Duomax晶硅双玻组件_特性介绍201504

晶体硅电池组件EL缺陷分析

晶体硅电池组件EL缺陷分析 EL检测仪,又称太阳能组件电致发光缺陷检测仪,是跟据硅材料的电致发光原理对组件进行缺陷检测及生产工艺监控的专用测试设备。给晶体硅电池组件正向通入1-1.5倍Isc 的电流后硅片会发出1000-1100nm的红外光,测试仪下方的摄像头可以捕捉到这个波长的光并成像于电脑上。因为通电发的光与PN结中离子浓度有很大的关系,因此可以根据图像来判断硅片内部的状况。 缺陷种类一:黑心片 EL照片中黑心片是反映在通电情况下电池片中心一圈呈现黑色区域,该部分没有发出1150nm的红外光,故红外相片中反映出黑心,此类发光现象和硅衬底少数载流子浓度有关。这种电池片中心部位的电阻率偏高。 缺陷种类一:黑心片 缺陷种类二:黑团片 多晶电池片黑团主要是由于硅片供应商一再缩短晶体定向凝固时间,熔体潜热释放与热场温度梯度失配导致硅片内部位错缺陷。 缺陷种类二:黑团片 缺陷种类三:黑斑片 黑斑片一般是由于硅料受到其他杂质污染所致。通常少数载流子的寿命和污染杂质含量及位错密度有关。黑斑中心区域位错密度>107个/cm2,黑斑边缘区域位错密度>106个/cm2均为标准要求的1000~10000倍这是相当大的位错密度。

缺陷种类三:黑斑片 缺陷种类四:短路黑片 缺陷种类五:非短路黑片 短路黑片、非短路黑片成因 电池片黑片有两种,全黑的我们称之为短路黑片,通常是由于焊接造成的短路或者混入了低效电池片造成的。而边缘发亮的黑片我们称之为非短路黑片,这种电池片大多产生于单面扩散工艺或是湿法刻蚀工艺,单面扩散放反导致在背面镀膜印刷,造成是PN结反,也就是我们通常所说的N型片,这种电池片会造成IV测试曲线呈现台阶,整个组件功率和填充因子都会受到较大影响。 缺陷种类六:网格片 网格片是由于电池片在烧结过程中温度不当所致,网纹印属于0级缺陷,下图所示的网格片组件可以判为A级品。

双玻光伏组件介绍

双玻光伏组件介绍 About double glazing panel 双玻光伏组件,是指由两片玻璃和太阳能电池片组成复合层,电池片之间由导线串、并联汇集到引线端所形成的光伏电池组件。 The utility model relates to a double glass photovoltaic component, which is a composite layer composed of two pieces of glass and a solar battery sheet, wherein, the photovoltaic cells are formed by the connection of the wires in series and in parallel to the lead end of the battery. 双玻光伏建筑可以分为BIPV、BAPV两种形式。BIPV(光伏建筑一体化)是说,光伏组件作为建筑的构件,是建筑的一部分。它的特点是,除了要满足组件的性能要求以外,还要防火,并满足建筑力学、热舒适、采光、隔音等的一些建筑要求。BAPV指的是光伏组件作为建筑的一个附件,这一块就相对比较简单,只要满足光伏组件的一些性能要求就可以。当然,它要跟建筑结合,所以也要做一些防火的测试。 Dual glass photovoltaic architecture can be divided into two forms: BIPV and BAPV. BIPV (photovoltaic building integration) is that photovoltaic components as building components, is part of the building. It is characterized by, in addition to meeting the performance requirements of components, but also fire protection, and meet construction mechanics, thermal comfort, lighting, sound insulation and other architectural requirements. BAPV refers to the PV modules as an annex to the building, this piece is relatively simple, as long as the photovoltaic components meet some of the performance requirements can be. Of course, it should be combined with the building, so it is necessary to do some fire prevention tests. 双玻组件可以做成各种颜色。其次,它可以扩展多种形式,可以加工成中通的结构来隔热,或者隔噪声,还可以做成各种透光率,满足建筑的采光要求。再次,它结构对称。这个特点可以说是光伏组件的特点。比如说,承受静态载荷之后,电力片可以做到无隐裂。因为晶体硅电池有一个最大的缺点就是非常脆,很容易发生破碎。 但在对称结构当中,它承受外力的时候,可以做到不会破碎,在这种载荷之后,它功率衰减非常小。这个跟它的力学对称结构是相关的。它在冷热循环中功率衰减也非常小。 The double glass component can be made into various colors. Secondly, it can be extended in many forms, and can be processed into a medium to pass structure to insulate the heat or noise. It can also be made into all kinds of light transmittance to meet the lighting requirements of the building. Once again, it is structurally symmetrical. This feature can be said to be the characteristics of PV modules. For example, after the static load is applied, the power slice can be cracked free. Because crystalline silicon cells have one of the biggest drawbacks is very brittle, very prone to fragmentation. But in a symmetrical structure, when it is subjected to external forces, it can not be broken, and after such a load, its power attenuation is very small. This is related to its mechanical symmetric structure. It also has very little power attenuation in the hot and cold cycles. 在BAPV形式中,它附着在倾斜的屋面的形式,通常是作为建筑的附件,会增加建筑的负荷能力。它的哪些特点比较适合在BAPV上应用呢?第一,它外表面都是玻璃结构。玻璃结构抗紫外能力非常强,防火等级也比较高,可以很轻松地做到1500伏的系统电压。当然,如果你是用1000伏的电压的话,代表了它的绝缘性能非常好,它的安全性会更高。即便是老化之后的玻璃,绝缘性也非常好。第二,它没有金属边框,相对普通组件来说,它省去了接地的操作,这样可以避免PID (电位诱发衰减)现象的产生。当然,我们如果说能够把水膜去掉,能够把在回路过程中的任何一个点打断,同样也不会有PID产生。 没有边框后,组件的工作温度会变低。同时,它还能防止灰尘的积攒。第三个特点还是结构对称,对于组件来说依然是在载荷之后电力片无引力,功率衰减小,TC循环过程中功率分解小。 In the form of BAPV, it is attached to an inclined roofing form, usually as an attachment to the building, which increases the load capacity of the building. What are its features suitable for use on BAPV? First, it has a glass structure on its outer surface. The structure of glass is very resistant to UV, and the fire rating is relatively high. It can easily achieve the system voltage of 1500 volts. Of course, if you are using 1000 volts of voltage, it stands for its very good insulation performance, and its security will be higher. Even after aging, the insulation of the glass is very good. Second, it does not have a metal frame, and it eliminates grounding operations relative to the ordinary components, thus avoiding the generation of PID (potential induced attenuation). Of course, if we say that we can remove the water film and interrupt any point in the loop process, there will be no PID.

