建立起来的.假定扩散系数D 为常

数,考虑吸附的非线性特性,将式(21)代入式(22),可得改进的非线性重金属运移控制方程为

111()()()(()/)(())()n n n t t t

n

n t t F j F j F j bn e DF j vF j t x x x

ρθ--????=+???? (23) 其中:000()()(())()()

0()

x

t n

t t F j F j j F j θρ?=?

??=???

上边界下边界

基于土粒上溶质质量分数的运移参数提取方法,根据有限差分法,可将运移方程(22)

写成如下差分格式:

1111/21/21111111

()()()()()2(()())(2()()

)

i i i i i i i d

i i i i i i i i i i

i i i i dF j F j F j F F F j F j D

v R F j F j dt x x x x x x x x F j F j x x +-++-+-+-+-----=-+-----+- (23)

式中:i x — X 方向被差分之后的差分网格节点的空间位置;

()i F j ≈()F j ,i=1,…,N-1;0()F j 、()N F j 为上下边界处溶质的质量分

数;0()i F j 为0时刻土柱内溶质的质量分数.

上述差分格式可以利用Matlab 软件进行求解,结合最小二乘法,利用内嵌的最优化工具箱求解运移参数.对比拟合结果与试验得到的浓度剖面数据,当方差最小时即认为此时的参数即为有代表性的典型参数.

由模型可得重金属在土壤中的传播模型如下图所示:

在图中可以清晰地看出重金属在土壤中的传播随时间的增减而减缓,而且速度较水体传播慢。

3. 大气扩散模型的建立及求解:

大气中重金属主要来源于工业生产、汽车尾气排放、汽车轮胎磨损产生的大量含有重金属的有害气体和粉尘。它们主要分布在工矿的周围及公路、铁路两侧。

重金属在大气中的传播一部分通过自然沉降和雨淋沉降进入土壤圈和水体中,一部分,直接污染空间。

在这里因为数据不足更为了简化模型,我们忽略雨淋沉降,将通过大气沉降地表的重金属看做由自然沉降产生的。而自然沉降的主要作用是重力作用。

在垂直方向,考虑粒子受到重力、浮力、流体阻力和随机力的作用,建立粒子的运动方程如下:

()m

G F F dw t dt --=+Γ阻

浮 (24) 其中w 为粒子垂直方向速度,F 浮为粒子受到的浮力,F 阻为粒子受到的流体阻力,

()t Γ为随机力及大气流动引起的随机加速度,满足如下条件:

'()0,()()()t t t K t t δ'Γ=ΓΓ=- (25)

粒子受到的阻力为6F πηγω=阻,其中η为动力粘性系数,r 为粒子半径。 由式(24)得:

29(1)()2g p p dw g w t dt r

ρηρρ=--+Γ 其中g ρ和p ρ分别为气体和粒子密度,通常g ρ《p ρ。令229p r ρτη

=

,由上式得到:

1

()dw g w t dt τ

=-+Γ 解此式可得:

()(1)(0)()t

t

s t

t w t g e

e

w e

s ds τ

τ

τ

τ---=-++Γ? (26)

将 ()w t 分解成为平均量和脉动量之和: ()()()w t w t w t '=+

由这两式可得:

()(1)(0)t

t

w t g e

e

w τ

τ

τ--=-+ (27)

()(0)()t

s t

t w t e

w e

s ds τ

τ

--'=+Γ? (28)

由上式求出()w t 的方差2()w t ',由于()w t 和()t Γ不相关,则,

2222()(0))2(1)t

t

w t w e

K e

τ

τ

τ--''=+- (29)

由(28)式可得: 2(0)()(0)t

w w t w e

τ

-'''=

假设()w t 是平稳随机过程,则:222

(0)()w w w t σ''== 由上面三式可得:22w

K τσ= 即:2

2w

K στ

=

由(26)式可得:()

()

()

()(1)(0)()t t t t s t t

t t w t t g e e

w e

s ds τ

τ

τ

τ-+?-+?--?+?+?=-++Γ?

讲下式代入上式得:()

()

()

()(1)()()t t t t s t t

t t w t t g e

e

w t e

s ds τ

τ

τ

τ-+?-+?--?+?+?=-++Γ?

将最后一项离散化得:()(1)()t

t

w t t g e e

w t τ

τ

τλε-?-?+?=-++ (30)

令t=0得: ()(1)(0)t

t

w t g e e

w τ

τ

τλε-?-??=-++

方差为:2222()(0)t

w t e

w τ

λ-?''?=+ 与(29)式比较可得:

代入式(30)得到粒子运动的离散方程:0.5

()(1)()(1)t

t

t

w w t t g e

e

w t e

τ

τ

ττσε-?-?-?+?=-++-

在水平x 、y 方向不考虑重力作用,则在平均风速为 (u ,v ,w)下粒子运动的离散型方程为:

有题可知,结合计算精度和时间的考虑,时间步长r (35)0.1t m τμ?==— 由公式:

11122212(),()()()

D C t H V In C t t C t t t t C t =

-其中,为时刻的平均浓度,为时刻的平均浓度。 由于,在空气中传播的影响因素很多,而且其速度比水体快。

结合上面三个模型可知,在同样的条件下,金属污染源在空气中传播最快,其次是在水中传播,最后在土壤中传播。而且这三种传播状态是相互转化的,对于同一污染源来说,对其进行时间和空间的拟合得出如下传播范围

(图五)所示: 由图可知,污染源一定在三者叠加的正中心处,再结合八种重金属元素在该区的分布图,找出各金属的污染源。 如下图

(图六):

由以上八个图可以看出,各暖色的区段为污染源分布区。其中这八种重金属的污染源主要分布在工业区(坐标为(3000,3000)附近)和交通区(坐标为(13000,3000)附近),山区和公园绿地区几乎没有污染源。 四、城市地质环境的演变模式模型的建立: 1.模型有缺点的分析:

1)、优点:a.在本模型中,运用到了很多新思想。

b.有许多问题先用理想化模型,之后再慢慢的增加约束条件,使问题更符合实际意义,更具有可推广性。

c.在本文中,由于重金属的传播有固、液、气三种相属,而且,这三种相属又是相互联系,相互转换的,不可很明确的区分开来,故,我们将三种模型非别建立,之后将其在空间和时间上拟合起来。使其更具说服力。

2)、缺点:a.在本模型中,有很多假设,将模型理想化了,可能与实际有区别 b.个别数据题中未给出,我们经过上网查询,与实际问题会有误差。 2.城市地质环境的演变模式模型: 经过查询可知:

地质环境的定义为:地壳上部包括岩石、水、气和生物在内的互相关联的系统。

本文前几个模型主要研究城市表层土壤重金属污染的问题,如果想要得到城市地质环境的演变模式,仅有这些还远远不够,因此需要收集一些重要信息才能更好地研究城市地质环境的演变模式。

我们对地质环境的主要影响因素进行分析讨论,得出如下(图7)结果:

由图可知,如果想研究城市地质环境的演变模式,除了本题中的金属影响之外,还有很多,如:地壳运动、绿化程度、废气等等!

