太阳能光电_光热综合利用系统

太阳能光电_光热综合利用系统
太阳能光电_光热综合利用系统

引言

随着节能减碳问题的日益紧迫,可再生能源的

开发利用受到了越来越多的关注。

而太阳能作为一种储量巨大,分布广泛,清洁安全的新能源,已经在世界范围引起了广泛的重视。太阳辐射到达地球表面的能量高达4×1015MW ,约为全球能耗的2000倍。目前太阳能的主要利用方式有:太阳能光伏发

电、太阳能热发电、太阳能制氢、太阳烟囱、太阳能

制冷、

太阳能热水器等。其中太阳能光伏利用技术已经日益成熟,从光伏电站到太阳能路灯,太阳能光伏技术已经被广泛应用。但在太阳能光伏利用方面仍存在两个亟待解决的问题:光伏发电成本较高以及光电转化效率相对较低。

工业生产的晶体硅太阳电池转化效率大约在16%~17%,转化效率较高

要:太阳能储量巨大,分布广泛,清洁安全。但太阳能光伏发电存在成本较高和能量转化效率较

低的问题。因此本文提出太阳能光电-光热综合利用方式。通过聚光降低成本,通过分频综合利用提高系统效率。在分频利用技术上,寻找具有特定吸收发射特性的纳米流体流经光伏电池上层,吸收光伏电池不能加以利用的部分能量。此外,利用光学薄膜,将光伏电池可利用的波段反射给光伏电池,其余部分的能量透射用以其他形式的能量转换。文章对两种太阳能光电-光热综合利用系统进行了设计和探索。结果表明,通过光电-光热综合利用能够对太阳能利用效率实现有效提升。

关键词:太阳能;分频;纳米流体;光学薄膜;综合利用

Solar Energy Optic-Electro and Optic-Thermal Composite Utilization System

Wei wei ,Luo zhong yang ,Zhao jia fei ,Shou chun hui ,Zhang yan mei ,Wu ting ting ,Ni ming jiang Abstract:solar energy is enormously reserved,widespread,safe and clean.But solar energy photovoltaic power cost is high and its conversion efficiency is low.So this article brings up Solar energy optic-electro and optic-thermal composite utilization.Through spotlights cost reducing and frequency division utilization it improves system efficiency.Based on frequency division technology,some specific absorption -emission characteristic nanometer fluid passing above photovoltaic battery will absorb some energy which can not be used by photovoltaic batter.Otherwise it will use optical thin-film to reflect some wave band which photovoltaic battery can use to photovoltaic battery,as for the rest energy,it will transmit into other means of conversion.This article discuss two ways of solar energy,designs and explores optic -electro and optic -thermal composite utilization system.The results shows that solar energy use efficiency improves a lot through optic-electro and optic-thermal composite utilization.

Keywords:solar energy,frequency division,nanometer fluid,optical thin -film,composite utilization

太阳能光电-光热综合利用系统

葳1骆仲泱1赵佳飞1,2寿春晖1张艳梅1武婷婷1倪明江1

1浙江大学能源清洁利用国家重点实验室

2大连理工大学海洋能源利用与节能教育部重点实验室

的产品也仅能达到约22%。而在成本方面,德国、日本、美国等太阳能产业发达的国家都制定不同的政府补贴政策以支持光伏产业的发展。我国按太阳能发电成本以及火电上网价格计算,太阳能发电每度仍需补贴1元。[1-3]

当太阳光照射到太阳能光伏电池上时,只有能量大于其半导体材料的禁带宽度的部分光子能量能够转化为电能。此外的能量不仅不能转化为电能输出,还会变为废热造成光电转换效率下降。由于这一特性和太阳能光伏利用的现存问题,本文提出了太阳能光电-光热综合利用的思路,并且有别于传统的太阳能电热联供系统,此思路基于对太阳光的分波段利用,将光电单元和光热单元分离。本系统在很大程度上缓解聚光光伏系统中的热管理问题的同时,通过优化光电单元及光热单元的波段分配方案,能够进一步提高系统效率。

1通过纳米流体实现太阳能光电-光热综合利用通过调节纳米流体的纳米颗粒种类、颗粒浓度、颗粒形状、基液种类,基液酸碱度等参数,可以得到不同的流体辐射特性。因此,本文基于纳米流体设计了新型的太阳能光电-光热综合利用系统。

相对于以水为上层工质的传统的太阳能电热联用系统,此系统基于直接吸收技术(Direct Absorption Collection),能够灵活调节上层工质的辐射特性实现对太阳光的全光谱利用。同时,光热单元不再受制于光电单元,由纳米流体直接吸收太阳辐射部分能量进行光热转换,使得得到高温热能成为可能。

图1为本文提出的通过纳米流体实现太阳能光电-光热综合利用的系统结构示意图。图中纳米流体a为能够与PV板的太阳光利用波段良好匹配实现对太阳能全光谱利用的具有特定辐射特性的纳米流体。纳米流体b是基于纳米流体同时具有的良好的换热特性而应用在系统中的冷却工质,也可考虑将纳米流体a先流经此层进行预热然后进入上层吸收部分太阳辐射。图中纳米流体a直接吸收部分太阳光能量进行光热转换,透过纳米流体a部分的能量照射在光伏电池板上进行光电转换。

1.1太阳能光电-光热综合利用系统对纳米流体辐射特性的期望

如图2,AM1.5的太阳辐射波长主要分布在200nm-2500nm范围内。而单晶硅太阳电池能够响应的太阳光波长主要分布在400nm-1100nm 范围内。基于直接吸收技术(DAC),本文所提出的通过纳米流体实现的太阳能聚光分频利用系统期望纳米流体能够直接吸收波长小于400nm,或大于1100nm的太阳光辐射转化为热能,而将波长在400nm-1100nm范围内的太阳光透过供给光伏电池转化为电能。因此,本系统对纳米流体辐射特性的期望为:在波长为400nm-1100nm范围内,其透射率趋近于1,在其余范围内,其吸收率趋近于1。同理,在其他光伏系统中,参考光伏电池能够响应的太阳光波段,可以确定适用于该系统的纳米流体的辐射特性期望。

1.2纳米流体的制备及辐射特性测试

作为纳米流体辐射特性研究的基础,本文分别采用一步法和两步法制备了稳定的纳米流体。图3

为两种制备方法的示意图。本文采用醇介质中氨催化水解正硅酸乙酯,通过控制反应物与催化剂氨水的玻璃来制备不同粒径分布的单分散二氧化硅纳米流体[4]。对比两种制备方法,一步法的分散效果和粒径控制更好,而两步法为物理分散,未引入杂质,且处理量较大。

本文借助UV-3150型紫外可见红外分光光度计对不同颗粒粒径,不同颗粒浓度等不同参数的纳米流体的透射率进行了测量和分析。掺杂颗粒的等效粒径较大的流体其透射率较高,且吸收峰值所对应的波长略小。随着颗粒粒径的减小,其比表面积增大,处于表面的原子数越来越多,增大了纳米材料的活性,在红外光场的作用下,原子和电子运动加剧,促使磁化、极化和传导运动,使光能转化为热能,从而增加了对光的吸收。随着颗粒掺杂浓度的升高,颗粒对光的散射加强,流体的透射率明显下降。