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

晶硅组件检测与分析

光伏电站晶硅组件如何检测与分析? 光伏电站的质量问题由来已久,几年前,一家权威认证机构对国内已经在运行的多座大型晶硅组件光伏电站进行了质量检测,调查发现光伏组件普遍存在各种质量问题,如热斑、隐裂和功率衰 减等,对电站的发电量、KPI指标、电站收益及日常运行维护带来严重影响。 电站建成后,随着时间的推移,组件本身首年光致衰减及逐年衰减率和其他衰减因素都客观存在、不可避免,因此实际的装机容量会逐年减少,那么基于原始装机容量进行理论发电量或理论功 率输出计算的发电性能指标如PR、CPR和EPI等,其中包含的光伏电池板自身损耗部分会逐年增加,而且实际装机容量的不确定性将对次年各个电站的计划发电量的制定带来一定影响。 因此文中基于现实存在的客观情况,着重探讨已并网电站的户外组件电性能测试及功率修正方法、组件热斑现象和原因分析以及晶硅组件PID功率衰减的快速甄别方法,由于篇幅有限,其他质 量问题的检测将另起他文探讨。通过相关的测试和分析手段,可对自有电站的实际情况有清楚的了解,如组件的衰减情况、热斑组件的分布比例及是否存在PID组件等等。 一、组件(方阵)I-V测试及功率修正方法 笔者曾在某西部多家地面电站进行考察,发现在某一随机时段各个逆变器的发电量存在较大差异。如图1所示,通过对电站逐级逐段分析,排除了逆变器本身及对应方阵故障、设备停机等因素,发现电量差异的主要来源为各个组串工作电流的波动性,整体离散率较高,有的甚至超过20%。 逆变器发电量的差异和组件的功率输出情况有密切关联,因此有必要从汇流箱侧去查找低功率的组串或组件,一般的,户外组件或方阵组串的电性能测试使用便携式I-V测试仪,本部分首先介 绍便携I-V测试仪的原理、配套辐照度计量仪的类型和特点,接着介绍现场组件功率测试的一次修 正和二次修正方法。 图1 某地面电站某一时段各个逆变器的发电对比

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈 是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳 能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和 提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化 技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳 折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低 成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具 活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳 能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅, 虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很 可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用 多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长 率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶 硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅 的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂 等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率 主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳 能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制 成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得 的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电 池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶 硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度 降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但 目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光 电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过 程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合 1