因此,还需要收集一些地壳运动、工业发展、绿化程度、紫外线辐射、城市人口的资料。

同时还需要这个地区历年的地质环境影响因素资料及同一时期6个城区的相关资料。

在拥有这些信息之后,我们通过以下方法建立并解决模型。 1.首先,用ij y 表示第i 城区地质环境的影响因素j 的参数值。(i=1,2,…,6 j=1,2,3,4) 假设,四个参数所对应的权重分别为(1,2,3,4)j l j =,六个城区的地质环境等级参数值记做(1,2,3,4,5,6)i g i =。

在图(7)中可以看出ij y 不能直接查出,也得经过数据处理才能得到。但各影响因素的下属因素能直接查出,同上方法可以通过已知信息计算出ij y 。

运用公式 (1,2,3,4)j l j ==(1,2,3,4,5,6)i g i =*ij y

可得各影响因素的权重值(1,2,3,4)j l j =

2.之后,我们将这些权重值和一定时期影响因素参数值代入公式:

4

j 1

*y j j g l ==∑ (31)

进行权重值(1,2,3,4)j l j =的验算及调整。

3.最后公式(31)和各已知数据算出城区不同时期地质环境等级参数值。根据参数值就能够研究出城市地质环境的演变模式

六.模型的检验

1. 本文中大多数图形都用MATLAB 软件绘制,而MATLAB 软件具有较强的仿真性,功能也十分强大,精确度也很高,从这个角度可证明我们结果的可靠性与方法的合理性。

2. 对于第一个重金属的空间分布模型,将五个区域绘制在一幅图表中,可以准确地看出各个区域的联系,有利于问题的分析。

3. 模型一中计算重金属的污染程度时,用平均数法和考虑重金属毒性时的加权平均数法,二者对比得出相同结果,更说明了模型具有较强的说服力。而且,这两种方法都比较简单,便于理解。

4. 在重金属污染物传播的模型中,本文建立了三个传播模型,而后将三种模型进行时间和空间上的结合,定位污染源的位置,提高了模型的准确性。

5. 从模型与实际情况的对比来看,虽然我们建立模型有一些假设,但这些假设都是合乎常理的,重金属的化学反应是极其微弱的,故我们所建的模型的可靠性与真实性也是值得认可的。

七.模型的推广及发展前景

文中第一个模型用到的平均数法和加权平均数法可以应用于各个领域,如学校可以计算学生的学习成绩的好坏,企业可以计算盈利和起伏的大小等。另外,本文中的重金属传播模型还可以推广到消息的传播、文化的传播、疾病的传播或者流言蜚语的传播,从而对现今这个信息时代作一个正确的把握。尤其文中用MATLAB 软件编程绘制的地形图。用同样的方法可以运用到地质勘探和测量等方面。

本文考虑的只是重金属对土壤的污染问题,我们可以把它推广到重金属对植物和动物的影响,从而有利于对农作物的培育和动物的养殖,甚至可以确定对人体带来的危害,也可以应用到其它金属元素对土壤的污染和影响,从而研制促进农作物生长的化肥,有利于农业的发展。

此模型符合现今社会发展的状况,目前,人类都关注着自己身体的健康,知道有害金属对人体的危害,应用本文的模型及分析方法,我们可以对某地区分析,选择尽量远离易受重金属污染的地理区域居住,尽量避免摄入含有重金属元素的食物,有利于城市合理规划,由此对人类的健康和安全带来了可靠的理论和实践依据。

八.模型的优缺点

一.优点:

1.本文中有一些新的思想,如将三个模型在时间和空间上结合和了起来(也是合理解决此题的关键所在)。更准确和客观地找出了污染源的位置。

2.文中采用的平均数法和加权平均数法比较简单,使读者可以正确体会其中的意思,并且,可以用初等数学的方法就可以解决。

3.对于重金属的传播问题,通过建立三个模型,进行结合与比较,综合考虑传播的快慢和多少,准确找出污染源的位置。

4.研究城市地质环境的模型中,考虑的因素比较多,更客观全面地描绘了地质环境的演变模式。 二.缺点:

1.本题中有些重金属在水中还是有微弱的反应的,故模型的建立和求解出来的答案与实际有一定的差距。

2.由于题中没有说明各个区域中的主要工商业,故在确定污染源的来源时不能准确定位。

九.参考文献

[1]杨启航,数学建模,北京:高等教育出版社,2003.

[2]韩中庚,数学建模方法及其应用,北京:高等教育出版社,.2005.

[5]解可新,最优化方法,天津:天津大学出版社,1996 [6]实用MATLAB 软件

十、附件

采样点三维空间坐标图绘制程序

d=data; % 只需从excel 输入三列数据,格式为:[i x i y i z ],i 表示行数 x=d(:,1) % 采样点坐标x 值

y=d(:,2); % 采样点坐标y 值z=d(:,3); % 采样点坐标z(海拔)值 nx=linspace(min(x),max(x),100); ny=linspace(min(y),max(y),100); [xx,yy]=meshgrid(nx,ny); zz=griddata(x,y,z,xx,yy,'v4'); surfl(xx,yy,zz);

shading interp colormap(gray); hold on for i=1:319 for i=1:44

plot3(d(i,1),d(i,2),d(i,3),'ys'); end hold on for i=45:80

plot3(d(i,1),d(i,2),d(i,3),'y+'); end hold on for i=81:146

plot3(d(i,1),d(i,2),d(i,3),'bp'); end hold on for i=147:284

plot3(d(i,1),d(i,2),d(i,3),'ko'); end hold on for i=285:319

plot3(d(i,1),d(i,2),d(i,3),'r<'); end end

各重金属分布浓度等高线及采样点坐标综合分布图绘制程序:

d=data; % 只需从excel 输入三列数据,格式为:[i x i y i z ],i 表示行数,i x 为采样点坐标x 值,i y 为采样点坐标y 值,i z 为某重金属浓度值(此程序需将第三列的值更换8次运行8次得到论文中8幅各重金属浓度等高线及采样点坐标综合分布图)。 x=d(:,1); % 采样点坐标x 值

y=d(:,2); % 采样点坐标y值

z=d(:,3); % 重金属浓度值

nx=linspace(min(x),max(x),40);

ny=linspace(min(y),max(y),40);