1.3系统效率的理论计算

基于弥散介质理论和遗传算法,根据系统对纳米流体辐射特性的期望,建立了反问题研究模型,寻找能够满足特定辐射特性的纳米流体组分及其配比。并在此基础上建立了此系统的辐射传递模型和能量平衡模型,对系统在不同聚光条件下的性能进行了综合分析。将通过理论计算寻找到的特定纳米流体和水分别应用于电热联供系统后观察系统效率与光强之间的关系。可以看到,相对于水,通过纳米流体实现的太阳能光电-光热综合利用系统光热单元效率明显较高。光热单元温度明显高于以水为工质的系统。而随光强增强,其光电单元转化效率降低小于3%,其程度远小于以水为工质的系统。对比系统有效输出能效率,同样可以看到,在高倍聚光条件下,采用纳米流体的系统优势更加明显。

2通过光学薄膜实现太阳能分频利用

相对纳米流体在分波段利用方面的探索,在分光技术方面,光学薄膜技术已经相对成熟。因此本文也采用光学薄膜实现太阳能分频利用的另一系统设计。

目前薄膜分频技术主要有复合干涉薄膜技术、棱镜折射分光技术、全息薄膜技术、荧光分光技术以及流体吸收层技术等。本文采用复合干涉薄膜对太阳辐射进行分频,同时通过采用较复杂的多层纯电介质层代替金属层,改善了传统的金属-电介质多层干涉薄膜吸收损失较大的问题。

由于完全分离了光电单元和光热单元,光热利用形式灵活多样。可以用于生活热水,可以直接供给温差电池热端,也可以用于斯特林发动机或太阳能热发电电厂进行发电。

2.1太阳能聚光分频利用系统的波段分配方案

如图4,图中为一单晶硅太阳电池的外量子效率曲线,通过公式(1)可以计算得到该电池的效率曲线[5]。在该系统中,热利用部分可以是多种形式。以光热转化效率在全波长范围内为8%为例,可得到光热部分效率曲线和光电部分效率曲线的两个交点,如图所示。因此,将光热转换效率高于光电转换效率的波长范围内的太阳光(λ<420nm ,λ>1120nm )透射给光热单元,将光电转换效率较高的部分(420nm<λ<1120nm )反射给光伏电池。即本系统的波长分配方案。

η(λ)PV =

I SC (λ)V OC FF φ(λ)A h c λ=EQE eV OC FF h c λ(1)

2.2光学薄膜的设计及制作

在太阳能分频利用系统中,为减少复杂系统带来的光学损失,要求分频薄膜在特定波段要实现高的反射率或透射率。基于此要求,

本文设计和制造了两种匹配于不同热利用形式的系统的光学薄膜。它们的透射比与波长的关系如图5所示。

以可以将波长在1100nm 以下的辐射能量反射、波长在1100nm 以上的辐射能量透射的分频薄膜为例,该薄膜采用SiO 2-TiO 2在玻璃基底上交替涂层,图6为UV-3101分光光度计的测试结果。测试结果显示,分频薄膜在450nm-800nm 波段实现了90%以上的高反射率,在1200nm 以上波段实现了90%以上的高透射率。入射角度对复合干涉分频薄膜的工作性能有一定影响。

2.3太阳能聚光分频利用系统的系统效率

1)理论效率

根据2.1得到的波段分配方案,参考光伏电池及光热单元在特定波长下的转化效率,通过公式(2)能够计算得到系统的理论效率。

(2)

以下面两套分配方案为例:

(1)将波长在1100nm 以下的辐射能量反射给光伏电池,波长在1100nm 以上的辐射能量透射给温差电池。假设光伏电池的转化效率如图4,温差电池的光热电转化效率为8%。

(2)将波长在600nm 到1100nm 之间的辐射能量反射给光伏电池,波长在600nm 以下及1100nm 以上的辐射能量透射给太阳能热发电系统。假设光伏电池的转化效率如图4,太阳能热发电部分的能量利用率为20%。

其系统的理论效率如图7,图8。可以看到,分配方案一在分频综合利用后系统效率可以达到15.2%,而分配方案二则可以提升至20.2%,相对单纯的光电单元的15%的效率有比较明显的提升。

2)实验

以理论计算为基础,本文对分配方案(1)进行了系统效率的室外实验验证。通过调节菲涅尔透镜和光电、光热单元之间的距离调节聚光倍数。在不放置分光片和分光片45°放置条件下,分别对光伏组件的U-I 曲线进行了测试。测试结果如图9。

图中聚光光伏及聚光分频光伏两部分的效率为测试结果。聚光分频光伏-热电联用系统效率中

光热单元效率为理论值。可以看到,小于15倍聚光时,在相同冷却条件下,分频利用对系统效率有一定提升。将聚光分频光伏系统与效率8%的温差电池联用,可以在较大聚光范围内实现系统效率的提升。

而实验中电池本身性能不理想是造成较高聚光倍数下,系统效率下降较快的主要原因。

3结论

综上,通过对太阳能光电-光热综合利用能够有效提高对太阳能的利用率。基于直接吸收概念,将纳米流体流经电池板上层实现电热联用,相对于传统的电热联用系统,将光电单元和光热单元分离,在实现对太阳光的全光谱利用的同时有望获得高温热能。

而借助已经相对成熟的光学薄膜技术能够更好的实现光谱分割。本文通过实验和理论计算验证了光电-光热综合利用对系统效率的提升。

参考文献

[1]赵玉文,太阳能利用的发展概况和未来趋

势,中国电力,2003,36(9):63-69

[2]赵利勇,太阳能利用技术与发展,能源与环

境,2007,04:55-58

[3]姚伟,太阳能利用与可持续发展,中国能源,2005,27(2):46-47

[4]霍玉秋,翟玉春,醇盐水解沉淀法制备二氧

化硅纳米粉,微纳电子技术,2003(9):26-28

[5]D.Kraemer ,L.Hu ,A.Muto ,X.Chen ,G.Chen ,and M.Chiesa.,Photovoltaic -thermoelectric hybrid system:A general optimization methodology ,APPLIED PHYSICS LETTERS ,2008,92:243503

太阳能光热发电与光伏发电对比分析

传统的火力发电是通过燃烧,把化石中储存的能量,转化为热能,再转化为电能。而太阳能光热发电则是通过数量众多的反射镜,将太阳的直射光聚焦采集,通过加热水或者其他工作介质,将太阳能转化为热能,然后利用与传统的热力循环一样的过程,即形成高温高压的水蒸气推动汽轮机工作,最终将热能转化成为电能,典型太阳能光热发电热力循环系统原理如图所示。 太阳能光热发电热力循环系统原理图 正是通过这样的环节,太阳能光热发电技术和传统技术顺利地集成在一起。由于火力发电技术早已非常成熟,从而降低了太阳能光热发电整体技术开发的风险。 中国产业信息网发布的《》指出:技术主要包括太阳能光伏发电和太阳能光热发电两种,光伏发电的原理是当太阳光照射到上时,电池吸收光能,产生光生伏打效应,在电池的两端出现异号电荷积累。若引出电极并接上负载,便有功率输出。光伏发电是目前太阳能发电产业的主流技术,较为成熟,国家已明确其上网电价(不同地区在~1 元/度范围变化),发电成本也下降至元/度左右;光热发电在我国发展时间较短,在太阳能聚光方法及设备、高温传热储热、电站设计等集成以及控制方面,已经取得实质性进展,但商业化业绩较小,上网电价政策尚未落实,发电成本也较高,约为元/度左右。但太阳能光热发电与光伏发电相比具有以下优点: 1)太阳能光热发电输出电力稳定,电力具有可调节性,易于并网 目前太阳能光热发电系统可以通过增加储热单元或通过补燃或与常规火电联合运行改善出力特性。而受日光照射强度影响较大,上网后给电网带来较大压力,其发电形式独特,和传统电厂合并难度大。 通过储热改善光热发电出力特性(槽式和塔式光热发电)。白天将多余热量储存,晚间再用储存的热量释放发电,这样可以实现光热发电连续供电,保证电流稳定,避免了光伏发电与风力发电难以解决的入网调峰问题。根据不同储热模式,可不同程度提高电站利用小时数和发电量,提高电站调节性能。 通过补燃或与常规火电联合运行改善光热发电出力特性。太阳能热可利用化石燃料补燃或与常规火电联合运行,使其可以在晚上或连续阴天时持续发电,甚至可以以稳定出力承担基荷运行,从而使年发电利用得到7000 小时左右。 2)太阳能光热发电无污染 光热发电是清洁生产过程,基本采用物理手段进行光电能量转换,对环境危害极小,太阳能光热发电站全生命周期的CO2 排放仅为13~19g/kWh。而技术存在致命弱点为在生产过程中对环境的损耗较大,是高能耗、高污染的生产过程。业内专家认为,太阳能电池在生命周期所能节约的能源与生产太阳能电池本身所要消耗的资源相比,并不经济。 和光热发电对比

