LabVIEW分析与信号处理

基于labview的低通滤波器设计要点

基于LabVIEW的低通滤波器设计 学号: 201220120214 姓名:敖智男 班级: 1221202 专业:测控技术与仪器 课程教师:方江雄 2015年6月14 日

目录 一.设计思路 (2) 二.设计目的 (2) 三.程序框图主要功能模块介绍 1.测试信号生成模块 (3) 2.滤波功能模块.................................................................. .3 3.频谱分析模块 (4) 4.While循环模块 (5) 四.进行频谱分析.................................................................6、7五.主要设计步骤..................................................................8、9六.运行结果.. (10) 七.设计心得 (11)

低通滤波器是指对采样的信号进行浦波处理,允许低于截至频率的信号通过,高于截止频率的信号不能通过,提高有用信号的比重,进而消除或减少信号的噪声干扰。 一.设计思路 本VI设计的低通滤波器主要是先将正弦信号和均匀白噪声信号叠加,利用Butterworth低通滤波器进行滤波处理,得到有用的正弦信号:再对经过低通滤波器处理后的信号及信号频谱与滤波前的进行比较分析,检测滤波后的信号是否满足用户的要求。 二.设计目的 基于LabVIEW虚拟平台,将“正弦波形”函数和“均匀白噪声”函数产生的信号进行叠加以产生原始信号,让其先通过一个高通滤波器,滤除白噪声的带外杂波,以便在后续程序中低通滤波器可以输出正弦波;然后经过低通滤波器滤波处理,对滤波前后的信号和信号频谱进行比较,从而对低通滤波器的滤波效果进行检验。

利用labview进行信号的时域分析

利用labview进行信号的时域分析 信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。 用于信号时域分析的函数,VIs,Express VIs主要位于函数模板中的Signal Processing子模板中,其中多数对象位于Waveform Measurements子模板,如图所示 LabVIEW8.0中用于信号分析的Waveform Measurements子模板 基本平均值与均方差VI 基本平均值与均方差VI-------Basic Averaged DC—RMS.vi用于测量信号的平均以及均方差。计算方法是在信号上加窗,即将原有信号乘以一个窗函数,窗函数的类型可以选择矩形窗、Haning窗、以及Low side lob窗,然后计算加窗后信号的均值以及均方差值。 演示程序的前面板和后面板如下图所示 Basic Averaged DC—RMS演示程序的前面板

Basic Averaged DC—RMS演示程序的后面板 平均值与均方差值 平均值与均方差值VI------Averaged DC—RMS.vi同样也是用于计算信号的平均值与均方差值,只是Averaged DC—RMS.vi的输出是一个波形函数,这里我们可以看到加窗截断后,正弦信号的平均值和均方差随时间变化的波形。 编写程序演示Average DC----Averaged—RMS.vi的使用方法,程序的后面板和前面板如下图所示 Averaged DC—RMS演示程序的后面板

利用LabVIEW实现信号处理

利用LabVIEW实现信号处理 摘要 信号处理几乎涉及到所有的工程技术领域,而频谱分析正是信号处理中的一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员携带。而基于LabVIEW设计的虚拟频谱分析仪,用软件代替硬件,价格低,便于工程技术人员完成现场信号的采集、处理及频谱分析。 现今最有代表性的图形化编辑软件——LabVIEW,用之模拟从DAQ板卡中采集到一路带有均匀白噪声的正弦信号,显示其波形,并分析、显示其幅频特性曲线以及相频特性曲线。另外本文还根据LabVIEW中的子程序,实现了语音信号的录音与播放。 关键词虚拟仪器数据采集总线LabVIEW 1.1 LabVIEW简介 LabVIEW (laboratory virtual instrument engineering wokbench——实验室虚拟仪器工程平台)的概念,是直观的前面板与流程图式的编程方法的结合,是构建虚拟仪器的理想工具。LabVIEW和仪器系统的数据采集、分析、显示部分一起协调工作, 是简化了而又更易于使用的基于图形化编程语言G的开发环境。 LabVIEW集成了很多仪器硬件库,如GPIB/VXI/PXI/基于计算机的仪器、RS232/485协议、插入式数据采集、模拟/数字/计数器I/O、信号调理、分布式数据采集、图像获取和机器视觉、运动控制、PLC/数据日志等。 与传统的编程方式相比,使用LabVIEW设计虚拟仪器,可以提高效率4~10倍。同时,利用其模块化和递归方式,用户可以在很短的时间内构建、设计和更改自己的虚拟仪器系统。 1.2用LabVIEW设计虚拟仪器的步骤 LabVIEW编程一般要经过以下几个步骤。 1、总体设计:根据用户需求,进行VI总体结构设计,确定面板布局与程序流程,并保证所使用的虚拟仪器硬件在LabVIEW函数库中有相应的驱动程序。 2、前面板设计:在LabVIEW的前面板编辑窗口内,利用工具模板和控件模板进行VI 前面板的设计。 3、方框图编程:在LabVIEW的方框图编辑窗口内,利用工具模板和函数模板进行方框