[xx,yy]=meshgrid(nx,ny);

zz=griddata(x,y,z,xx,yy,'v4');

contourf(xx,yy,zz,10);

hold on

for i=1:319

for i=1:44

plot(d(i,1),d(i,2),'bs');

end

hold on

for i=45:80

plot(d(i,1),d(i,2),'b+');

end

hold on

for i=81:146

plot(d(i,1),d(i,2),'bp');

end

hold on

for i=147:284

plot(d(i,1),d(i,2),'ko');

end

hold on

for i=285:319

plot(d(i,1),d(i,2),'r<');

end

end

8种重金属的浓度等高线在该地区三维地形图曲面的投影图程序:

d=data; % 只需从excel 输入三列数据,格式为:[i x i y i z ],i 表示行数,i x 为采样点坐标x 值,i y 为采样点坐标y 值,i z 为某重金属浓度值(此程序需将第三列的值更换8次运行8次得到论文中8幅各重金属浓度等高线在该地区三维地形图曲面的投影图)。

x=d(:,1); y=d(:,2); z=d(:,3);

nx=linspace(min(x),max(x),100); ny=linspace(min(y),max(y),100); [xx,yy]=meshgrid(nx,ny);

zz=griddata(x,y,z,xx,yy,'v4'); surfl(xx,yy,zz); shading interp colormap(gray); hold on d=data; x=d(:,1); y=d(:,2); z=d(:,3);

nx=linspace(min(x),max(x),100); ny=linspace(min(y),max(y),100); [xx,yy]=meshgrid(nx,ny);

zz=griddata(x,y,z,xx,yy,'v4'); [cc,hh]=contour(xx,yy,zz,10); p=clabel(cc,hh) for n=p'

set(n,'string',sprintf('%.0f',get(n,'userdata'))) end

三种土壤重金属快速检测仪的检测原理及方法

三种土壤重金属快速检测仪的检测原理及方法 土壤重金属污染目前是我国面临非常严峻的问题,所以市场上检测土壤重金属仪器层出不穷。 测量土壤重金属目前主要是有下面几种方法: 1、原子吸收光谱法 这种方法是相对比较传统的测量重金属的方法,先将土壤风干,再经过消解处理、定容,之后制备标准溶液,之后上机操作测量。测量原理是利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度;它有单光束,双光束,双波道,多波道等结构形式。其基本结构包括光源,原子化器,光学系统和检测系统。这种原理测出来相对精度较高,只是测量的时间上相对过长,通常整个过程需要24小时出结果。 2、伏安极谱法 这种方法也是先将土壤风干,再经过消解处理,然后将浸提液放入极谱仪中,直接测量。其原理是通过将一个变化的电压信号施加到电极上,而后测量电极的响应电流来测量重金属的含量,这种方法与原子吸收光谱法相比,测量精度更高,运行成本低,可以做形态分析等。 3、X射线荧光光谱法 X射线荧光光谱分析法利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。这种方式测量土壤重金属无需将土壤进行前处理,测量速度快,精度也能达到ppm 级。非常适合拿到野外走哪儿测哪儿,测量结果还能保存,有些还可以进行GPS 定位,记录什么地方土壤测量的结果是多少。并且测量时不存在任何耗材,无需任何使用成本。目前做的比较好的品牌有托普云农的土壤重金属快速检测仪,设备小巧,配有专门分析土壤模块,所以相对测量精度高。非常适合野外快速测量土壤重金属。 以上介绍的这些测量土壤重金属的方法都是目前市场上相对成熟的测量土壤重金属的方法,也是比较常规的方法。可以根据自己的需要选择合适的土壤重金属检测仪。 仪器名称:托普云农土壤重金属快速检测仪仪器型号:TPJS-B 金属检测仪、便携式重金属检测仪

土壤中重金属形态分析方法

土壤中重金属形态分析方法 赵梦姣 (湖北理工学院环境科学与工程学院) 摘要:介绍了土壤重金属的形态及各种分析方法, 重点说明了土壤中重金属形态分布及影响因素;讨论了影响土壤环境中重金属形态转化的因素, 重金属形态与重金属在土壤中的迁移性、可给性、活性的关系, 重金属污染土壤修复与重金属形态分布的关系。形态分析在一定程度上反映自然与人为作用对土壤中重金属来源的贡献, 并反映重金属的生物毒性。 关键词: 土壤; 重金属; 形态分析;分析方法 自20 世纪70 年代以来重金属污染与防治的研究工作备受关注,目前重金属污染物已被众多国家列为环境优先污染物。重金属的总量往往很难表征其污染特性和危害,环境中重金属的迁移转化规律、毒性以及可能产生的环境危害更大程度上取决于其赋存形态[1],不同的形态产生不同的环境效应。土壤的重金属污染是当今面积最广、危害最大的环境问题之一,其所含的重金属可以通过食物链被植物、动物数十倍的富集[2], 但土壤中的重金属的毒性不仅与其总量有关, 更大程度上由其形态分布所决定。环境中重金属的迁移性、生物有效性及生物毒性与重金属污染物在土壤中的存在形态有关, 因此, 土壤中的重金属形态分析已成为现代分析化学特别是环境分析化学领域的一个热门研究方向。

1重金属的形态及形态分析方法 根据国际纯粹与应用化学联合会的定义,形态分析是指表征与测定的一个元素在环境中存在的各种不同化学形态与物理形态的过程[3]。形态分析的主要目的是确定具有生物毒性的重金属含量,当所测定的部分与重金属生物效应或毒性一致时,形态分析的目的就可实现。重金属形态是指重金属的价态、化合态、结合态和结构态4个方面,由于土壤化学结构复杂及各种影响因素复杂多变,对土壤中的重金属形态分析,与水环境中重金属的分析方法:如溶出伏安法、离子选择电极法不同,土壤中重金属大多采用连续提取的形态分析方法对样品进行浸提和萃取,然后用原子吸收光谱法测定提取液中的每种形态重金属的浓度,许多学者关于土壤中重金属形态提出了不同的方法。FORSTNER[4]则提出了7步连续提取法,将重金属形态分为交换态、碳酸盐结合态、无定型氧化锰结合态、有机态、无定型氧化铁结合态、晶型氧化铁结合态、残渣态; SHUMAN[5]将其分为交换态、水溶态、碳酸盐结合态、松结合有机态、氧化锰结合态、紧结合有机态、无定形氧化铁结合态和硅酸盐矿物态8种形态;为融合各种不同的分类和操作方法,CAMBRELL[6]认为土壤中重金属存在7种形态,即水溶态、易交换态、无机化合物沉淀物、大分子腐殖质结合态、氧化物沉淀吸收态、硫化物沉淀态和残渣态;而具有代表性的形态分析方法是由TIESSER等人提出的[7]。将土壤或者沉积物中的金属元素分为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有机物结合态与残渣态。在TIESSER方法的基础上,欧共体标准物质局(European