太阳能光电光热技术

太阳能光电光热技术 目前,我国光电应用主要是通信领域,包括微波中继站、卫星通信地面站、卫星电视接收差转系统、通信台站等,市场占有率约50%。独立光伏电站和户用光伏电源系统市场占有率约30%,主要有县乡级光伏电站400余座、农村学校的光伏发电系统80座和家用光伏电源系统15万套。其中规模较大的有西藏安多、班戈、尼玛、双湖等7座县级光伏电站,总装机容量425kWp。 2001年度,我国光伏组件总装机容量具有22.8 MWp,占世界的1.4%,2001年太阳电池的产量为3.8 MWp,正在建设的几条生产线生产能力已经有2~10 MWp的规模,预计未来几年我国光伏发电将有较大的发展。截止到2001年底,我国其累积生产小型离网风机约有21万台,大型并网风电机组40万kw,太阳电池22.8MWp,太阳能热水器3200万㎡,--- 由国家计委组织实施的旨在利用光伏发电和小型风力发电机解决边远无电地区人约2300万人民生活用电的“光明工程”正在我国西部全面展开,今年已投入18亿元人民币建设总计12 MWp的乡村光伏发电系统。我国已经成功地建造了几个光伏并网示范工程,目前,兆瓦级并网光伏电站正在深圳市建设。 新能源将成为2008年北京奥运会的主角。奥运村90%的洗浴热水将依靠太阳能产生,奥运场馆周围80%至90%的路灯也将由太阳能发电点亮。高科技环保能源建筑将使人处在一个能源不断循环再生、充满自然景观的人工大自然中。计划到2010年,利用风力发电和光伏发电技术解决2300万边远地区人口的用电问题,使其人均拥有发电容量到100W的水平,相当于届时全国人均拥有发电容量的1/3。 绿色能源为奥运场馆注入新动力

太阳能光热系统应用实例简析

太阳能光热系统应用实例简析 摘要:太阳能是一种清洁、高效而且可持续的可再生能源,充分利用太阳能是当前的大势所趋;深圳市属太阳能资源中等类型区,太阳能利用自然资源优越,本文根据深圳一个大型商住项目,对包括太阳能热水器,电热棒,热泵,燃气热水器,燃油热水器做了一个简要的经济技术分析比较,体现出太阳能热水器的一些优势。 摘要:太阳能光热系统实例简析 太阳能热利用是可再生能源技术领域商业化程度最高、推广应用最普遍的技术之一,我国太阳能热水器平均每平方米每年可节约100-150公斤标准煤。20多年来,太阳能热水器在我国得到了快速发展和推广应用,目前我国家用太阳能热水器产量占世界第一位。 深圳市地处南海之滨,属南副热带季风气候,夏长冬短,夏无酷暑,冬无严寒。深圳市年平均气温为23.7℃,最低气温为1.9℃,最高气温为37.1℃;全年平均总太阳辐射量为5225MJ/m2,年日照时数1975.0小时,年日照百分率为47%,属太阳能资源中等类型区。其中5~9月份太阳辐射总量占全年的48%,7月份日照总量最大,月总辐射量为588.6 MJ/m2,2月份日照总量最小,月总辐射量为293.4 MJ/m2。全年约80%的白天具有采集太阳热能的条件,太阳能利用自然资源优越。以下将以具体工程来说明太阳能热水器的优势。 1.工程概况: 本工程地处深圳市福龙路西侧,总占地面积60,900m2总建筑面积238,908m2 ,由11栋高层住宅、部分多层住宅、裙房商业、地下车库等组成,最高一栋建筑高度为64.9m,为一类商住楼。其中多层住宅、高层塔楼屋顶复式、公共酒楼及恒温泳池需要热水供应。 2.太阳能热水器系统简介 太阳能热水器就是吸收太阳的辐射热能,加热冷水提供给人们在生活、生产中使用的节能设备。它是我国太阳能热利用中最为成熟和最为先进的产品。为百姓提供环保、安全、节能、卫生的新型热水器产品。 2.1太阳能热水系统主要设备选型: 太阳能热利用系统中,接受太阳能辐射并向水传递热量的部件,称为太阳能集热器。目前主要有平板型、全玻璃真空管、真空热管三种太阳能集热器,各种太阳能集热器各有优缺点,分别适用不同的地区、不同的用途,性能价格比也不同。 2.1.1平板型太阳能集热器

太阳能光热发电几种创新型储热技术简述

太阳能光热发电几种创新型储热技术 光热电站相比光伏电站的核心优势即在于光热电站可配置储热系统,与传统的火力发电厂一样,生产出电网友好型的可调度电力,满足连续的用电需求。目前,商业化光热发电项目的储能市场仍然以二元熔盐为工质的熔盐储能技术为主流,但其凝固点过高,易冻堵管道的缺陷也饱受诟病。 2016年下半年接连发生的美国新月沙丘电站熔盐罐熔盐泄露事故以及西班牙Gemasolar光热电站熔盐热罐损毁事故,均造成了熔盐罐维修费用及售电收入方面的巨大损失,熔盐储热系统的安全性、可靠性再次受到行业关注。 那么,有没有一种更先进的储热技术,可替代传统的熔盐储热技术进而成为主流?近年来,创新型储能技术层出不穷,尽管其大多停留在实验室或小型示范阶段,在理论层面已证明了其发展潜力,但其商业化价值仍尚待发掘。 1. 挪威Energy Nest公司新型固态混凝土储能技术 挪威科技公司Energy Nest与德国Heidelberg水泥公司(德国跨国建材公司,全球四大水泥生产商之一)展开合作,耗时五年半研发出一种全新的特殊混凝土HEATCRETE储能技术。HEATCRETE混凝土经国际权威独立第三方实验室测试,具有高比热容和高热导率的特性。与之前最为先进的混凝土储能系统相比,HEATCRETE系统的导热系数提高了70%,比热容值提高了15%,这对电站的热力性能和传热介质来说意义重大。该公司表示,其HEATCRETE混凝土储能系统能使整个光