双玻光伏组件

双玻光伏组件 在BIPV上的应用 广东金刚玻璃科技股份有限公司 广东金刚玻璃科技股份有限公司是研制、生产特种玻璃的高科技民营企业。 产品:高强度防火玻璃、防炸弹玻璃、光伏玻璃,建筑安全玻璃等。在国内外三百多个工程中应用。 自2000年起,我司开始对太阳能组件的研究与开发。 2006年,我司与中山大学太阳能研究所进行技术合作,再次成功研发出可直接应用于建筑一体化(BIPV)的“双玻璃光伏组件”。 1 双玻璃光伏组件的性能介绍 1.1 双玻璃光伏组件定义 由两片玻璃,中间复合太阳能电池片组成复合层,电池片之间由导线串、并联汇集引线端的整体构件,称为:双玻璃光伏组件Double-glazed solar pv module。 1.2 双玻璃光伏组件组成 双玻璃光伏组件的①两片玻璃必须是钢化安全玻璃;②向光的一面玻璃必须是超白玻璃③电池片包括:单晶硅、多晶硅、非晶硅其中的任意一种;④复合层必须是聚乙烯醇缩丁醛树脂(PVB)复合层(国家建筑玻璃安全规范要求),例如图一。 1.3 采用PVB膜制作的双玻璃光伏组件的特点 PVB膜具有如下的技术参数: 密度:1.071g/m3 抗张强度:>22N/㎡ 紫外截断:375nm 可见光传导:90% 双玻璃光伏组件的PVB夹层膜是由聚乙烯醇缩丁醛树脂,经增塑剂DHA塑化挤压而成型的一种高分子材料。对玻璃具有良好的粘结性,具有透明、耐热、耐寒、耐湿、抗紫外线、机械强度高等特性。 PVB夹层膜已经广泛应用在建筑夹层玻璃,其在受到外来撞击时,由于弹性中间层有吸收冲击的作用,可阻止冲击物穿透,即使玻璃破损,也只产生类似蜘蛛网状的细碎裂纹,其碎片牢固地粘附在中间层上,不会脱落四散伤人。PVB膜制成的组件也能满足GB

双玻组件的个技术经验优势

双玻组件的个技术经验优 势 Prepared on 21 November 2021

双玻组件的20个技术优势: 双玻组件的优势为高品质光伏电站提供了最好的解决方案,主要体现在: 1.生命周期较长:普通组件质保是25年,双玻组件提出的质保是30年。 2.生命周期内具有更高的发电量:双玻组件预期比普通组件高出25%左右,当然这里指的是双玻组件30年的发电量与普通组件25年发电量的对比。 3.具有较高的发电效率:比普通组件高出4%左右。这里指的是相同时间内发电量的对比。 4.衰减较低:传统组件的衰减大约在0.7%左右,双玻组件是0.5%。 5.玻璃的透水率几乎为零,不需要考虑水汽进入组件诱发EVA胶膜水解的问题。传统晶体硅太阳能组件的背板有一定的透水率,导致组件内部发生电化学腐蚀,增加了出现PID衰减和蜗牛纹等问题发生的概念。双玻这一优势尤其适用于海边、水边和较高湿度地区的光伏电站。 6.玻璃是无机物二氧化硅,与沙子属同种物质,耐候性、耐腐蚀性超过任何一种已知塑料。紫外线、氧气和水分导致背板逐渐降解,表面发生粉化和自身断裂。玻璃则一劳永逸地解决了组件的耐候问题,也随之结束了PVF和PVDF哪个更耐候的争端,更不用提其它PET背板、涂覆型背板。该特点使双玻组件适用于较多酸雨或者盐雾大的地区的光伏电站。 7.玻璃的耐磨性非常好:有效解决了组件在野外的耐风沙问题,大风沙地区双玻组件的耐磨性优势明显。 8.双玻组件不需要铝框:即使在玻璃表面有大量露珠的情况下,没有铝框使导致PID发生的电场无法建立,其大大降低了发生PID衰减的可能性。 9.双玻组件没有铝框,更容易清洗,减少组件表面积灰,有利于提升发电量。 10.玻璃的绝缘性优于背板,其使双玻组件可以满足更高的系统电压,以节省整个电站的系统成本。 11.双玻组件的防火等级由普通晶硅组件的C级升级到A级,使其更适合用于居民住宅、化工厂等需要避免火灾隐患的地区。 12.双玻组件有机材料较少,更利于环保,容易回收,更符合绿色能源的发展。 13.双玻组件可以实现透明组件的需求,可以广泛应用于农光互补、渔光互补、林光互补项目;尤其在光伏玻璃温室大棚方面具有得天独厚的优势,既实现了光伏发电,又实现了温室内农作物的种植,同时可以兼顾到温室大棚外表的美观,增加了观赏效果。 14.双玻组件前后2片玻璃的结构形式,也减小了组件在施工安装过程中产生局部隐裂问题的发生。 15.双玻组件结构形式简单,耗材用量较少,比如汇流带用量减少,省去了铝边框等。

晶硅组件检测与分析

晶硅组件检测与分析 This model paper was revised by the Standardization Office on December 10, 2020