土壤重金属检测方法汇总

土壤重金属检测方法汇总 摘要:土壤重金属检测是土壤的常规监测项目之一。采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,并满足土壤的管理和决策需要。本文介绍了几种常用的土壤重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱,在介绍各个检测方法特性的同时,就灵敏度,测试范围,精确度,测试样品的数量等优缺点进行了对比。 关键词:土壤;重金属;检测方法 1. 前言 许多研究表明,种植物的质量安全与产地的土壤环境关系密切。重金属一般先进入土壤并积累,种植物通过根系从土壤中吸收,富集重金属,有时也通过叶片上的气孔从空气中吸收气态或尘态的重金属元素[1]。近几年,种植地因农药、肥料、生长素的大量施用及工业“三废”的污染,土壤重金属含量超标较严重且普遍,这不仅毒害土壤-植物系统,降低种植物品质,而且还会通过径流和淋洗作用污染地表水,尤其重要的是通过食物链的方式进入人体内,对于重金属的富集人体难以代谢,最终直接或间接危害人体器官的健康[2]。为此,解决这一难题,建设绿色食品和无公害食品生产基地,要求我们从土壤中的重金属检测分析抓起。本文介绍了土壤重金属的检测方法、并且对比各种方法优缺点。2.土壤中重金属检测方法 2.1 原子荧光光谱法 原子荧光光谱法是以原子在辐射能量分析的发射光谱分析法。利用激发光源发出的特征发射光照射一定浓度的待测元素的原子蒸气,使之产生原子荧光,在一定条件下,荧光强度与被测溶液中待测元素的浓度关系遵循Lambert-Beer定律[3],通过测定荧光的强度即可求出待测样品中该元素的含量。 原子荧光光谱法具有原子吸收和原子发射两种分析方法的优势[4],并且克服了这2种方法在某些地方的不足。该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳,但其存在荧光淬灭效应,散射光干扰等问题[5]。该方法主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用[6]。突出在土壤中的应用如何,以下各方法均是这个问题,相比之下2.5写的比较好

2011高教社杯全国大学生数学建模竞赛C题评阅要点

2011高教社杯全国大学生数学建模竞赛C 题评阅要点 [说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 命题思路:企业退休职工养老金制度改革及退休推迟问题是一个热点课题。由于国情的复杂和数据的缺乏,对全国甚至一个地区的社会统筹基金进行总体规模的预测都是困难的,所以本题仅限于在现有制度下,对职工个人的基金和个人账户收支情况进行精算。本题的数学模型并不复杂,关键是学生正确理解养老金收支计算办法和题目的要求。 1 必要的假设 如下一些假设是基本的:1)假设我国在今后一个较长时间段内社会政治经济形势稳定,工资不会出现异常动荡。2)假设男女同工同酬。3)假设现有缴费及发放制度在一个充分长的时间段内不发生变化。4)假设附件2 中反映的该企业不同年龄的职工工资与企业平均工资的比例可以用来计算一个普通职工的养老保险缴费指数。5)假设只有个人账户中的储存额产生利息,而社会统筹基金账户中的储存额不产生利息。6)假设附件1中的社会平均工资为缴费工资。7)为便于计算,可以假设第i 岁参加工作、退休、死亡均是指在刚满i 周岁时,缴费年数为整数。 2问题一 虽然我国当前正处于经济快速发展期,但考虑到我国发展的战略目标是在二十一世纪中期达到中等发达国家的经济发展水平,而发达国家的工资增长率多比较低,所以应当假设我国未来的工资增长率会逐步降低。只要符合这一假设的预测方法,都可以认为是恰当的。如Logistic 模型以及其它阻滞型增长模型均可用,用这些方法得到的工资上限大约在2010年工资水平的3-4倍左右。但若假设工资以固定比例增长或线性增长、以及用线性或多项式拟合都是不恰当的,用灰色预测或指数预测也不恰当。 3 问题二 根据附件2,用加权平均方法容易求得该企业不同年龄段的职工工资与企业平均工资的比值,结果如下: 表1:该企业不同年龄段职工平均工资与企业平均工资的比值: 本题的本意是将此数据作为一个一般意义上的企业职工在不同年龄段时的缴费指数。如果学生在计算养老金支出时没有利用该数据,只考虑了一些特殊情况,如缴费指数取固定值,是不合题意的。对于60-64岁的职工的缴费指数,可以基于一些简单合理的假设进行预测。 在计算社会统筹基金账户和个人账户金额时,按年或按月缴存的两种计算方式都是可以的。 到退休时职工个人账户中的金额的计算模型如下: ∑k 退休前第k 年缴费额本息=∑k 退休前第k 年缴费工资×缴费率×k r )1( , 其中r 为银行利息。学生中可能会出现忘记计算个人账户利息或利息计算错误的情况。 因为社会统筹基金账户中的储存额不计利息,所以其中金额的计算模型如下: ∑k 退休前第k 年缴费额=∑k 退休前第k 年缴费工资×缴费率. 退休后第一个月领取的养老金=基础养老金+个人账户养老金,其中 基础养老金=(退休前一年社会平均工资+本人指数化月平均缴费工资)/2×缴费年限×1%; 个人账户养老金=个人账户储存额÷计发月数。 其中,

土壤中重金属全量测定方法

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),电热板上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1)盐酸溶解残渣,完全转移到25毫升容量瓶中,加0.5毫升的100g/L的氯化铵溶液,定容,然后原子吸收分光光度计检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1)称量0.5000g样品放入PTFE(聚四氟乙烯)烧杯中(先称量样品,后称量标 样),用少量去离子水润湿; 2)缓缓加入10.0mLHF和4.0mLHClO4(如果在开始加热蒸发前先把样品在混合 酸中静置几个小时,酸溶效果会更好一些),加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖)至形成粘稠状结晶为止(2~3小时); 3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都 需要蒸发至尽干;若消化完全则直接进行下一步; 4)加入4.0mLHClO4,蒸发至近干,以除尽残留的HF; 5)加入10.0mL的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解 的物料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸); 6)待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶 液中硝酸含量为1mol/L),然后立即转移到新聚丙烯瓶中储存。 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞.

2017年中国研究生数学建模竞赛题

2017年中国研究生数学建模竞赛D题 基于监控视频的前景目标提取 视频监控是中国安防产业中最为重要的信息获取手段。随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。 目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。这一技术往往能够对一般的视频处理任务提供有效的辅助。以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。 下面简单介绍一下视频的存储格式与基本操作方法。一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据,其中代表视频帧的长,宽,代表视频帧的帧数。视频也可等价理解为逐帧图片的集合,即,其中为一张长宽分别为 的图片。3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。通常对灰度值预先进行归一化处理(即将矩阵所有元素除以255),可将其近似认为[0,1]区间的某一实数取值,从而方便数据处理。一张彩色图片由R(红),G(绿),B(蓝)三个通道信息构成,每个通道均为同样长宽的一张灰度图。由彩色图片