热电站的成本下降10%,针对熔盐储能系统则能节约60%的成本。HEATCRETE混凝土储能技术还能应用于风电和生产高温设备的工厂,但光热电站是该公司的主要目标市场。 2. 麻省理工学院新型液态金属储能技术 2014年9月,麻省理工学院的研究人员公开一种新型全液态金属电池储能系统。该液态金属储能系统内部没有使用任何固体材料制作,全部的储能元件也都采用融化的液体来制作。该系统造价低廉,且使用寿命较长。研究团队称该储能系统可使风能和太阳能这些可再生能源具备与传统能源相竞争的能力。 3. 瑞典查尔姆斯大学新型含碳化学液体高效储能 2017年3月,瑞典查尔姆斯理工大学研究者成功验证了以一种含碳化学液体作为介质,来高效存储太阳能的新型储能技术的可行性。通过这种化学液体,能够实现能量的自由传输以及随时释放。值得一提的是,该化学液体释放能量时,几乎可以实现能量的零损耗。研究小组将这个过程叫做“分子式太阳能储热系统”。目前,此项新技术已成功登上《能源与环境科学》(英国皇家化学院发行的学术期刊)的封面。

太阳能光热光电综合利用

本文由hpshu贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 2009 年第 1 期 上海电力 可再生能源发电 太阳能光热光电综合利用 倪明江 ,骆仲泱 ,寿春晖 ,王 ,赵佳飞 ,岑可法涛 ( 浙江大学能源清洁利用国家重点实验室 ,浙江杭州 310027) 摘 : 太阳能光热光电的综合利用技术是将聚光、要分光、热电联用等技术集成 ,通过对太阳能全波段能量进行一体化地利用 ,可极大地提高太阳能的利用效率 ,降低成本 ,具有重要的研究价值和市场应用价值。文章介绍了太阳能光热光电综合利用系统的技术情况 ,分别对集中式和分布式两种技术路线作了阐述 ,分析了聚光 PV/ T 系统以及与建筑一体化设计的 PV/ T 系统的未来发展方向。最后 , 结合各类太阳能利用系统的特点 , 比较分析了各种光热光电技术存在的问题 ,提出了综合利用各种光热光电技术来提高应用效果的理念。关键词 : 太阳能利用技术 ; 热发电 ; 聚光热电联用 ; 光热光电综合利用中图分类号 : T K513 文献标识码 :A 基金项目 : 国家自然科学基金资助项目(50676082) 1 引言 传统化石能源的大量使用 , 不仅造成了化石能源本身的短缺 , 也给世界环境带来了极大的危害 ,给人类生存空间造成了严重威胁。寻求可再生能源的高效清洁利用成了目前人类面临的共同问题 [ 1 ,2 ] 发展。而以现今的发展趋势来看 , 太阳能热力发电和光伏发电将是世界各国在太阳能利用领域研究的新重点。 2. 1 热利用 太阳能热利用方面 , 中国已成为世界上最大的太阳能热利用产品的生产、应用和出口的国家。 2007 年 ,集热器总保有量约为 10 800 万 m2 。热 。太阳能作为可再生清洁能源蕴藏着巨 15 大能量 ,被普遍认为是理想的新能源。太阳辐射到达地球表面的能量高达 4 ×1 0 5 利用形式多样 , 包括了太阳能热水器、太阳能空调、太阳能干燥和太阳能海水淡化等。 ( 1 ) 太阳能热水器太阳能热水器是太阳能热利用中最常见的一种装置。其基本原理是将太阳辐射能收集起来 , 通过与物质的相互作用转换成热能供生产和生活利用。我国是世界上最大的太阳能热水器制造中心 , 由我国生产的集热器推广面积约占世界的 76 % 。随着太阳能热水器的发展 ,出现了闷晒式、 M W , 相当于 每年 3. 6 ×亿 t 标准煤 ,约为全球能耗的 2000 10 倍。太阳能可以免费使用 ,又不需要运输 ,对环境无任何污染。在传统化石能源储备减少、价格快速上升 ,在温室气体排放引发的气候环境问题愈来愈显著的今天 , 太阳能作为可再生能源和新能源的代表 , 得到越来越多的关注 , 太阳能的利用、太阳能材料及相关技术的开发在世界范围内引起了重视

太阳能光热转换技术在建筑中的利用

太阳能光热转换技术在建筑中的应用 1、前言 太阳能光热转换技术在建筑中的应用,实际上是利用建筑构本身所形成的集热、蓄热和隔热系统以及附加建筑物上的专用太阳能部件,对太阳光进行光—热转换等来满足建筑物的热水供应、采暖、空调等方面的能耗需求,从而达到减少建筑能耗,节约常规能源,改善生态环境的目的。太阳能光热转换技术和建筑结合具有很高的研究价值,热水、供暖、空调对太阳能的利用已成为太阳能与建筑结合的关键之一。 2、我国太阳能资源储量与分布 一般以全年总辐射量(单位为兆焦/米2·年)和全年日照总时数表示。我国属太阳能资源丰富的国家之一地球上太阳能资源的分布与各地的纬度、海拔高度、地理状况和气候条件有关。资源丰,辐射总量在3.3′ 103~8.4′ 106兆焦/米2·年之间。全国总面积2/3以上地区年日照时数大于2000小时。属世界太阳能资源丰富地区之一;各地区资源分类见表1 表1 我国各地区的太阳能资源及分布 研究成果表明,在太阳能利用方面具有经济价值的地区是年辐射总量高于2200小时的地区。各区的分界情况可见太阳能资源分布图。

3、太阳能光热转换技术 根据我国的实际情况,在建筑中大力推广应用太阳能光热转换技术必将会把我国的建筑节能推广到一个新的阶段。在这些新技术中从其成熟的程度来讲,首推太阳能热水器,其次是太阳能采暖和太阳能空调。一下从这三个方面逐一进行介绍。 (1)太阳能热水器 1、太阳能热水器的结构 太阳能热水器从结构上分类可分为整体式和分体式。见下图 整体式分体式 整体式是将其主要部件集热器和水箱安装在统一的支架上由用户选用,这种型式只考虑了自身的结构和功能,而没有考虑与建筑的一体化结合,因此只适用于四周空旷的低层建筑,