光伏电站晶硅组件如何检测与分析 光伏电站的质量问题由来已久,几年前,一家权威认证机构对国内已经在运行的多座大型晶硅组件光伏电站进行了质量检测,调查发现光伏组件普遍存在各种质量问题,如热斑、隐裂和功率衰减等,对电站的发电量、KPI指标、电站收益及日常运行维护带来严重影响。 电站建成后,随着时间的推移,组件本身首年光致衰减及逐年衰减率和其他衰减因素都客观存在、不可避免,因此实际的装机容量会逐年减少,那么基于原始装机容量进行理论发电量或理论功率输出计算的发电性能指标如PR、CPR和EPI等,其中包含的光伏电池板自身损耗部分会逐年增加,而且实际装机容量的不确定性将对次年各个电站的计划发电量的制定带来一定影响。 因此文中基于现实存在的客观情况,着重探讨已并网电站的户外组件电性能测试及功率修正方法、组件热斑现象和原因分析以及晶硅组件PID功率衰减的快速甄别方法,由于篇幅有限,其他质量问题的检测将另起他文探讨。通过相关的测试和分析手段,可对自有电站的实际情况有清楚的了解,如组件的衰减情况、热斑组件的分布比例及是否存在PID 组件等等。 一、组件(方阵)I-V测试及功率修正方法 笔者曾在某西部多家地面电站进行考察,发现在某一随机时段各个逆变器的发电量存在较大差异。如图1所示,通过对电站逐级逐段分析,排除了逆变器本身及对应方阵故障、设备停机等因素,发现电量差异的主要来源为各个组串工作电流的波动性,整体离散率较高,有的甚至超过20%。 逆变器发电量的差异和组件的功率输出情况有密切关联,因此有必要从汇流箱侧去查找低功率的组串或组件,一般的,户外组件或方阵组串的电性能测试使用便携式I-V测试仪,本部分首先介绍便携I-V测试仪的原理、配套辐照度计量仪的类型和特点,接着介绍现场组件功率测试的一次修正和二次修正方法。

薄膜太阳能电池组件与晶体硅电池组件对比

薄膜太阳能电池与晶体硅电池特点介绍 商用的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能 电池和薄膜太阳能电池。薄膜电池目前常见有:非晶硅电池、碲化镉电池、铜铟 硒电池等。上述各类型电池主要性能如下表1.1 所示。 表1.1 太阳能电池分类汇总表 种 类 电池类型 商用效率实验室效率使用寿命优点 单晶硅 14%~17%23% 25 年 效率高 技术成熟 晶硅电池 多晶硅 13%~15%20.3% 25 年 效率较高 技术成熟 非晶硅 6%~9% 13% 25 年 弱光效应好 成本相对较低 碲化镉 8%~10% 15.8% 25 年 弱光效应好 成本相对较低 薄膜电池 铜铟硒 10%~13%15.3% 25 年 弱光效应好 成本相对较低 单晶硅、多晶硅太阳能电池具有制造技术成熟、产品性能稳定、使用寿命长、光电转化效率相对较高的特点;非晶硅薄膜太阳能电池具有弱光效应好,成本相对于硅太阳能电池较低的优点。而碲化镉则由于原材料存在较严重的环保回收问题;铜铟硒电池则因原材料稀缺性、成品率低,其规模化生产受到限制。 一、非晶硅薄膜与晶体硅的区别 1、非晶硅薄膜组件材料和制造工艺对环境友好,易于形成大规模生产能力; 2、非晶硅薄膜组件品种多,用途广; 3、非晶硅薄膜组件能更好的配合建筑分格,更能体现建筑美观; 4、非晶硅薄膜组件具备弱光发电的性能; 5、非晶硅薄膜组件透光性好,透光度可从5%到30%; 6、非晶硅薄膜组件高温性能好,高温对发电性能的影响比晶体硅的小很多; 7、晶体硅具有“热斑效应”,而阴影对非晶硅的影响很小; 8、晶体硅组件光电转换效率较非晶硅薄膜组件稍高; 9、晶体硅组件占地面积较非晶硅薄膜组件稍少;

双玻组件的20个技术优势

双玻组件的20个技术优势: 双玻组件的优势为高品质光伏电站提供了最好的解决方案,主要体现在: 1.生命周期较长:普通组件质保是25年,双玻组件提出的质保是30年。 2.生命周期内具有更高的发电量:双玻组件预期比普通组件高出25%左右,当然这里指的是双玻组件30年的发电量与普通组件25年发电量的对比。 3.具有较高的发电效率:比普通组件高出4%左右。这里指的是相同时间内发电量的对比。 4.衰减较低:传统组件的衰减大约在%左右,双玻组件是%。 5.玻璃的透水率几乎为零,不需要考虑水汽进入组件诱发EVA胶膜水解的问题。传统晶体硅太阳能组件的背板有一定的透水率,导致组件内部发生电化学腐蚀,增加了出现PID衰减和蜗牛纹等问题发生的概念。双玻这一优势尤其适用于海边、水边和较高湿度地区的光伏电站。 6.玻璃是无机物二氧化硅,与沙子属同种物质,耐候性、耐腐蚀性超过任何一种已知塑料。紫外线、氧气和水分导致背板逐渐降解,表面发生粉化和自身断裂。玻璃则一劳永逸地解决了组件的耐候问题,也随之结束了PVF和PVDF哪个更耐候的争端,更不用提其它PET背板、涂覆型背板。该特点使双玻组件适用于较多酸雨或者盐雾大的地区的光伏电站。 7.玻璃的耐磨性非常好:有效解决了组件在野外的耐风沙问题,大风沙地区双玻组件的耐磨性优势明显。 8.双玻组件不需要铝框:即使在玻璃表面有大量露珠的情况下,没有铝框使导致PID发生的电场无法建立,其大大降低了发生PID衰减的可能性。 9.双玻组件没有铝框,更容易清洗,减少组件表面积灰,有利于提升发电量。 10.玻璃的绝缘性优于背板,其使双玻组件可以满足更高的系统电压,以节省整个电站的系统成本。 11.双玻组件的防火等级由普通晶硅组件的C级升级到A级,使其更适合用于居民住宅、化工厂等需要避免火灾隐患的地区。 12.双玻组件有机材料较少,更利于环保,容易回收,更符合绿色能源的发展。 13.双玻组件可以实现透明组件的需求,可以广泛应用于农光互补、渔光互补、林光互补项目;尤其在光伏玻璃温室大棚方面具有得天独厚的优势,既实现了光伏发电,又实现了温室内农作物的种植,同时可以兼顾到温室大棚外表的美观,增加了观赏效果。 14.双玻组件前后2片玻璃的结构形式,也减小了组件在施工安装过程中产生局部隐裂问题的发生。 15.双玻组件结构形式简单,耗材用量较少,比如汇流带用量减少,省去了铝边框等。