水果蔬菜重金属快速检测仪各项重金属的检测原理及采用标准

水果蔬菜重金属快速检测仪各项重金属的检测原理及采用标准 重金属中特别是砷、汞、锡、铬、镉等具有显著的生物毒性,其危害性是空前的。重金属一旦进入土壤后,很难从土壤中移除。尽管土壤对重金属等有毒物质有一定的缓冲能力,但是大量重金属的存在会对土壤的理化性质、土壤微生物、土壤酶活性以及土壤生产能力产生明显的不良影响。重金属在土壤中的危害还具有长期性、隐蔽性和交互性的特点,所以土壤一旦被重金属污染,其危害性将是长远的。 如被某些重金属污染的土壤可能要100~200年才能恢复。土壤污染不仅导致土壤质量和生产力的降低,而且引起水、气环境质量的下降,严重的土壤污染将直接危及到生态安全、食品安全和人体健康,同时也影响着投资经商、对外贸易以及一些重要国际公约的履行,不利于我国的环境外交、全社会的稳定和经济增长,从而制约区域和国家的可持续发展。据报道,全国每年受重金属污染的粮食多达1 200万吨,因重金属污染而导致粮食减产高达1 000多万吨,合计经济损失至少200亿元。 从宏观来说,土壤受到重金属污染后,会影响植物生长状况,植物整体长势变差,根系发育不良,地上部生长矮小,叶片失色变形,果实畸形,最终产量下降,果实品质变差。土壤污染直接导致农产品品质不断下降,降低我国农产品的

国际市场竞争力。 食品、土壤、水质逐渐被工业废气、废水、废渣所污染,甚至有些人直接用工业废水浇灌庄稼,造成土壤耕作层内的镉、铜、砷、铬、汞等重金属大量富积、积累,特别是城市郊区现象更为严重;加上大量使用无机化学农药等致使蔬菜和鱼类体内的重金属含量严重超标的情况,不断在人体内积累,导致消费者重金属慢性中毒现象发生,国内已发生多起重金属集体中毒事件,已引起政府的高度重视和社会各界的广泛关注,但是当前重金属测定方法测定速度慢、步骤繁琐且仪器昂贵。基于这种形势,我们开发出了重金属快速测定方法,可对食品样品中的铅、砷、铬、镉、汞进行快速联合测定 现场测试 一、重金属快速检测仪检测原理: (一)、样品经消化后,所有形态的重金属(包括砷、铅、镉、铬、汞等)都转化为离子型态,加入相关检测试剂后显色,在一定浓度范围内溶液颜色的深浅与重金属的含量呈比例关系,服从朗伯--比尔定律,再通过仪器进行测定得出含量值,与国家标准农产品安全质量无公害蔬菜安全要求允许限量的标准进行比较,来判断蔬菜样品重金属含量是否超标。 (二)、各项重金属的检测原理及采用标准 1、重金属砷的检测原理及采用标准 采用国家标准(GB/T5009.11-2003)硼氢化物还原比色法,即样品经消化后,加入碘化钾-硫脲并加热,将五价砷还原为三价砷,在酸性条件下硼氢化钾将三

土壤重金属形态分析的改进BCR方法

BCR连续提取法分析土壤中重金属的形态 ?1、重金属形态 ?2、重金属形态研究方法及发展历程 ?3、本实验的目的 ?4、实验原理 ?5、实验步骤 ?6、数据处理 1.重金属形态 ?重金属形态是指重金属的价态、化合态、结合态、和结构态四 个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。 ?重金属进入土壤后,通过溶解、沉淀、凝聚、络合吸附等各种 作用,形成不同的化学形态,并表现出不同的活性。 ?元素活动性、迁移路径、生物有效性及毒性等主要取决于其形 态,而不是总量。故形态分析是上述研究及污染防治等的关键 2、重金属形态研究方法及发展历程 ?自Chester 等(1967)和Tessier 等(1979)的开创性研究以来, 元素形态一直是地球和环境科学研究的一大热点。 ?在研究过程中,建立了矿物相分析、数理统计、物理分级和化学 物相分析等形态分析方法。

?由于自然体系的复杂性,目前对元素形态进行精确研究是很困 难,甚至是不可能的。 ?在诸多方法中,化学物相分析中的连续提取(或逐级提取) (Sequential extraction) 技术具操作简便、适用性强、蕴涵信息丰富等优点,得到了广泛应用。 逐级提取(SEE) 技术的发展历程 ?60~70年代(酝酿期) ?以Chester 和Hughes(1967) 为代表的一些海洋化学家尝试 用一种或几种化学试剂溶蚀海洋沉积物,将其分成可溶态和残留态两部分,进而达到研究微量元素存在形态的目的。 ?70 年代末(形成期)

?在前人研究的基础上,Tessier et al. (1979) 用不同溶蚀能力的化学试剂,对海洋沉积物进行连续溶蚀和分离操作,将其分成若干个“操作上”定义的地球化学相,建立了Tessier 流程。 ?80 年代(发展期) ?不同学者在对Tessier 流程改进的基础上,先后提出了20 多种逐级提取流程。其中,影响较大的逐级提取流程有Salomons 流程(1984) 、Forstner 流程(1985) 、Rauret et al流程(1989) 等。 ?90 年代(成熟期) ?为获得通用的标准流程及其参照物,由BCR 等主办的以“沉积物和土壤中的逐级提取”(1992) 、“环境风险性评价中淋滤/ 提取测试的协和化”(1994) 和“敏感生态系统保护中的环境分析化学”(1998) 等为主题的欧洲系列研讨会先后召开,并分别出版了研究专刊。 ?Ure et al. (1993) 在Forstner (1985) 等流程的基础上,提出了Ure 流程,后经Quevauviller et al. (1997 ,1998) 修改,成为BCR 标准流程,并产生了相应的参照物(CRM 601) 。 ?BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。 ?Rauret et al. (1999) 等对该流程作了改进,形成了改进的BCR

土壤中重金属全量测定方法

精心整理 精心整理 版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm 筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),电热板上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升盐酸溶题,版本1) 2) 3) 4) 5) 6) 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l 重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞. 1 土壤消化(王水+HClO 4法) 称取风干土壤(过100目筛)0.1 g (精确到0.0001 g )于消化管中,加数滴水湿润,再加入3 ml HCl 和1 ml HNO 3(或加入配好的王水4~5mL ),盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min 、100~110℃消解30 min 、120~130℃消解1 h ,取下置于通风处冷却。

精心整理 加入1 ml HClO4于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:最高温度不可超过130℃。消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全。如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全。 2植物消化(HNO3+H2O2法) 称取待测植物1~2g(具体根据该植物对重金属吸收能力的强弱而定)于消化管中,加入5ml HNO3,盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入1 ml H2O2,于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 精心整理

2011年全国大学生数学建模竞赛B题

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 韩晓峰 2. 杨晓帆 3. 李弘倩 指导教师或指导教师组负责人(打印并签名): 日期: 2011 年 9 月 11 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