实验一-LabVIEW中的信号分析与处理

实验一 LabVIEW中的信号分析与处理 一、实验目的: 1、熟悉各类频谱分析VI的操作方法; 2、熟悉数字滤波器的使用方法; 3、熟悉谐波失真分析VI的使用方法。 二、实验原理: 1、信号的频谱分析是指用独立的频率分量来表示信号;将时域信号变换到频域,以显示在时域无法观察到的信号特征,主要是信号的频率成分以及各频率成分幅值和相位的大小,LabVIEW中的信号都是数字信号,对其进行频谱分析主要使用快速傅立叶变换(FFT)算法:·“FFT Spectrum(Mag-Phase).vi”主要用于分析波形信号的幅频特性和相频特性,其输出为单边幅频图和相频图。 ·“FFT.vi”以一维数组的形式返回时间信号的快速傅里叶运算结果,其输出为双边频谱图,在使用时注意设置FFT Size为2的幂。 ·“Amplitude and Phase Spectrum .vi”也输出单边频谱,主要用于对一维数组进行频谱分析,需要注意的是,需要设置其dt(输入信号的采样周期)端口的数据。 2、数字滤波器的作用是对信号进行滤波,只允许特定频率成份的信号通过。滤波器的主要类型分为低通、高通、带通、带阻等,在使用LabVIEW中的数字滤波器时,需要正确设置滤波器的截止频率(注意区分模拟频率和数字频率)和阶数。 3、“Harmonic Distortion Analyzer .vi”用于分析输入的波形数据的谐波失真度(THD),该vi还可分析出被测波形的基波频率和各阶次谐波的电平值。 三、实验容: (1) 时域信号的频谱分析 设计一个VI,使用4个Sine Waveform.vi(正弦波形)生成频率分别为10Hz、30Hz、50Hz、100Hz,幅值分别为1V、2V、3V、4V的4个正弦信号(采样频率都设置为1kHz,采样点数都设置为1000点),将这4个正弦信号相加并观察其时域波形,然后使用FFT Spectrum(Mag-Phase).vi对这4个正弦信号相加得出的信号进行FFT频谱分析,观察其幅频和相频图,并截图保存。

基于LabView的语音信号分析系统

学号:14112203211 毕业设计(论文) 题目: 基于LabVIEW的语音信号分析系统的设计 作者贾邦稳届别2015 届 院别信息与通信工程学院专业电子信息工程 指导教师彭仕玉职称副教授 完成时间2015 年 5 月

摘要 虚拟仪器与传统仪器相比,实现了仪器的智能化、模块化、多样化等功能,体现出多功能、低成本等操作优点,应用前景广阔。随着计算机的出现及计算机技术的快速发展,语音信号处理技术更是得到了飞速发展,得到了广泛的应用,如语音合成技术、语音压缩编码和语音识别技术。 本设计利用虚拟仪器软件平台LabVIEW 设计了一个语音信号分析系统。先介绍了四种采集语音信号的方法,并选择采用录音机录制的方法采集语音信号,然后设计基于LabVIEW的时域信号的FFT分析模块,接着设计截止频率为3000Hz的Butterworth低通滤波器对语音信号进行滤波去噪,最后根据以上设计进行语音信号的时频分析、特性分析等。 关键词:虚拟仪器;LabVIEW;语音信号;时频分析;数字滤波器

Abstract Compared with traditional instruments, virtual instruments achieve the intelligent, modularity, diversity and other functions of the instrument, and reflect the operating advantages, such as multi-purpose, low cost, etc. So it has broad application prospect. With the advent of computers and the rapid development of computer technology, speech signal processing technology has been develop rapidly, and used widely, such as speech synthesis technology, speech coding and speech recognition technology. This design projects a speech signal analysis system based on the virtual instrument software platform LabVIEW. The first step is to introduce the methods of four kinds of voice signal acquisition, and select the method of recording voice signal by recorder . The second step is to design FFT analysis of time-domain signals which based on LabVIEW. Then design Butterworth low pass filter to realize the filtration of speech signals which cutoff frequency is 3000hz. Finally it is to achieve time-frequency analysis and characteristic analysis according to the the above designs. Key words:Virtual instruments;LabVIEW;Speech signal;time-frequency analysis;digital filter.