晶体硅太阳能电池组件清理工艺规范

电池组件生产工艺 目录 太阳能电池组件生产工艺介绍 (1) 晶体硅太阳能电池片分选工艺规范 (3) 晶体硅太阳能电池片激光划片工艺规范 (4) 晶体硅太阳能电池片单焊工艺规范 (6) 晶体硅太阳能电池片串焊工艺规范 (8) 晶体硅太阳能电池片串焊工艺规范 (9) 晶体硅太阳能电池片叠层工艺规范 (10) 晶体硅太阳能电池组件层压工艺规范 (12) 晶体硅太阳能电池组件装框规范 (14) 晶体硅太阳能电池组件测试工艺规范 (15) 晶体硅太阳能电池组件安装接线盒工艺规范 (16) 晶体硅太阳能电池组件清理工艺规范 (17)

太阳能电池组件生产工艺介绍 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 1流程图: 电池检测——正面焊接—检验—背面串接—检验—敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试—外观检验—包装入库; 2组件高效和高寿命如何保证: 2.1高转换效率、高质量的电池片 2.2高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂胶)、 高透光率高强度的钢化玻璃等; 2.3合理的封装工艺; 2.4员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 3太阳电池组装工艺简介: 3.1工艺简介: 在这里只简单的介绍一下工艺的作用,给大家一个感性的认识,具体内容后面再详细介绍: 3.1.1电池测试: 由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 3.1.2正面焊接: 是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。 3.1.3背面串接: 背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相

双玻组件数据

双玻组件_双玻组件数据 双玻组件数据 最后一点,这点应该是在今天或者明天的论坛还有别的一些企业也会提到,我个人认为1500V组件系统可能在明年将有非常高速的 发展,我们前几天看到了一个国家通知,补贴要下调,我们初步估 计一类地区降5分,我们要想达到同等的收益,可能我们系统的成 本要降低4.5到5.5元,一般我们说0.4元。从我们组件端来说, 每年几乎可以在不增加成本基础上依靠转化率的提高,每年提高5 瓦或者每年提高2%到3%的转化效率,今年我们在市面上买到的组件 是255、260。第二方面依靠于设计工艺上。第三电气方面的下降, 像阳光不断推出大功率的逆变器。1500V系统,大家最简单的理解,汇流箱少了三分之一,电线电缆少了三分之一,逆变器容量增大了,单瓦成本也会下降。还有变压器也少了三分之一,运维和成本也减 少了。我个人蛮自豪的说,我们是今年第一个在这个行业呼吁里 1500V的人。1500V难在什么地方,因为是系统工程,不是阳光能做 出1500V逆变器就可以了,中间还有一个挑战,中国至今还没有光 伏1500V的设计标准,我们走访了很多设计院,我们可以借鉴直流 端的煤矿行业等,应该说我们走访下来,包括电线电缆,所有工艺 都已经齐备。美国最开始做1500V,后面印度,像中国技术升级很 大程度上也应该积极去推进,去摸索。我认为在明年整个光伏行业 都应该高度重视1500V的发展。1500V对于组件的挑战,原来是背 板的问题,不管是双玻还是1500V在明年可能会立竿见影减轻我们 的成本。比如1500V就能降0.2元,我们说转化效率的提升又能降 5分,别的地方我们在设计方面等等方面,再能降0.15、0.2元, 包括其他设备费用的下降,我觉得还是比较乐观。只有不断地创新,不断地通过技术进步,才能真正拉低我们的成本。 这是在2014年天合做的海南双玻项目,主要考虑的是高温高湿。这是西双版纳50兆瓦的双格项目,都是茶园,这个项目主要考虑的 昼夜温差非常大,对背板挑战非常大。这个项目考虑比较多,业主