交巡警服务平台的设置与调度 摘要 在(1)第一问中,我们根据附表1所给各路口坐标算出A图中每条路线的长度,然后通过floyd算法找出了两点之间的最短路程,得出矩阵D,通过使用matlab圈出各服务平台到周围路口小于3min(即3km)的点,再根据就近原则,将各路口划分到这个圈中离此路口最近的交巡警平台。对于任意到交巡警平台路程大于3min(即3km)序号为28,29,38,39,61,92的五个路口,则采用就近原则人工划入距离其最近的交巡警平台辖区,这样就在保证出警时间基本都小于3min的条件下,划分出各警务平台合理的管辖范围。 对于(1)第二问中,我们采用指派模型,用lingo软件对20个巡警服务平台对17个城市出入口进行封锁的方法进行了优化,得到初步的调度方案。在这个方案的基础上,如果在某条巡警服务平台调度路线中经过其他的的调度点,则与所经过的调度点互换目标路口,由此得到最佳调度方案,即最快8分钟可以实现快速封锁路口。 对于(1)第三问,我们按照工作量均衡和出警时间尽可能短的原则考虑增加交巡警平台。首先,利用excel算出了各辖区内交巡警服务平台的工作量总和以及出警时间的平均值,求出了所有辖区的工作总量与出警时间的平均值,取出工作总量明显高于平均值且平均出警时间超过3min的四个辖区来增设新的交巡警平台。我们通过(1)第一问中的最短路程矩阵得到各辖区内种增设平台的所有可能的方法,通过比较每种方法的工作量总和及出警时间综合考虑得到一个最优的设置。最后通过spss软件求得优化前后两组数据的标准差,比较后发现优化后的数据标准差明显下降,达到了优化的目的。 在(2)第一问中,首先参照(1)中A区的处理方法分别求出了城区B,C,D,E,F中路口到最近交巡警服务平台的路程,出警时间以及工作量。通过spss软件计算出标准差,并与优化后的A城区进行比较,找出了交巡警平台明显分配不合理(标准差远高于A区优化后方案的标准差)的三个区,在其距离较远工作量较大的路口增设服务平台。 对于(2)中第二问搜捕嫌疑犯问题,我们采用时间圈法,以事发地点为圆心,以一分钟所行使的路程为单位半径,画出等间隔的数个同心圆,这样就可以确定每个时间段嫌疑犯的逃逸范围(因为任意两点间的路程大于等于两点间的距离,所以在某时间内嫌疑犯必定在对应的时间圈内),根据每个路口在这些时间圈上的位置,要求警察到这些路口的时间小于罪犯到达的时间(即可以围堵住罪犯),找出所有这些路口,构成闭圈,最小的闭圈便是围堵罪犯的最佳方案。 关键词:floyd算法,指派模型,spss分析数据,时间圈法

8种重金属元素在该城区的空间分布

8种重金属元素在该城区的空间分布 本题以样本点的坐标(,)x y 为平面,再以各种金属元素的浓度表示z 轴,然后利用surfer 8.0软件绘制各元素对应的平面空间的等值线分布图[]4。 图 1.1 5000 10000 15000 20000 25000 As 的空间分布特征 05000 10000 15000 图 1.2 5000 10000 15000 20000 25000 Cd 的空间分布特征 05000 10000 15000 图 1.3

5000 10000 15000 20000 25000 Cr 的空间分布特征 05000 10000 15000 图 1.4 5000 10000 15000 20000 25000 Cu 的空间分布特征 05000 10000 15000 图 1.5 5000 10000 15000 20000 25000 Hg 的空间分布特征 05000 10000 15000

图 1.6 5000 10000 15000 20000 25000 Ni 的空间分布特征 05000 10000 15000 图 1.7 5000 10000 15000 20000 25000 Pb 的空间分布特征 05000 10000 15000 图 1.8

5000 10000 15000 20000 25000 Zn 的空间分布特征 05000 10000 15000 5.1.2 每种元素综合考虑对不同功能区的污染程度 以测区背景上限为重金属元素累积起始值(Xa ),国家土壤环境质量标准[] 14的二类标准作为污染起始值(Xc ),土壤环境质量标准的三类标准作为重污染起始值(Xp )。 表1.1 污染分级指标表(g g μ) 元素 As Cd Cr Cu Hg Ni Pb Zn 累积起始值 (Xa) 5.4 0.190 49 20.4 0.051 19.9 43 97 污染起始值 (Xc) 15 0.3 250 50 0.3 40 250 200 重污染起始值 (Xp) 30 1 400 400 1.5 200 500 500 由单因子污染指数法求出每种金属元素对样本点的污染程度,可设Xa 为重金属元素累积起始值,Xc 为污染起始值,Xp 为重污染起始值。依照国家土壤环境质量标准值和该城区的背景值得出污染分级指标表。根据单因子污染指数的计算公式: ,1,(1,2,,8) 2, 3,i i a a i a a i c c a i i c c i p p c i p p i p c C C X X C X X C X X X P i C X X C X X X C X X C X X ?≤???-+<≤?-?==? -?+<≤-??-?+

土壤中重金属全量测定方法(精)

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm筛于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同,电热板上高温档加热(数显的控制温度300~350度1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1盐酸溶解残渣,完全转移到25毫升容量瓶中,加0.5毫升的100g/L的氯化铵溶液,定容,然后原子吸收分光光度计检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1称量0.5000g样品放入PTFE(聚四氟乙烯烧杯中(先称量样品,后称量标 样,用少量去离子水润湿; 2缓缓加入10.0mLHF和4.0mLHClO4(如果在开始加热蒸发前先把样品在混合 酸中静置几个小时,酸溶效果会更好一些,加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖至形成粘稠状结晶为止(2~3小时; 3视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都 需要蒸发至尽干;若消化完全则直接进行下一步; 4加入4.0mLHClO4,蒸发至近干,以除尽残留的HF; 5加入10.0mL的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解 的物料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸; 6待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶

空间统计学模拟方法在城市重金属污染分析中的应用

生态环境 2008, 17(6): 1898-1902 https://www.360docs.net/doc/5010812415.html, Ecology and Environment E-mail: editor@https://www.360docs.net/doc/5010812415.html, 基金项目:建设部研究开发项目(06-K9-8) 作者简介:孙英君(1976年生),女,副教授,博士,主要研究方向为空间信息分析技术在城市建设中的应用。E-mail:qingdaosyj@https://www.360docs.net/doc/5010812415.html, 收稿日期:2008-06-11 空间统计学模拟方法在城市重金属污染分析中的应用 孙英君,丁宁,蔡菲,孟飞 山东建筑大学土木学院,山东 济南 250014 摘要:城市土壤重金属污染是城市化后噬待解决的一个重要问题。传统的土壤重金属污染分析方法——克里格方法,通过满足未采样点局部方差最小而获得土壤污染状况预测结果,算法本身会给估值结果带来光滑作用,并只能提供未采样点的局部不确定性。文章提出利用空间统计学的模拟方法,对土壤重金属污染状况进行研究,通过获取多幅模拟结果之间的差异来揭示研究区域土壤重金属污染的整体空间分布形态。文章以上海某区域6种重金属(Cu 、Pb 、Cd 、Cr 、Hg 和As)为研究对象,利用空间统计学模拟方法对其空间分布予以研究,给出每种重金属空间分布模拟结果。最后,文章以研究区域土壤环境背景上限值为标准,给出研究区域不同土壤重金属空间分布相应级别的不确定性分析结果。 关键词:模拟;地统计学;空间变异;重金属;不确定性 中图分类号:X14 文献标识码:A 文章编号:1672-2175(2008)05-1898-05 城市的土壤环境质量与人类健康息息相关,随着城市化进程的迅速发展,城市土壤重金属污染日趋引起人们的关注。研究者将汞、镉、铅、铬、砷、锌、铜、镍合称为重金属环境污染元素,尤其是铅、镉、汞、铜及其复合污染最为突出,其中镉、汞、铅等重金属是城市和工业发展过程中产生的典型的“污染元素”,给区域土壤资源的保护、利用与管理带来了严峻挑战[1]。据报道,中国受镉、砷、铬、铅等重金属污染的耕地面积近2000万hm 2,约占总耕地面积的1/5。土壤重金属污染导致严重的经济损失,如中国每年就因重金属污染而减产粮食1000多万t ,另外被重金属污染的粮食每年也多达1200万t ,合计经济损失至少200亿元[2]。同时,土壤重金属污染也会导致重金属在植物体中积累,并通过食物链富集到人体和动物体中,危害人畜健康,引发癌症和其他疾病等。其次,土壤受到重金属污染会导致大气污染、地表水污染,地下水污染等生态环境问题。 因此开展土壤重金属空间结构特征的研究,特别是模拟土壤重金属的全局空间分布形态,定量化评价土壤重金属污染程度,及时有效地采取防护、修复措施,对减少城市重金属污染,提高人们的生活质量具有重要的意义。 1 土壤重金属空间结构及分布特征研究现状 已有一些研究者对城市重金属污染状况进行分析:Hu 等利用地统计学对北京市大兴区土壤重金属含量的空间分布特征进行了研究[3];郑袁明、陈同斌等利用地统计技术对北京市近郊区土壤Ni 的 空间结构及分布特征进行了研究[4];钟晓兰等以江苏省太仓市为例,运用地统计技术研究了长江三角洲地区土壤重金属污染的空间变异特征[5];郑海龙等利用地统计学普通克里格插值方法对上海梅山刚体集团附近的土壤重金属空间变异进行研究[6];李亮亮等通过克里格插值对葫芦岛市连山区、龙港区土壤重金属汞、铬、镍的空间分布进行单因子评价[7]。Pilar Burgos 等运用Kriging 方法对Seville , Spain 地区的土壤修复前后重金属、微量元素的变化进行了分析[8];M. Biasioli 等利用地统计方法及GIS 技术对大型城市发展对土壤重金属的影响加以分析[9]。Li 等利用克里格方法,结合GIS 技术对香港九龙6种重金属元素(Cd 、Cr 、Cu 、Ni 、Pb 和Zn )的空间分布加以研究,并通过热点探测的方法进行污染源的求解[10]。 黄勇等对地统计学在土壤重金属研究中的应用做了综述及其展望[11]。总结起来,在土壤重金属空间结构及分布特征研究上,研究人员较多地基于GIS 技术与空间(地)统计学克里格系列插值方法对城市重金属污染状况进行分析:利用GIS 技术进行研究区域及其采样数据、空间分布插值结果的可视化表达;利用空间统计学的变异函数对采样数据的空间异质性予以分析,并通过理论变异函数的不同因子、系数来寻求异质性产生的原因(影响因子),最后给出克里格算法插值得到的某重金属空间分布结果。 2 存在的问题及解决方法 经过克里格插值得到的重金属空间分布结果不能够反映研究区域的真实状况,特别是当研究者

土壤重金属检测内容

土壤重金属检测是常规的环境检测项目之一,土壤与农作物的种植密切相关,一旦土壤的重金属超标,重金属会通过农作物最终流向人们的身体,重金属对人的危害极为重大。 常规土壤重金属检测指标:铜、锌、镍、铅、铬、镉、汞、铁、锰、钼、钴、砷 土壤检测范围:农田重金属检测、果园或花场重金属检测、种植用地土壤重金属检测、等等 污泥检测范围:河流污泥检测、工业污水污泥检测、养殖污泥检测、等等 土壤重金属检测方法:X射线荧光光谱法、电感耦合等离子体发射光谱、原子荧光光谱法、激光诱导击穿光谱法、原子吸收光谱法土壤是生态环境必要组成之一,如果土壤受到污染会带来一系列的连环影响,例如:雨水会把土壤中的重金属带到河流污染渔业,污染人类的饮用水,污染农作物等等。定期做土壤重金属检测有利用环境的可持续发展。 土壤重金属检测是土壤的常规监测项目之一。采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,并满足土壤的管理和决策需要。本文围绕土壤常规重金属检测指标、土壤检测范围、污泥检测范围、土壤重金属检测方法等方面进行讲解。 许多研究表明,种植物的质量安全与产地的土壤环境关系密切。重金属一般先进入土壤并积累,种植物通过根系从土壤中吸收,富集重金属,有时也通过叶片上的气孔从空气中吸收气态或尘态的重金属

元素。 深圳市华太检测有限公司现有场所面积3000多平方米,满足开展相应检验检测工作的需要。注册资金500万,拥有700余万元的固定资产,拥有国内先进的微机控制伺服泵源万能试验机,压力试验机,甲醛测试试件平衡预处理恒温恒湿室,甲醛释放量测试气候箱(智能式)、气相色谱质谱联用仪(GC-MS)、气相色谱仪(GC)、电感耦合等离子体发射光谱仪(ICP-OES)、原子吸收光谱仪、原子荧光光谱仪等大型仪器设备280多台,能满足现有检测项目的要求。