基于Labview的信号采集与处理

基于Labview的信号采集与处理 实验目的:了解、掌握连续时间信号数字化处理的原理、过程及分析方法; 实验环境:Labview软件平台、信号采集卡(DAQ, Data Acquisition),信号源及示波器等; 实验方案: 信号处理示意图 信号采集与恢复流程图 实验准备: 连接信号源、采集卡、示波器,要求用示波器观测处理前后的信号波形。 连线:采用采集卡的输入端口信号源(68正,34负)和输出端口示波器(22正,55负) 其中输入端口连信号源,输出端口连示波器

做实验前必须先确定采样频率(10倍),采样点数(时域默认3000点)以及恢复滤波器的截止频率(相当于第二个)等。 实验内容: 1.实现正弦波信号的采样恢复处理。信号频率分别选500Hz, 1kHz,, 观察信号的时、频域分布,并比较分析信号处理前后的波形变化。 2.实现周期性方波信号的采样恢复处理。信号的基波频率分别选1kHz, 10kHz, 观察信号的时、频域分布,并比较分析信号处理前后的波形变化。 3.把基波频率为10kHz的周期性方波信号进行采样,最终输出为10kHz 的正弦信号,在示波器中进行观察分析。 4.一个频率为2kHz的正弦波混杂了一个50Hz的工频干扰,试用数字滤波器进行滤波处理,输出纯净的正弦波形。 (注:市电电压的频率为50Hz,它会以电磁波的辐射形式,对人们的日常生活造成干扰,我们把这种干扰称之为工频干扰。) 思考题: 1.对欲采集处理的信号首先必须确定哪些技术指标? 2.采样点数的选取怎样影响信号的频率特性? 3.信号经过采集处理,恢复后与原信号有何不同? 4.通过本次实验有什么收获和建议?请写出你的实验小结。

基于LabVIEW的数据处理和信号分析

基于LabVIEW的数据处理和信号分析 Liu Y an Y ancheng Institute of Technology, Y ancheng, 224003, China E-mail: yanchengliu@https://www.360docs.net/doc/517997029.html, ·【摘要】虚拟仪器技术是一种数据采集和信号分析的方法,它包括有关硬件,软件和它的函数库。用虚拟仪器技术进行数据采集和信号分析包括数据采集,仪器控制,以及数据处理和网络服务器。本文介绍了关于它的原则,并给出了一个采集数据和信号分析的例子。结果表明,它在远程数据交流方面有很好的表现。 【关键词】虚拟仪器,信号处理,数据采集。 ·Ⅰ.引言 虚拟仪器是一种基于测试软硬件的计算机工作系统。它的功能是由用户设计的,因为它灵活性和较低的硬件冗余,被广泛应用于测试及控制仪器领域,。与传统仪器相比,LabVIEW 广泛应用于虚拟仪器与图形编程平台,并且是数据收集和控制领域的开发平台。它主要应用于仪器控制,数据采集,数据分析和数据显示。不同于传统的编程,它是一种图形化编程类程序,具有操作方便,界面友好,强大的数据分析可视化和工具控制等优点。用户在LabVIEW 中可以创建32位编译程序,所以运行速度比以前更快。执行文件与LabVIEW编译是独立分开的,并且可以独立于开发环境而单独运行。 虚拟仪器有以下优点: A:虚拟仪表板布局使用方便且设计灵活。 B:硬件功能由软件实现。 C:仪器的扩展功能是通过软件来更新,无需购买硬件设备。 D:大大缩短研究周期。 E:随着计算机技术的发展,设备可以连接并网络监控。 这里讨论的是该系统与计算机,数据采集卡和LabVIEW组成。它可以分析的时间收集信号,频率范围:时域分析包括显示实时波形,测量电压,频率和期刊。频域分析包括幅值谱,相位谱,功率谱,FFT变换和过滤器。另外,自相关工艺和参数提取是实现信号的采集。 ·II.系统的设计步骤 软件是使用LabVIEW的AC6010Shared.dll。包中的三个功能被使用。分别用AC6010- AD.VI,与AC6010- DI.VI和AC0610- DO.VI实现数据采集,数据输入和数据输出。测试范围的选择,对测试通道和测试时间的设置是由与AC6010- AD.VI完成的。在这里,测试范围为3-5V电压。由于LabVIEW的强大,一些额外的功能可以被添加到系统中。用户必须做几个步骤:

实验一-LabVIEW中的信号分析与处理

实验一LabVIEW中的信号分析与处理 一、实验目的: 1、熟悉各类频谱分析VI的操作方法; 2、熟悉数字滤波器的使用方法; 3、熟悉谐波失真分析VI的使用方法。 二、实验原理: 1、信号的频谱分析是指用独立的频率分量来表示信号;将时域信号变换到频域,以显示在时域无法观察到的信号特征,主要是信号的频率成分以及各频率成分幅值和相位的大小,LabVIEW中的信号都是数字信号,对其进行频谱分析主要使用快速傅立叶变换(FFT)算法: ·“FFT Spectrum(Mag-Phase).vi”主要用于分析波形信号的幅频特性和相频特性,其输出为单边幅频图和相频图。 ·“FFT.vi”以一维数组的形式返回时间信号的快速傅里叶运算结果,其输出为双边频谱图,在使用时注意设置FFT Size为2的幂。 ·“Amplitude and Phase Spectrum .vi”也输出单边频谱,主要用于对一维数组进行频谱分析,需要注意的是,需要设置其dt(输入信号的采样周期)端口的数据。 2、数字滤波器的作用是对信号进行滤波,只允许特定频率成份的信号通过。滤波器的主要类型分为低通、高通、带通、带阻等,在使用LabVIEW中的数字滤波器时,需要正确设置滤波器的截止频率(注意区分模拟频率和数字频率)和阶数。 3、“Harmonic Distortion Analyzer .vi”用于分析输入的波形数据的谐波失真度(THD),该vi还可分析出被测波形的基波频率和各阶次谐波的电平值。 三、实验内容: (1) 时域信号的频谱分析 设计一个VI,使用4个Sine Waveform.vi(正弦波形)生成频率分别为10Hz、30Hz、50Hz、100Hz,幅值分别为1V、2V、3V、4V的4个正弦信号(采样频率都设置为1kHz,采样点数都设置为1000点),将这4个正弦信号相加并观察其时域波形,然后使用FFT Spectrum(Mag-Phase).vi对这4个正弦信号相加得出的信号进行FFT频谱分析,观察其幅频和相频图,并截图保存。

labview信号处理完美版

第一章系统开发平台 1.1硬件平台 硬件平台是虚拟仪器的物理基础,所以为了完成虚拟仪器的设计,首先必须要选择合适的硬件平台。本文设计的系统,硬件平台主要由两部分组成:数据采集卡(DAQ)、PC机。硬件平台的结构如图1-1所示。 图1-1 硬件结构平台 1.1.1数据采集卡的选取 由于计算机所能识别的信号是数字信号,振动、温度、湿度等信号经过传感器和放大器可以输出为模拟电信号,必须经过离散化和数字化才能被计算机所识别,数据采集卡就是实现这一转换功能,为整个后续对信号处理中起到了乘前启后的关键作用。一般常用的数据采集卡(DAQ)的结构如图1-2 所示。 图1-2(a)共用一个A/D

图1-2(b)多个A/D 一般数据采集设备的两个主要指标: 1.采样率 对数据采集设备来说,采样率是A/D芯片转换的速率,不同的设备具有不同 的采样率,进行测试系统设计时应该根据测试信号的类型选择适当的采样率,盲 目提高采样率,会增加测试系统的成本。 2.分辨率 分辨率是数据采集设备的精度指标,用A/D转换的数字位数表示。如果把数 据采集设备的分辨率看作尺子上的刻度,同样长度的尺子上刻度线越多,测量就 越精确。同样的,数据采集设备A/D转换的位数越多,把模拟信号划分得就越细, 可以检测到的信号变化量也就越小。在图1-3所示中用一3位的A/D转换芯片去转换振幅为5V的正弦信号,它将峰—峰为10V的电压分成32=8段,则每次采样的模拟信号转换为其中的一个数字段,用000~111之间的码来表示。而用它得到 正弦波的数字图象是非常粗糙的。若改用16位的A/D转换芯片,则将10V电压2=65536段,经过A/D转换之后的数字图象是相当精细,完全能反映出原分成16 始的模拟信号。 图1-3 A/D芯片的位数对反映原始信号的影响