太阳能光热光电综合利用

太阳能光热光电综合利用 倪明江,骆仲泱,寿春晖,王 涛,赵佳飞,岑可法 (浙江大学能源清洁利用国家重点实验室,浙江 杭州 310027) 摘 要:太阳能光热光电的综合利用技术是将聚光、分光、热电联用等技术集成,通过对太阳能全波段能量进行一体化地利用,可极大地提高太阳能的利用效率,降低成本,具有重要的研究价值和市场应用价值。文章介绍了太阳能光热光电综合利用系统的技术情况,分别对集中式和分布式两种技术路线作了阐述,分析了聚光PV/T系统以及与建筑一体化设计的P V/T系统的未来发展方向。最后,结合各类太阳能利用系统的特点,比较分析了各种光热光电技术存在的问题,提出了综合利用各种光热光电技术来提高应用效果的理念。 关键词:太阳能利用技术;热发电;聚光热电联用;光热光电综合利用 中图分类号:T K513 文献标识码:A 基金项目:国家自然科学基金资助项目(50676082) 1 引言 传统化石能源的大量使用,不仅造成了化石能源本身的短缺,也给世界环境带来了极大的危害,给人类生存空间造成了严重威胁。寻求可再生能源的高效清洁利用成了目前人类面临的共同问题[1,2]。太阳能作为可再生清洁能源蕴藏着巨大能量,被普遍认为是理想的新能源。太阳辐射到达地球表面的能量高达4 1015MW,相当于每年3.6 105亿t标准煤,约为全球能耗的2000倍。太阳能可以免费使用,又不需要运输,对环境无任何污染。在传统化石能源储备减少、价格快速上升,在温室气体排放引发的气候环境问题愈来愈显著的今天,太阳能作为可再生能源和新能源的代表,得到越来越多的关注,太阳能的利用、太阳能材料及相关技术的开发在世界范围内引起了重视[3~5]。 我国太阳能资源丰富,辐射总量约3.3 103 ~8.4 106kJ/(m2a),全国2/3以上地区年日照时数大于2000h[6]。太阳能的有效利用,对缓解我国能源问题、减少CO2排放、保护生态环境都有着重大意义。 2 太阳能利用技术概况 目前利用太阳能的方法,主要有:太阳能集热利用、热力发电、光伏发电、光利用、海水淡化、建筑一体化技术、制氢、干燥技术等。其中太阳能集热利用技术以及太阳能光伏技术已经得到了长足发展。而以现今的发展趋势来看,太阳能热力发电和光伏发电将是世界各国在太阳能利用领域研究的新重点。 2.1 热利用 太阳能热利用方面,中国已成为世界上最大的太阳能热利用产品的生产、应用和出口的国家。2007年,集热器总保有量约为10800万m2。热利用形式多样,包括了太阳能热水器、太阳能空调、太阳能干燥和太阳能海水淡化等。 (1)太阳能热水器 太阳能热水器是太阳能热利用中最常见的一种装置。其基本原理是将太阳辐射能收集起来,通过与物质的相互作用转换成热能供生产和生活利用。我国是世界上最大的太阳能热水器制造中心,由我国生产的集热器推广面积约占世界的76%。随着太阳能热水器的发展,出现了闷晒式、平板式、玻璃真空管式和热管真空管式等多种应用形式。太阳能热水器以其经济、节能、环保等优点,备受世人瞩目。太阳能热水器在国内市场得到了迅速推广。目前城市太阳能热水器的平均普及率约为15%,部分地区达到31%~60%。随着太阳能热水器关键技术的不断突破,该技术已广泛运用于家庭、宾馆、学校、部队和医院等供淋浴、洗漱及其它需用热水的场所。 (2)太阳能空调 太阳能空调以太阳能作为制冷空调的热源,利用太阳辐射产生中高温蒸气(热水),进而驱动制冷机工作。太阳能制冷首先通过集热器收集太 ! 1 !

太阳能光电_光热综合利用系统

引言 随着节能减碳问题的日益紧迫,可再生能源的 开发利用受到了越来越多的关注。 而太阳能作为一种储量巨大,分布广泛,清洁安全的新能源,已经在世界范围引起了广泛的重视。太阳辐射到达地球表面的能量高达4×1015MW ,约为全球能耗的2000倍。目前太阳能的主要利用方式有:太阳能光伏发 电、太阳能热发电、太阳能制氢、太阳烟囱、太阳能 制冷、 太阳能热水器等。其中太阳能光伏利用技术已经日益成熟,从光伏电站到太阳能路灯,太阳能光伏技术已经被广泛应用。但在太阳能光伏利用方面仍存在两个亟待解决的问题:光伏发电成本较高以及光电转化效率相对较低。 工业生产的晶体硅太阳电池转化效率大约在16%~17%,转化效率较高 摘 要:太阳能储量巨大,分布广泛,清洁安全。但太阳能光伏发电存在成本较高和能量转化效率较 低的问题。因此本文提出太阳能光电-光热综合利用方式。通过聚光降低成本,通过分频综合利用提高系统效率。在分频利用技术上,寻找具有特定吸收发射特性的纳米流体流经光伏电池上层,吸收光伏电池不能加以利用的部分能量。此外,利用光学薄膜,将光伏电池可利用的波段反射给光伏电池,其余部分的能量透射用以其他形式的能量转换。文章对两种太阳能光电-光热综合利用系统进行了设计和探索。结果表明,通过光电-光热综合利用能够对太阳能利用效率实现有效提升。 关键词:太阳能;分频;纳米流体;光学薄膜;综合利用 Solar Energy Optic-Electro and Optic-Thermal Composite Utilization System Wei wei ,Luo zhong yang ,Zhao jia fei ,Shou chun hui ,Zhang yan mei ,Wu ting ting ,Ni ming jiang Abstract:solar energy is enormously reserved,widespread,safe and clean.But solar energy photovoltaic power cost is high and its conversion efficiency is low.So this article brings up Solar energy optic-electro and optic-thermal composite utilization.Through spotlights cost reducing and frequency division utilization it improves system efficiency.Based on frequency division technology,some specific absorption -emission characteristic nanometer fluid passing above photovoltaic battery will absorb some energy which can not be used by photovoltaic batter.Otherwise it will use optical thin-film to reflect some wave band which photovoltaic battery can use to photovoltaic battery,as for the rest energy,it will transmit into other means of conversion.This article discuss two ways of solar energy,designs and explores optic -electro and optic -thermal composite utilization system.The results shows that solar energy use efficiency improves a lot through optic-electro and optic-thermal composite utilization. Keywords:solar energy,frequency division,nanometer fluid,optical thin -film,composite utilization 太阳能光电-光热综合利用系统 魏 葳1骆仲泱1赵佳飞1,2寿春晖1张艳梅1武婷婷1倪明江1 1浙江大学能源清洁利用国家重点实验室 2大连理工大学海洋能源利用与节能教育部重点实验室

太阳能光热发电和储热的经济性分析报告

Technical Report NREL-TP-6A2-45833 February 2010 The Value of Concentrating Solar Power and Thermal Energy Storage Ramteen Sioshansi The Ohio State University Columbus, Ohio Paul Denholm National Renewable Energy Laboratory Golden, Colorado

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 ? https://www.360docs.net/doc/5118461232.html, NREL is a national laboratory of the U.S. Department of Energy Technical Report NREL-TP-6A2-45833 February 2010 The Value of Concentrating Solar Power and Thermal Energy Storage Ramteen Sioshansi The Ohio State University Columbus, Ohio Paul Denholm National Renewable Energy Laboratory Golden, Colorado Prepared under Task No. CP09.3201

太阳能光热发电几种创新型储热技术简述

太阳能光热发电几种创新型 储热技术简述 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

太阳能光热发电几种创新型储热技术 光热电站相比光伏电站的核心优势即在于光热电站可配置储热系统,与传统的火力发电厂一样,生产出电网友好型的可调度电力,满足连续的用电需求。目前,商业化光热发电项目的储能市场仍然以二元熔盐为工质的熔盐储能技术为主流,但其凝固点过高,易冻堵管道的缺陷也饱受诟病。 2016年下半年接连发生的美国新月沙丘电站熔盐罐熔盐泄露事故以及西班牙Gemasolar光热电站熔盐热罐损毁事故,均造成了熔盐罐维修费用及售电收入方面的巨大损失,熔盐储热系统的安全性、可靠性再次受到行业关注。 那么,有没有一种更先进的储热技术,可替代传统的熔盐储热技术进而成为主流?近年来,创新型储能技术层出不穷,尽管其大多停留在实验室或小型示范阶段,在理论层面已证明了其发展潜力,但其商业化价值仍尚待发掘。 1. 挪威Energy Nest公司新型固态混凝土储能技术 挪威科技公司Energy Nest与德国Heidelberg水泥公司(德国跨国建材公司,全球四大水泥生产商之一)展开合作,耗时五年半研发出一种全新的特殊混凝土HEATCRETE储能技术。HEATCRETE混凝土经国际权威独立第三方实验室测试,具有高比热容和高热导率的特性。与之前最为先进的混凝土储能系统相比,HEATCRETE系统的导热系数提高了70%,比热容值提高了15%,这对电站的热力性能和传热介质来说意义重大。该公司表示,其HEATCRETE混凝土储能系