晶硅光伏组件最佳设计技术

前言 晶体硅电池是光电转化的核心器件,但是由于单片电池片的电压、电流、功率有限,所以要将电池片串并联起来,使它具有满足用电设备和工业化用电要求的电压、电流、功率。但是,由于晶体硅电池物理脆性,容易碎裂,因此需要将电池片封装,做成组件进行保护。 晶硅光伏组件主要分为: 常规组件(组成:玻璃、EVA、晶硅电池、背板、铝框、接线盒等); 透明组件(组成:玻璃、EVA、晶硅电池、透明背板、铝框、接线盒等); 双玻组件(组成:玻璃、PVB、晶硅电池、玻璃背板、接线盒等); 无框组件(没有铝框的常规组件和透明组件); 组件的设计主要考虑三点: 物理电学性能 组件的功率大小,尺寸,承载、安装等要求。物理电学性能需要满足IEC61215和IEC61730或UL1703。使用的环境 针对组件使用的环境不同,需要特殊化设计,例如: 组件用于沿海或海岛地区,那么组件需要具有耐盐雾、防腐蚀的性能。此时,组件需要满足IEC61701的标准要求。 针对农业地区,需要组件具有抗氨气腐蚀的能力,组件需要满足IEC62716的标准。 性价比最佳化 组件的设计需要兼顾组件的性能和成本,使得组件的性价比达到最佳化。 透明组件 透明组件的用途 透明组件根据设计不同,可以得到不同的透光率,所以透明组件广泛的应用于屋顶及光伏建筑一体化(BI PV)等。 实验设计

2.1 设计前言 首先透明组件的原材料必须符合材料符合组件工厂材料导入的标准,材料测试符合性能质量要求,参考标准可以根据原材料的规格书、认证信息,以及工厂根据IEC61215或UL1703演化而来的原材料测试。其次,由于透明组件涉及变量较多(如尺寸、透光率、电池片功率、电池片数量、物料价格成本、人工成本、制造成本等),因此这里化归处理,考虑透光率、成本(元/W),以及曲线图中过原点的直线的最大斜率=透光率/(元/W)。 透光率={1-(电池片面积*电池片数量)/组件面积}×玻璃透光率×透明背板透光率。 成本(元/W)=(电池片+其它物料成本)/组件瓦数。 最大斜率=透光率/(元/W) --------过曲线与原点的直线的最大斜率。 透明组件的物料组成如表1所示。 表1 透明组件的物料组成 2.2电池片功率数量一定,其它不定,确定最佳性价比 任意组件,当电池片数量、功率一定,随着组件尺寸的增大,透光率将增大,成本相应增加。以透光率与成本(元/W)为坐标轴作图可以得到最佳的性价比的点。下面分析引出以透光率与成本(元/W)之间的关系图。 分析如下: 组件透光率Z与组件的面积变化率X之间的关系 Z={1-(电池片面积*电池片数量)/组件面积(1+X)}×玻璃透光率×透明背板透光率。 令:(电池片面积*电池片数量)/组件面积=a 玻璃透光率×透明背板透光率=b 所以,Z={1- a/(1+X)}b, 其中,a,b>0,且为常数,Z>0,X≥0。

晶体硅光伏组件选型技术规范

企业标准 CPI XX-2015 光伏发电站晶体硅光伏组件 选型技术规范 2015—XX— 发布 2015—XX— 实施

目 录 前 言 (4) 1 范围 (5) 2 规范性引用文件 (5) 3 定义与术语 (6) 4 总要求 (7) 4.1选型原则 (7) 4.2组件质量 (7) 4.3检测与认证 (8) 5 组件类型和主要技术参数 (8) 5.1组件类型 (8) 5.2主要技术参数 (8) 6 组件基本技术要求 (10) 6.1外观及内部质量 (10) 6.2电性能 (13) 6.3安全性能 (13) 7 环境适配性要求 (14) 8 关键原材料和零部件的技术要求 (14) 8.1电池片 (15) 8.2封装胶膜 (16) 8.3绝缘背板 (17) 8.4玻璃面板 (19) 8.5涂锡焊带 (20) 8.6硅橡胶密封剂和密封胶带 (21) 8.7铝合金边框 (23) 8.8接线盒、连接器和电缆 (24) 9 组件质量保证能力要求 (26) 9.1基本要求 (26)

9.2产品实现过程的保证能力及控制要求 (26) 附录A(规范性附录)组件功率平均衰减率参考值 (27) 附录B(资料性附录)常见EL检测缺陷分类 (28) 附录C(资料性附录)发电性能的环境适配度 (30) 附录D(资料性附录)特殊气候条件的要求 (33) 附录E(规范性附录)双玻组件技术要求 (35)