基于labview的心电信号分析解读

信号与线性系统课程设计 报告 课题名称:基于LABVIEW的心电信号的分 析 班级:通信102班 姓名:杨成方 学号:102140 成绩: 指导教师:王宝珠 日期:2012.12.30

基于LABVIEW的心电信号的分析 摘要: 心电信号分析系统是读取心电信号文件,并对其做一定的数字信号处理,以及进行频谱分析等。 Labview是一种带有图形控制流结构的数据流模式,程序执行是由数据驱动,同时也是一种图形化的编程语言。本设计采用Labview综合运用其丰富的VI库来实现心电信号的读取、线性插值、滤波、谱分析。该课题利用VI库中索引数组、数组子集、字符串--数值转换、While循环、For循环、chebyshev滤波器等,得到了简单的读取、插值、滤波、谱分析等功能,对心电信号做简单的数字信号处理。 关键词:Labview,心电信号,VI库,谱分析 1课程设计的目的、意义 本课题主要研究基于Labview的数字心电信号初步分析及其各种滤波器的应用。通过完成本课题的设计,了解基于LabVIEW虚拟仪器的特点和使用方法,熟悉并掌握LabVIEW的使用及练习使用其不同的功能,了解人体心电信号的时域特征和频谱特征,通过对心电信号的滤波处理、频谱分析,进一步了解数字信号的分析方法,进一步加深对各种滤波器(巴特沃斯、切比雪夫、反切比雪夫)的理解。此外,通过本课题的设计,培养运用所学知识分析和解决实际问题的能力。 心电信号分析是一门比较实用的电子工程的专业课程。当今社会,心血管疾病是发病率和死亡率最高、对人类生命威胁最大的疾病。心电信号预处理就是对心电信号的时域特征、频域特征进行了解,以便以后对心电信号的自动识别起到一定的基础作用。另外,Labview具有强大的虚拟仪器功能和软件开发功能,运行速度快、兼容性和移植性好、方便易用,适合于课程设计短期内完成。 2 设计任务及技术指标 课题所用信号是美国麻省理工学院提供的MIT-BIH数据库(一个权威性的国际心电图检测标准库),近年来应用广泛,为我国的医学工程界所重视。MIT-BIH 数据库共有48个病例,每个病例数据长30min,总计约有116000多个心拍,包含有正常心拍和各种异常心拍,内容丰富完整。 为了读取简单方便,采用其txt格式的数据文件作为我们的源心电信号数据。利用labvIEW提供的文件I/O函数,读取txt数据文件中的信号,并且还原实际波形。 2.1设计任务 设计一个基于虚拟仪器的简单的心电信号分析系统,对原始心电信号做输入

利用LabVIEW实现信号处理

利用LabVIEW实现信号处理

————————————————————————————————作者: ————————————————————————————————日期:

利用LabVIEW实现信号处理 摘要 信号处理几乎涉及到所有的工程技术领域,而频谱分析正是信号处理中的一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员携带。而基于LabVIEW设计的虚拟频谱分析仪,用软件代替硬件,价格低,便于工程技术人员完成现场信号的采集、处理及频谱分析。 现今最有代表性的图形化编辑软件——LabVIEW,用之模拟从DAQ板卡中采集到一路带有均匀白噪声的正弦信号,显示其波形,并分析、显示其幅频特性曲线以及相频特性曲线。另外本文还根据LabVIEW中的子程序,实现了语音信号的录音与播放。 关键词虚拟仪器数据采集总线LabVIEW 1.1 LabVIEW简介 LabVIEW (laboratory virtual instrument engineering wokbench——实验室虚拟仪器工程平台)的概念,是直观的前面板与流程图式的编程方法的结合,是构建虚拟仪器的理想工具。LabVIEW和仪器系统的数据采集、分析、显示部分一起协调工作, 是简化了而又更易于使用的基于图形化编程语言G的开发环境。 LabVIEW集成了很多仪器硬件库,如GPIB/VXI/PXI/基于计算机的仪器、RS232/485协议、插入式数据采集、模拟/数字/计数器I/O、信号调理、分布式数据采集、图像获取和机器视觉、运动控制、PLC/数据日志等。 与传统的编程方式相比,使用LabVIEW设计虚拟仪器,可以提高效率4~10倍。同时,利用其模块化和递归方式,用户可以在很短的时间内构建、设计和更改自己的虚拟仪器系统。 1.2用LabVIEW设计虚拟仪器的步骤 LabVIEW编程一般要经过以下几个步骤。 1、总体设计:根据用户需求,进行VI总体结构设计,确定面板布局与程序流程,并保证所使用的虚拟仪器硬件在LabVIEW函数库中有相应的驱动程序。 2、前面板设计:在LabVIEW的前面板编辑窗口内,利用工具模板和控件模板进行VI 前面板的设计。 3、方框图编程:在LabVIEW的方框图编辑窗口内,利用工具模板和函数模板进行方