2011年全国大学生数学建模竞赛测试试题

2011年全国大学生数学建模竞赛测试试题(A) 时量:180分钟满分:150分 院系:专业:学号:姓名: 一、选择题(2分/题×10题=20分) 1、Matlab程序设计中清除当前工作区的变量x,y的命令是( c ) A.clc x,y B.clear(x y) C.clear x y D.remove(x,y) 2、关于Matlab程序设计当中变量名和函数名的描述,下述说法正确的是( B ) A.都不区分大小写 B.都区分大小写 C.变量名区分,函数名不区分 D. 变量名区分,函数名不区分 3、MA TLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角 4、关于矩阵上下拼接和左右拼接的方式中,下列描述是正确的是( D ) A.上下拼接的命令为C=[A, B],要求矩阵A, B的列数相同; B.左右拼接的命令为C=[A; B],要求矩阵A, B的行数相同; C.上下拼接的命令为C=[A; B],要求矩阵A, B的行数相同; D.左右拼接的命令为C=[A, B],要求矩阵A, B的行数相同。 5、Matlab命令a=[65 72 85 93 87 79 62 73 66 75 70];find(a>=70 & a<80)得到的结果为(C ) A.[72 79 73 75] B.[72 79 73 75 70] C.[2 6 8 10 11] D.[0 1 0 0 0 1 0 1 0 1 1] 6、矩阵(或向量)的范数是用来衡量矩阵(或向量)的(A)的一个量 A.维数大小 B.元素的值的绝对值大小 C.元素的值的整体差异程度 D.所有元素的和 7、计算非齐次线性方程组AX=b的解可转化为计算矩阵X=A-1b,可以用Matlab的命令(A)实现 A.左除命令x=A\b B.左除命令x=A/b C.右除命令x=A\b D.右除命令x=A/b 8、关于Matlab的矩阵命令与数组命令,下列说法正确的是(b) A.矩阵乘A*B是指对应位置元素相乘 B.矩阵乘A.*B是指对应位置元素相乘 C.数组乘A.*B是指对应位置元素相乘 D.数组乘A*B是指对应位置元素相乘 9、生成5行4列,并在区间[1:10]内服从均分布的随机矩阵的命令是(d) A.rand(5,4)*10 B.rand(5,4,1,10) C.rand(5,4)+10 D.rand(5,4)*9+1 10、关于Matlab的M文件的描述中,以下错误的是( d ) A、Matlab的M 文件有脚本M文件和函数M文件两种; B、Matlab的函数M文件中要求首行必须以function顶格开头;

(完整版)土壤重金属检测

土壤重金属检测 第一部分:样品的采集 一个完整的环境样品的分析,包括从采样开始到出报告,样品分析流程为:采样→样品处理→分析测定→整理报告,大致可分为这四个阶段。这四个阶段所需时间及劳动强度为:样品采集6.0%,样品处理61.0%,分析测试6.0%,数据处理及报告27.0%。 1 土壤样品的采集 采集土样时务必要注意所采样品的代表性,即所采集的样品对所研究的对象应具有最大的代表性。采样要贯彻“随机”、“等量”和“多点混合”的原则进行采样 2 采样器具 工具类:不锈钢土钻、铁锹或锄头、土刀、取土器、竹片以及适合特殊采样要求的工具,分样盘、塑料布或塑料盆等用于野外现场缩分样品的工具。 器材类:GPS、照相机、卷尺、铝盒、样品袋、样品箱等。 文具类:样品标签、采样记录表、现场调查表、铅笔、资料夹等;安全防护用品:雨具、工作鞋、药品箱等。 3 采样单元的划分 由于土壤的不均一性,导致同一研究区域各土壤具有差异性,同一块土壤中不同点也具有差异,故在实地采样前,应先根据现场勘察和所搜集的有关资料,将研究范围划分为若干个采样单元。 采样单元的划分,采样单元以土类和成土母质类型为主,其次根据地形、地貌、土上设施状况、土壤类型、农田等级等因素确定,原则上应使所采土样能使所研究的间题在分析数据中得到全面的反应。在一个采样单元中,如果用多个样点的样品分别进行分析,其平均值或其他统计值(如标准差或置信区间等)的可靠性,无疑要比单独取一个样品的分析结果更大,但这样做的工作量比较大。如果把多个样点的土样等量地混合均匀,组成一个“混合样品”进行测定,工作量就可大为减少,而其测定值也可得到相近的代表性,因为混合样品的测定值,实际上相当于各个样点分别测定的平均值。总体要遵循“同一单元内的差异性尽可

2011数学建模竞赛题目

A: 网络舆论的形成、发展与控制 持有、接受、表达某种相同、相似的观点的人在社会人群中所占的比例超过一定的阀值,这时候这种观点就上升为舆论(opinions)。舆论在特定的条件下,产生巨大的社会力量,能够左右社会大众和政府的行为。 如今,互联网作为一个开放自由的平台,已经成为了世界的“第四媒体”。显然,网络舆论与传统舆论在形成、发展等方面有着诸多不同的特点,如何控制和引导网络舆论的形成与发展是当今社会的一个重要课题。作为开放的网络平台,加上其虚拟性、隐蔽性、发散性、渗透性和随意性等特点,越来越多的人们愿意通过互联网来表达自己的个人想法。现今,互联网已成为新闻集散地、观点集散地和民声集散地。 互联网上的信息内容庞杂多样,容纳了各种人群、各类思潮,对于社会上的一些敏感问题出现在网上而引起一些人的共鸣应是一种正常现象,但是由于各种复杂因素使这些敏感问题向热点演变,最后形成网络舆论并引起社会群众的违规和过激行动时,将影响到社会安定和其他政治问题,因此网络舆论的爆发将以“内容威胁”的形式对社会公共安全形成威胁,对网上的信息内容进行管理和控制将成为互联网进一步发展的必然趋势。 请在上述背景基础上,解决如下问题: (1)请在查找资料的基础上,给出网络舆论的基本概念和特性,分析影响网络舆论的各种因素; (2)运用你们所掌握数学知识,建立网络舆论形成的数学模型,使其能够对网络舆论的发展、变化趋势做出有效的判断,并能对网络舆论的态势做出客观的表述; (3)基于上述模型的基础上,请描述在网络舆论形成后,如何利用你们的模型来控制和引导网络舆论的发展趋势。

B题:水资源短缺风险综合评价 水资源,是指可供人类直接利用,能够不断更新的天然水体。主要包括陆地上的地表水和地下水。 风险,是指某一特定危险情况发生的可能性和后果的组合。 水资源短缺风险,泛指在特定的时空环境条件下,由于来水和用水两方面存在不确定性,使区域水资源系统发生供水短缺的可能性以及由此产生的损失。 近年来,我国、特别是北方地区水资源短缺问题日趋严重,水资源成为焦点话题。 以北京市为例,北京是世界上水资源严重缺乏的大都市之一,其人均水资源占有量不足300m3,为全国人均的1/8,世界人均的1/30,属重度缺水地区,附表中所列的数据给出了1979年至2000年北京市水资源短缺的状况。北京市水资源短缺已经成为影响和制约首都社会和经济发展的主要因素。政府采取了一系列措施, 如南水北调工程建设, 建立污水处理厂,产业结构调整等。但是,气候变化和经济社会不断发展,水资源短缺风险始终存在。如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。 《北京2009统计年鉴》及市政统计资料提供了北京市水资源的有关信息。利用这些资料和你自己可获得的其他资料,讨论以下问题: 1评价判定北京市水资源短缺风险的主要风险因子是什么? 影响水资源的因素很多,例如:气候条件、水利工程设施、工业污染、农业用水、管理制度,人口规模等。 2建立一个数学模型对北京市水资源短缺风险进行综合评价,作出风险等级划分并陈述理由。对主要风险因子,如何进行调控,使得风险降低? 3 以北京市水行政主管部门为报告对象,写一份建议报告。

相关文档
最新文档