前 言 光伏组件是光伏发电站(以下简称“电站”)最核心的设备。根据电站所在地的实际情况,选择最为适合当地地理和气象条件的光伏组件,是保证电站高效、可靠地运行的基础。 为规范中国电力投资集团公司(以下简称“集团公司”)全资和控股单位在电站建设过程中光伏组件的选型,保证光伏组件的性能可靠性、技术先进性、环境适配性、经济合理性和产品合规性,制定本标准。 本标准依据并充分考虑了以下内容,包括:适用的国际、国家和行业标准,光伏组件最新的技术发展和实践,光伏组件在应用过程中出现的问题及解决方案。 本标准由集团公司水电与新能源部提出并归口管理。 本标准主要起草单位(部门):中电投科学技术研究院有限公司、北京鉴衡认证中心有限公司。。 本标准主要起草人:宿凤明、纪振双、李佳林、陈晓达、侯真、李端开、王聚博。 本标准主要审查人:夏忠、胡建东、郑武生、徐树彪、李晓民、李启钊、彭波、王举宝、张健、王威、莫玄超、郭伟锋、张凯、张潇蓥、罗辉、雷力、王励、徐振兴、顾斌、张治、郑江伟、崇锋、唐猷成、徐征、李仲明、翟永辉、李春成、安超、张雪、成吉、朱晓岗。 本标准为首次发布。

双玻光伏组件的技术优势

双玻光伏组件的技术优势 双玻组件在光伏电站的实际应用中体现出独特的优势,较传统组件相比主要体现在发电量高、减少蜗牛纹的产生、降低PID衰减、延长组件的生命周期、耐候性较好、环保易回收等方面。同时双玻组件的使用范围更广,比如鱼光互补、沙漠电站、滩涂电站等。 单玻组件从诞生到现在,一直采用边框、EVA把玻璃和背板连接起来,保护电池这种形式来实现光照发电。背板材料是一种有机材料,透水性一直以来始终是无法解决的问题。水汽穿透背板导致EVA树脂快速降解,EVA树脂遇水即开始分解,其分解产物含醋酸,醋酸腐蚀光伏电池上的银栅线、汇流带等,使组件的发电效率逐年下降。 一些近水的光伏发电项目,比如渔光互补、滩涂电站、农业温室以及早晚露水大的地区的光伏项目在后期运营中会碰到一些问题。由于目前电站持有方按度电计算投资回报率,所以组件的长期可靠性、耐候性成为光伏组件厂首先需要考虑的,而双玻组件从各个角度分析都具备了规避以上缺陷的性能。 双玻组件的20个技术优势: 双玻组件的优势为高品质光伏电站提供了最好的解决方案,主要体现在: 1.生命周期较长:普通组件质保是25年,双玻组件提出的质保是30年。 2.生命周期内具有更高的发电量:双玻组件预期比普通组件高出25%左右,当然这里指的是双玻组件30年的发电量与普通组件25年发电量的对比。 3.具有较高的发电效率:比普通组件高出4%左右。这里指的是相同时间内发电量的对比。 4.衰减较低:传统组件的衰减大约在0.7%左右,双玻组件是0.5%。 5.玻璃的透水率几乎为零,不需要考虑水汽进入组件诱发EVA胶膜水解的问题。传统晶体硅太阳能组件的背板有一定的透水率,导致组件内部发生电化学腐蚀,增加了出现PID 衰减和蜗牛纹等问题发生的概念。双玻这一优势尤其适用于海边、水边和较高湿度地区的光伏电站。 6.玻璃是无机物二氧化硅,与沙子属同种物质,耐候性、耐腐蚀性超过任何一种已知塑料。紫外线、氧气和水分导致背板逐渐降解,表面发生粉化和自身断裂。玻璃则一劳永逸地解决了组件的耐候问题,也随之结束了PVF和PVDF哪个更耐候的争端,更不用提其它PET 背板、涂覆型背板。该特点使双玻组件适用于较多酸雨或者盐雾大的地区的光伏电站。 7.玻璃的耐磨性非常好:有效解决了组件在野外的耐风沙问题,大风沙地区双玻组件的耐磨性优势明显。