Labview心电信号处理

Labview心电信号处理 目录 一.概述 (2) 二.心电信号预处理 (3) 2.1 消除基准漂移 (4) 2.2 消除宽带噪声 (6) 三.对心电信号进行特征提取 (7) 3.1 QRS综合波检测 (8) 3.2 胎儿心电信号提取 (9) 四.总结 (13)

一.概述 心电图是一种记录心脏产生的生物电流的技术。临床医生可以利用心电图对患者的心脏状况进行评估,并做出进一步诊断。ECG记录是通过对若干电极(导联)感知到的生物电流进行采样获得的。图1中显示了典型的单周期心电图波形。 图1典型的单周期心电图波形 通常说来,记录的心电信号会被噪声和人为引入的伪影所污染,这些噪声和伪影在我们感兴趣的频段内,并且与心电信号本身有着相似的特性。为了从带有噪声的心电信号中提取出有用的信息,我们需要对原始的心电信号进行处理。 从功能上来说,心电信号的处理可以大致分为两个阶段:预处理和特征提取(如图2所示)。预处理阶段消除和减少原始心电信号中的噪声,而特征提取阶段则从心电信号中提取诊断信息。

图2典型的心电信号处理流程图 使用LabVIEW和相关工具箱,如高级信号处理工具箱(ASPT)和数字滤波器设计工具箱(DFDT)等,用户可以方便地创建针对两个阶段的信号处理应用,包括消除基线漂移、清除噪声、QRS综合波检测、胎儿心率检测等。本文着重讨论使用LabVIEW 进行典型的心电信号处理的方法。 二.心电信号预处理 心电信号预处理可以帮助用户去除心电信号中的污染。广义上讲,心电信号污染可以分为如下几类: ?电源线干扰 ?电极分离或接触噪声 ?病人电极移动过程中人为引入的伪影 ?肌电(EMG)噪声 ?基准漂移 在这些噪声中,电源线干扰和基准漂移是最为重要的,可以强烈地影响心电信号分析。除了这两种噪声,其它噪声由于可能是宽频带的且复杂的随机过程,也会使心电信号失真。电源线干扰是以60 Hz (或 50 Hz)为中心的窄带噪声,带宽小于1Hz。通常,心电信号的采集硬件可以消除电源线干扰。但是,基准漂