统能使整个光热电站的成本下降10%,针对熔盐储能系统则能节约60%的成本。HEATCRETE混凝土储能技术还能应用于风电和生产高温设备的工厂,但光热电站是该公司的主要目标市场。 2. 麻省理工学院新型液态金属储能技术 2014年9月,麻省理工学院的研究人员公开一种新型全液态金属电池储能系统。该液态金属储能系统内部没有使用任何固体材料制作,全部的储能元件也都采用融化的液体来制作。该系统造价低廉,且使用寿命较长。研究团队称该储能系统可使风能和太阳能这些可再生能源具备与传统能源相竞争的能力。 3. 瑞典查尔姆斯大学新型含碳化学液体高效储能 2017年3月,瑞典查尔姆斯理工大学研究者成功验证了以一种含碳化学液体作为介质,来高效存储太阳能的新型储能技术的可行性。通过这种化学液体,能够实现能量的自由传输以及随时释放。值得一提的是,该化学液体释放能量时,几乎可以实现能量的零损耗。研究小组将这个过程叫做“分子式太阳能储热系统”。目前,此项新技术已成功登上《能源与环境科学》(英国皇家化学院发行的学术期刊)的封面。

太阳能光热现状及发展趋势

对太阳能光热技术现状及发展趋势的一点看法 太阳能光热技术自上世纪70年代在我国开始起步,已经走过了40年的发展历程,中间起起落落,一路颠簸。 一、目前的现状总结为以下几点 一是技术、产品单一,真空管一统天下,真空管以运输方便、安装简单、良好的抗冻性能和价格低廉等优势迅速占据了主导地位。目前无论是户用太阳能热水器还是集中供热的太阳能热水系统,均以真空管为主。云南有少数几家太阳能企业一直主推平板集热器,今年初寒潮来袭后大部分冻坏(现行的平板集热器不具备抗冻性能)。于是这些企业已转向使用真空管; 二是户用太阳能热水器销售大幅度萎缩,随着家电下乡补贴政策的结束,农村太阳能热水器的安装热潮已经褪去。在城市,高层建筑的大规模兴起,也使得太阳能热水系统的安装进入了一个复杂的行业洗牌阶段。一方面,太阳能行业没有准备,缺乏合适的产品和技术专门应用于高层建筑,在国际上也是空白。另一方面,政府也缺乏统一的技术标准,以至在政策方面摇摆不定,几年前规定的12层以下建筑必须安装太阳能热水系统,在全国大多数地区都在实施。但现在高层建筑普遍超过12层,所以有些地方又相继出台了新政策,如济南市出台的35层以下高层建筑必须安装太阳能热水器。海南省出台的100米以下高层建筑必须安装太阳能热水器等。但实施几年又停了,如海南今年初又发文停止实施该政策。 三是太阳能光热技术的应用正在向工农业等其它领域拓展,随着全社会对节能减排的要求不断升级,以及近年来经济下滑,企业进一步追求降低生产成本,节能降耗,也开始把目光转向太阳能技术。 二、发展趋势 1、必须适应和满足高层建筑的发展需要 现有真空管为主的系统不适合高层建筑,真空管虽然有很多优点,但同时也有容易破碎、固定困难,集热面积小(管与管之间必须留有一定的空隙,占用了集热面积),不承压等固有的缺陷。如果应用于高层建筑,安全性和可靠性得不到保障,热效率也不高,高层建筑上需要牢固、安全的产品,同时由于安装面积较小,需要有高的热效率。 下面分析一下高层建筑安装太阳能热水系统的问题。 高层建筑安装太阳能热水系统主要分屋顶安装和阳台壁挂两种形式,以下是屋顶安装的情况:

太阳能光热利用的基本原理是将太阳辐射能收集起来

太阳能光热利用的基本原理是将太阳辐射能收集起来,将光能转换成热能加以利用,目前主要应用在太阳能热水器和光热发电两大领域。中国太阳能光热产业发轫于20世纪80年代,由于当时能源紧张局面的出现,各大专院校和科研院所开始了太阳能光热利用的研究工作。随着国家“863”计划的实施,一批科研成果迅速转化成生产力,全面推动了我国太阳能光热利用的产业化进程。 目前,我国已成为世界上最大的太阳能光热应用市场,也是世界上最大的太阳能集热器制造中心。到2009年我国集热器累计推广总面积约1.45亿平方米,占世界总量的76%左右;年产量达4000多万平方米,接近世界总产量的60%。2009年我国太阳能热水器总销售额约578.5亿元,同比增长34.5%。太阳能光热技术不仅在民用领域,还在造纸、饮料、机械、纺织、食品、养殖等工农业生产方面得到广泛应用。 我国太阳能光热产业之所以能快速发展并跃居世界第一,关键因素是掌握了核心技术。我国太阳能光热产业自有技术占95%以上,在太阳能集热、高温发电集成系统、采暖制冷、海水淡化、建筑节能、设备检测等方面,拥有国际领先的技术。 太阳能光热发电是太阳能光热技术应用的一个新领域,在光热利用产业中后来居上,发展势头十分迅猛。“十一五”期间,国家对光热发电技术研发的投资力度不断加大。从2006年到2010年,仅科技部投入光热发电的经费就超过4750万元,重点技术领域取得了突破性进展。 随着中高温太阳能热水器的开发以及太阳能与建筑一体化技术的日益完善,太阳能热水器的应用领域不再局限于提供热水,正逐步向取暖、制冷、烘干和工业应用方向拓展,市场潜力巨大。 “十二五”发展规划中,首次明确提出将在未来5年内,政府直接投资4 万亿元用于新能源、节能环保技术等9大行业的发展。作为同时横跨“新能源”和“节能环保”两大产业的太阳能光热,已然成为各级政府和产业政策中的焦点。 中投顾问发布的《2010-2015年中国太阳能光热产业投资分析及前景预测报告》共八章。首先介绍了太阳能热利用的概念、利用方式、发展现状,然后详细介绍了太阳能热水器、太阳能光热发电、太阳能建筑、太阳能空调、太阳能灶、太阳能海水淡化、太阳能干燥技术的发展。随后,报告分析了太阳能光热产业重点企业的运营状况。最后,报告对太阳能热利用产业的前景趋势做出了科学的预测。您若想对太阳能光热产业有个系统的了解或者想投资太阳能光热相关产业,本报告是您不可或缺的重要工具。

太阳能光热的成功案例及原理

太阳能光热的成功案例及原理 主要业务方向:太阳能光伏发电、太阳能热水工程的epc总包项目实施,包括工程设计、物资采购、设备安装调试、后期运营维护;光伏光热智能化控制系统的研发、应用;冶金钢铁、物流行业的工业化、信息化、智能化系统集成开发应用。