晶硅组件检测与分析

光伏电站晶硅组件如何检测与分析? 光伏电站的质量问题由来已久,几年前,一家权威认证机构对国内已经在运行的多座大型晶硅 组件光伏电站 进行了质量检测,调查发现光伏组件普遍存在各种质量问题,如热斑、隐裂和功率衰 减等,对电站的发电量、KPI 指标、电站收益及日常运行维护带来严重影响。 电站建成后,随着时间的推移,组件本身首年光致衰减及逐年衰减率和其他衰减因素都客观存 在、不可避 免,因此实际的装机容量会逐年减少,那么基于原始装机容量进行理论发电量或理论功 率输岀计算的发电性能指标如 PR 、CPR 和EPI 等,其中包含的光伏电池板自身损耗部分会逐年增 加,而且实际装机容量的不确定性将对次年各个电站的计划发电量的制定带来一定影响。 因此文中基于现实存在的客观情况,着重探讨已并网电站的户外组件电性能测试及功率修正方 法、组件热斑 现象和原因分析以及晶硅组件 PID 功率衰减的快速甄别方法,由于篇幅有限,其他质 量问题的检测将另起他文探讨。通过相关的测试和分析手段,可对自有电站的实际情况有清楚的了 解,如组件的衰减情况、热斑组件的分布比例及是否存在 PID 组件等等。 一、组件(方阵)I-V 测试及功率修正方法 笔者曾在某西部多家地面电站进行考察,发现在某一随机时段各个逆变器的发电量存在较大差 异。如图1所 示,通过对电站逐级逐段分析,排除了逆变器本身及对应方阵故障、设备停机等因 素,发现电量差异的主要来源为各个组串工作电流的波动性,整体离散率较高,有的甚至超过 20%。 逆变器发电量的差异和组件的功率输岀情况有密切关联,因此有必要从汇流箱侧去查找低功率 的组串或组 件,一般的,户外组件或方阵组串的电性能测试使用便携式 I-V 测试仪,本部分首先介 绍便携I-V 测试仪的原理、配套辐照度计量仪的类型和特点,接着介绍现场组件功率测试的一次修 正和二次修正方法。 菜站各邂爲发电宦比BUM (和工上祐 图1某地面电站某一时段各个逆变器的发电对比 40000 3S000 豹000 25QQQ 20000 15000 toooo 5000 1A 2A 3A 4A SA 7A SA 9A IDA 11A BA HA l 涉 ISA 17A 18A 19A ZOA

晶科能源晶硅组件技术白皮书

晶科能源发布晶硅组件技术白皮书 1衰减 ():即光致功率衰减,一般组件运行初始阶段较高,之后随电池片硼氧复合体的逐年平稳下降,但理论数据和电站历史实测数据都证实多晶无论是第一年的初始光衰,第1~5年的光率,还是以后的稳定光率都要明显低于单晶。所以单多晶提供的功率衰减质保和实测数据都是多晶更具优势。

行业功率衰减线性质保:多晶功率衰减质保就较单晶低0.5%,同样功率组件,多晶寿命周期内保障的发电量就高于单晶。 衰减实测:单晶初始光率较多晶高1.0%,光衰后单晶组件功率与标称功率差距显著大于多晶,导致单晶出厂后经光衰导致的发电量损失高于多晶,由此带来的发电收益损失高于多晶。 初始越高,则稳定后组件功率与标称功率差距越大,则组件发电损失越多,发电收益损失越大。 从图1和图2显示,同样辐照量下,无论电池端,还是组件端,单晶较多晶衰减均高1.00%,即单晶比多晶光衰率更高。

稳定衰减:单多晶初始光衰的差异是由于硅片性质决定的,而之后的稳定衰减主要根据组件封装材料、工艺决定组件老化速度,所以和是单晶还是多晶的硅片关系不大,稳定衰减方面,单多晶一线品牌都提供线性质保0.7%。 2封装损失 ():即从电池到组件的功率封装损失,电池片在封装成为组件的过程中,封装前后发电功率会变化,通常称为。 实测:单晶较多晶高2.0%以上,同样效率电池封装成组件,单晶功率低于多晶。 单晶封装损失:2-5% 多晶封装损失:-1~1% 图3显示,单晶均在2.0%以上,甚至高达5%,而多晶则在0.5%以内,甚至封装后功率有提升。

这就是为什么单多晶最终组件效率的差异要小于电池片效率差异,在主流量产的功率输出上单多晶相差不多,以晶科和某品牌为例,其60片多晶的量产主流功率档265-275W,而某品牌单晶同样在270-275W。 差异原因:从电池到组件,由于电池与组件发电面积与光学反射原理差异,单晶光学利用率的降低及有效发电面积的减少,均较多晶更高,导致单晶高于多晶。 1)电池与组件反射率的巨大差异:单晶硅片反射率约10%,电池片反射率约2%;多晶硅片反射率约20%,电池片反射率约6%。就电池片而言反射率多晶不如单晶,这是常规多晶效率低于单晶的主要原因;但当电池封装成为组件以后,组件的反射基本发生在玻璃表面,玻璃反射率约4%,这样单晶电池片原本在反射率上的优势就被牺牲掉了。这也是为什么多晶的封装损失可能甚至出现负值,是因为多晶电池被封装以后,电池表面反射率大幅下降,电池实际接受到的光线获得了增益,所以效率可能不降反升。 2)外量子效率:多晶,短波区域(380-560区域),组件较电池更高,即该波段区域,组件对光子的利用率更高;而单晶,整个波段,组件较电池均有显著降低,即整个波段组件对光子的利用率均小于电池。 此外,多晶,长波区域(900-1200),组件较电池更低,即该波段区域,组件反射的光少于电池;而单晶,在该长波区域,组件与电池反射率相当,组件反射的光与电池相当。 从图4的单多晶电池到组件—外量子效率及反射率变化图可以清楚得看到短波区域(380-560区域)和长波区域(900-1200),多晶组件较多晶电池对光的利用更好,而单晶组件较单晶电池对光的利用差,如此导致单晶电池到组件的更高,而多晶更低。所以就封装以后的光学损失方面,单晶显著高于多晶。

相关文档
最新文档