方案---北京研博新创科技发展有限公司为河北省某市一中安装太阳能热水器 ?项目概况: ?某市第一中学坐落于广袤的华北平原东部,该太阳能项目旨在为全校学生解决洗浴问题,采用太阳能+空气源热泵联合供热水。既满足学校用水需求,又响应国家所倡导的绿色环保政策的号召。 ?在某市第一中学太阳能项目中,采用的是集中集热集中储热的模式,在学校太阳能案例中属于很典型的一种。二、项目介绍 ?某市地处中纬度地带,属暖温带大陆性季风气候,四季分明。夏季炎热多雨,冬季寒冷干燥,春季干旱多风沙,秋季秋高气爽,冷热适宜。 ?1、用水情况: ?某市第一中学是寄宿制学校,学生集中在宿舍洗浴间洗浴。故分别在南北宿舍楼各安装一套15T太阳能热水系统,以满足全校学生洗浴用热水。本系统按春、夏、秋、冬四季均使用太阳能系统洗浴进行设计,用水方式为全时供水。 ?2、项目建设内容: ?①太阳能热水系统安装集热器:南楼宿舍楼集热器数量为32套,总计真空管1920支,集热面积198.4平方米;北楼宿舍楼集热器数量为32套,总计真空管1920支,集热面积198.4平方米。 ?整套太阳能热水系统共计真空管3840支,总计集热面积396.8平方米。 ?③安装空气源热泵:TFS-SKR840D型空气源热泵4台。 ?④安装水泵:水泵共计32台。其中热水系统8台。 ?⑥安装水箱:容积15m3不锈钢储热水箱2台,尺寸:2.5m*3m *2m; ?容积0.5T圆形不锈钢水箱8台,尺寸:890mm(直径)*1550mm(高度),容积1m3圆形不锈钢储热水箱4台,尺寸:870mm*1800mm。 ?⑦安装归丽晶除垢器:日处理水16吨2台,日处理水1吨4台 ?1、控制系统 ?控制系统根据某市第一中学用水特点及要求,本项目太阳能控制系统具有以下特点: ?(1)控制系统采用可编程智能控制、液晶屏显示,以实现系统全自动、智能化控制(太阳能定温放水、自动补水功能、温控自动防冻、系统安全运行自动保护、辅助加热系统的自动运行等),无需专人管理,保证控制系统稳定、可靠地运行;液晶屏显示界面友好,参数设置、修改方便,各种运行参数显示一目了然。三(2)控制程序将温度、水位、时间、流量等参数巧妙融合,实现充分和优先利用太阳能,将太阳能与辅助加热系统完美结合,最大限度地减少辅助加热系统的运行时间,降低电能的消耗。(3)控制系统设有应急手动功能,保证在控制系统出现问题时,能实现手动控制,系统在应急状态下能正常运行,保证学生的正常洗浴。 ?(4)控制系统具有断电记忆功能,有记忆控制系统的设置数据和系统运行的各种参数,保证数据不丢失。 ?(5)系统具有很强的抗干扰性和屏蔽性能,不因其他系统的信号干扰本系统的正常工作,或本系统的信号干扰其它系统的正常工作。 ?(6)系统故障自诊断功能:能随时反应系统内设备和传感器的工作状态,能自动进行故障诊断。 ?(7)系统管理功能:为确保系统的正常运行,设置管理员登陆密码,需输入密码才能进入界面进行操作设备。 ?2、太阳能集热器 ?太阳能集热器是太阳能热水系统的核心元件,其性能的好坏直接决定了系统能否取得应有的效果。 本项目太阳能热水系统中真空管采用三靶镀膜技术和旋转磁扫描结构,加入稀有金属成分,改善镀膜层分子结构,真空管(真空度高达5×10-3Pa),对阳光有很高的吸收率(a>96%)和极低的热发射率(β<4%),具有集热效率高、热损小、耐高温(空晒温度高达330度)、抗高寒(-40度)等特点,从而减少了真空管由于长期空晒而造成的膜层老化、变色、性能衰减等问题,使用寿命长。采用了三高全玻

太阳能光热发电

太阳能光热发电概述: 光伏发电技术一般以多晶硅为一代技术,薄膜为二代技术,聚光技术为三代技术。光伏发电就是利用光电子照射在半导体上产生直流电,直接并入电网或通过逆变器把电能放在蓄电池中。 太阳能光热发电也称为聚光太阳能热发电(Concentrating Solar Power,CSP),又称太阳能聚热发电技术,是太阳能发电中不同于光伏发电的另一种技术路线,完全不同于光伏发电。 光热发电技术(CSP)是指用太阳光加热介质然后推动汽轮机发电的太阳能利用形式,与通常所讲的直接将太阳光转换为电力的光伏发电不同,光热发电是太阳能-热能-电能的转换过程。它是依靠各式的镜面,将太阳的直接辐射(DNI)聚集并加热导热介质,热交换后产生高温水蒸气,推动汽轮机发电。即通过光热管、聚光管把太阳照射的热量通过超白玻璃、高温储热材料、吸热膜层材料等进行储存,然后接入类似火力发电厂的汽轮机系统,通过烧水蒸气的方式最终由发电机发电。主要技术分为槽式、塔式、碟式和菲涅尔式。 CSP与常规化石能源在热力发电上原理相同,电能质量优良,可直接无障碍并网。同时,可储能、可调峰,实现连续发电。更为重要的是,光热发电在热发电环节与火电相同,CSP更适合建大型电站项目,可通过规模效应实现成本迅速下降。 光热电站的具体组成部分主要分为镜场集热系统、储能系统和发电系统。在光照强度高的时间里,其工作模式为通过镜场集热后将一部分热能通过储热系统储存,另一部分热能将转移至发电系统来维持发电。在光照强度不高的时间里,镜场集热系统不进行工作,储热系统通过将储存的热能转移至发电系统来维持发电。因此,由于储能系统的存在,光热发电的年发电小时数可接近传统热电的发电小时数。 在近几年建设的光热电站中,越来越多项目选用与热电站(包括火电站、天然气电站和垃圾发电站)联合建设运作,通过联合运作,不仅能够使光热电站的发电持续性更强,更能通过提高系统温度使系统效率得到提升。另外,将光热电站建在海边还能用于制备氢气和海水淡化。 聚光、集热和储热是关键环节,国内企业从零部件开始切入光热产业链。聚光、集热和储热是光热发电的关键环节,是技术核心和难点所在,这三部分约占总成本的60%。根据测算,在2011-2020年,吸热器潜在规模为174亿美元,供应商有以色列Solel和美国SCHOTT;聚光镜的规模为174亿美元,德国Alanod和美国3M技术较为领先;储热系统规模达到306亿美元,由美国Radco垄断。国内企业为国外企业配套部分零部件,聚光和集热有实验产品,需要进一步研发突破。 太阳能光热发电的不同方式: 目前,比较常用的一种分类方式,是根据聚热方式即太阳能的采集方式不同,光热发电技术路线分槽式、塔式、碟式和菲涅尔聚焦4种发电系统,其中以槽式发电应用最广泛。塔式在国际上已经不怎么做了。其它的还有太阳烟囱式发电系统,由于其占地过大,将来大规模商用的可能性比较低。 1.槽式系统:

太阳能光热技术的发展与利用

太阳能光热技术的发展与利用 太阳能作为清洁的可再生能源,越来越受到人们的重视,应用领域也越来越广泛。太阳能的利用是开发新能源与可再生能源的重要内容。我国是太阳能资源十分丰富的国家,多年来太阳能利用技术得到了初步的宣传和推广,相信不久我国就可以普及这些清洁能源技术。太阳能利用包括了太阳能光热转换和光电转换两大领域;太阳能光热领域具体有太阳热水器、太阳灶、太阳房、太阳能干燥、太阳能温室、太阳能制冷与空调、太阳能热发电。 中国发展太阳能产业的现状不容乐观,虽有优势,但也存在发展太阳能光热技术的瓶颈和局限。 光热利用的发展是非常迅速,而且发展的形式亦是多种多样。主要有太阳能热发电技术;太阳能热利用建筑一体化;太阳能供暖技术;太阳能热水系统;太阳能制冷技术;其它太阳能的热利用技术等。 太阳能光热技术是指将太阳辐射能转化为热能进行利用的技术。太阳能光热技术的利用通常可分直接利用和间接利用两种形式。 常见的直接利用方式有:1.利用太阳能空气集热器进行供暖或物料干燥; 2.利用太阳能热水器提供生活热水; 3.基于集热一储热原理的间接加热式被动太阳房; 4.利用太阳能加热空气产生的热压增强建筑通风。 目前技术比较成熟且应用比较广泛的是蔬菜温室大棚、中药材和果脯干燥及太阳能热水器等。其他几种技术还处于研究开发。 太阳能作为一次能源和可再生能源,和传统化石燃料相比有如下优势: 对环境没有污染 由于传统化石燃料(煤、石油和天然气)在使用过程中排出大量的有毒有害物质,会对水、土壤和大气造成严重污染,形成温室效应和酸雨,严重危害到人类的生存环境和身体健康,因此急需开发出新的比较清洁的替代能源,而太阳能作为一种比较理想的清洁能源,正受到世界各国的日益重视。 可以源源不断地获得。 太阳是一个巨大的能量源,每秒辐射到地球上的能量相当于500万t标准煤,和人类存在的时间相比,太阳能可以说是一种久远和无尽的能源。随着化石燃料(煤、石油和天然气)的不断开采和消耗,能源的供应越来越紧张,具有丰富来源的太阳能的开发和利用就显得越发重要和紧迫。 可免费使用,且无需运输 人类可以通过专门的技术和设备将光能转化为热能或电能,就地加以利用,无需运输,为人类造福。而且人类利用这一取之不尽的能源也是免费的。 但是同时他的劣势之处也是很明显的,太阳能是一种能流密度很低的能源,受季节、地点和气候等多种因素影响而不能维持常量,且用于太阳能转换的设备投资较高,其技术尚需进一步完善。在太阳能光热发电领域显现出这些劣势,若要提高太阳能光热发电的经济效益,就必须提高热机效率和规模大型化。至于光热建筑一体化问题,目前除太阳能热水器和温室大棚的利用比较普及和成熟外,

光热转换技术

光热转换技术 1 概述 太阳能必须经过各种转换,才可能方便地服务社会。各种太阳能利用成功的关键在于太阳能转换技术。现代意义上的太阳能转换技术开发的全部内容可归纳为两个主要方面: (1)高效地收集太阳能,主要技术内容有: ①选择性表面技术; ②受光面的光学设计; ③集热体的热结构设计与分析‘ ④装置的机械结构设计。 (2)将收集的太阳能高效地转换为其他形式的有用能,主要技术内容有: ①尽可能降低能量转换过程中的各种热、电损失; ②优异的系统设计。 太阳能光热转换在太阳能工程中占有重要地位,其基本原理是通过特制的太阳能采光面,将投射到该面上的太阳能辐射能作最大限度地采集和吸收,并转换为热能,加热水或空气,为各种生产过程或人们生活提供所需的热能。 2 平板集热 所谓平板集热,就是集热装置的采光面积等于集热面积;若采光面大于集热面积,称为聚光集热。两者的概念是相对而言的。 平板集热具有以下特点: ①采光面等于集热面; ②集热面可以采集太阳直射辐射能、散射辐射能和反射辐射能; ③集热面固定安装,不跟踪太阳视位置; ④热损失系数较大,工作温度通常均在80℃以下; ⑤结构简单,生产成本低廉。 2.1 太阳能平板集热器 太阳能平板集热器是典型的平板集热,简称平板集热器。 1.平板集热器的分类 ?按集热工质分类 ①水集热 普通的太阳能平板热水器、公用热水系统,几乎都采用水作为集热工质。 ②空气集热 太阳能干燥和太阳房采暖的集热装置,通常均以空气作为集热工质。 ③防冻液集热 高寒地区经常采用防冻液和水作为集热工质的双循环太阳能集热。 ?按集热体表面光学特性分类 ①黑面 一般是在集热体表面涂刷或喷涂一层黑色涂料,简称黑面,目前较少采用。 ②光谱选择性吸收面 这是经过化学、电镀等工艺制成的选择性吸收面,应用广泛。 ?按透明盖板层数分类 ①单层透明盖板

关于太阳能光热发电熔融盐储热技术的分析

关于太阳能光热发电熔融盐储热技术的分析 选题说明 目前来看,作为集中发电用途,光热发电较光伏发电有着成本低、工作稳定、电网设施要求低的优势。同时,光热发电有槽式聚光、塔式聚光和太阳池等多种形式,各地可以因地制宜,减少工程成本。因此,目前规模太阳能发电绝大多数都是光热发电形式。 作为新能源,太阳能也有着发电功率易受外界条件影响、发电品质差的缺点。为了较少电网功率波动,提高新能源竞争力,对大规模储能技术进行探索是非常必要的。 所以本文在这里以光热发电技术为对象分析熔融盐储能技术的优势与不足。 一、两种主要光热发电技术工作原理简介 槽式太阳能热发电 如图1槽式热发电利用反光镜将太阳光光线聚焦到集热管中,加热管中的盐,一般是硝酸钾、硝酸钠,也有使用导热油传导热的。反光镜开口可达4米,而集热管直接只有几厘米,所以集热管内温度可以接近400摄氏度,是比较优质的发电热源。 经过熔融盐泵的泵送,高温熔融盐汇集在热盐储存罐中,再输入正起蒸汽发生装置(未画出)产生高温蒸汽,蒸汽推动透平旋转做功后降温后再次循环到蒸汽发生器。而冷盐则储存的冷盐储存罐中,之后由泵泵送回集热管中加热。 图1 槽式太阳能热发电示意图图2 塔式太阳能热发电示意图 塔式太阳能热发电 如图2,塔式热发电也是利用反光镜聚集光线产生高温,只是其采用平面镜

阵列远距离点聚光方式,聚光效率要低于近距离线聚光;但这种方式产生的温度较高(500摄氏度以上),作为发电热源更为优质,同时也有利于后面要提到的热蓄电。 其发电原理也与槽式相同,通过泵送熔融盐在热盐储存罐、冷盐储存罐以及聚光加热装置中循环,并在换热器中将热量传递给水,水蒸气推动透平发电,也构成一个封闭回路。 槽式热发电不需要高大的塔结构,聚光效率也更高;而塔式热发电无需复杂的管网结构,热量损失较低。关于三种主要的光热发电数据摘自文献1,如表1。 表1 三种太阳能热发电发电参数 上述两种光热发电占了规模太阳能发电量的绝大多数,尤其是槽式热发电,目前其发电成本已经下降至可商业开发的价格,发展前景广阔。 二、热蓄能原理与性能分析 原理 热蓄能是一种普遍使用的技术要求基底的蓄能技术,可以分为显热储热和潜热储热。前者通过提高储热工质的温度来提高储热量,因此按照工质状态又分为液体显热储热、固体显热储热和固体/液体双介质显热储热;后者则主要利用工质(一般都是水)相变时要吸收或放出大量热的原理实现储热储能的,这种方式供热时温度变化很小,但对设备要求很高(耐压)。 而上面提到的两种太阳能热发电技术都采用了液体显相储热方式。白天利用富余热加热熔融盐或导热油,储存在隔热性很好地热盐储存罐中;到了晚上在将这一部分高温工质循环出来加热水,从而继续发电。

相关文档
最新文档