基于LABVIEW的多通道数据采集系统信号处理

目:基于LabVIEW的多通道数据采集系统 2010年03月20日 互联网会议PPT资料大全技术大会产品经理大会网络营销大会交互体验大会 毕业设计开题报告 1.结合毕业论文课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1.本课题的研究背景及意义 近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控得到越来越多的应用,尤其是在航空航天等国防科技领域。网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置原来越多的被个人计算机所占据。其中,软件系统是计算机系统的核心,设置是整个测控系统的灵魂,应用于测控领域的软件系统成为监控软件。传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。因此,这种“监控软件-数据采集系统”构架的测控系统在很多领域得到了广泛的应用,并形成了一套完整的理论。2.本课题国内外研究现状 早期的测控系统采用大型仪表集中对各个重要设备的状态进行监控,通过操作盘进行集中式操作;而计算机系统是以计算机为主体,加上检测装置、执行机构与被控对象共同构成的整体。系统中的计算机实现生产过程的检测、监督和控制功能。由于通信协议的不开放,因此这种测控系统是一个自封闭系统,一般只能完成单一的测控功能,一般通过接口,如RS-232或GPIB接口可与本地计算机或其他仪器设备进行简单互联。随着科学技术的发展,在我国国防、通信、航空、气象、环境监测、制造等领域,要求测控和处理的信息量越来越大、速度越来越快。同时测控对象的空间位置日益分散,测控任务日益复杂,测控系统日益庞大,因此提出了测控现场化、远程化、网络化的要求。传统的单机仪器已远远不能适应大数量、高质量的信息采集要求,产生由计算机控制的测控系统,系统内单元通过各种总线互联,进行信息的传输。 网络化的测控技术兴起于国外,是在计算机网络技术、通信技术高速发展,以及对大容量分布的测控的大量需求背景下发展起来,主要分为以下几个阶段:第一阶段: 起始于20世纪70年代通用仪器总线的出现,GPIB实现了计算机与测控系统的首次 结合,使得测量仪器从独立的手工操作单台仪器开始总线计算机控制的多台仪器的测控系统。此阶段是网络化测控系统的雏形与起始阶段。第二阶段:

基于labview的数字信号处理

基于LABVIEW的数字信号处理 摘要:LabVIEW 是建立测试、测量和自动化应用的图标语言,使用灵活方便。本文介绍了利用LabVIEW8.6 实现多路数据检测和分析方法的实现。构建一集信号采集、存储、分析和处理的检测系统。该系统可以同时检测三路电压和一路加速度信号。并可以对检测到的信号进行滤波、曲线拟合和小波分析等运算。系统界面友好,操作简单。 关键词:LABVIEW 多路信号滤波谐波分析 0 引言 本文设计的虚拟多路检测系统是基于虚拟仪器平台所开发的应用系统,主要完成了如何充分利用虚拟仪器平台的功能控件构建一个电压、频率信号的采集、存储、分析和处理为一体的多路检测系统。建立在DAQ 采集卡基础上的虚拟仪器具有一机多用、用户自定义功能和使用维护方便等特点,代表了今后仪器的发展方向。LabVIEW2012是虚拟仪器图形编程语言,它以软件为中心,利用计算机强大的计算、显示和处理能力,在计算机屏幕上组建用户自己的仪器和仪表。实现了将仪器装入计算机。 1 系统的总体设计 基于LABVIEW2012的多路采集系统设计包含以下部分:控制对象建模、数据采集、数据传输、数据处理、控制信号输出接口电路设计及其它附属功能的设计。本设计采用虚拟仪器技术搭建基于LABVIEW2012软件开发平台的多路检测系统总体结构如图1 所示。 图1 系统总体结构图 2 模拟信号选择 采集的模拟信号主要分为三个部分组成,第一、均匀白噪声,第二50hz的干扰信号,第三45hz的参考信号。在初始调试过程中可以用labview中信号合成单元将这三个信号经过合成,调试成模拟的采集信号,这样可以方便调试. 3 自适应滤波器

第七章 labview信号分析与处理

第七章信号分析与处理 7.1概述 LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze子模板和Methematics子模板。这里主要涉及前者。 进入Functions模板Analyze》Signal Processing子模板。 其中共有6个分析VI库。其中包括: ①.Signal Generation(信号发生):用于产生数字特性曲线和波形。 ②.Time Domain(时域分析):用于进行频域转换、频域分析等。 ③.Frequency Domain(频域分析): ④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。 ⑤.Digital Filters(数字滤波器):用于执行IIR、FIR 和非线性滤波功能。 ⑥.Windowing(窗函数):用于对数据加窗。 在labview\examples\analysis目录中可找到一些演示程序。 7.2信号的产生 本节将介绍怎样产生标准频率的信号,以及怎样创建模拟函数发生器。参考例子见examples\analysis\sigxmpl.llb。 信号产生的应用主要有: ●当无法获得实际信号时,(例如没有DAQ板卡来获得实际信号或者受限制无法访 问实际信号),信号发生功能可以产生模拟信号测试程序。 ●产生用于D/A转换的信号 在LabVIEW 6i中提供了波形函数,为制作函数发生器提供了方便。以Waveform>>Waveform Generation中的基本函数发生器(Basic Function Generator.vi)为例,其图标如下: 其功能是建立一个输出波形,该波形类型有:正弦波、三角波、锯齿波和方波。这个VI会

LABVIEW的数字信号处理分析的介绍

南京工业大学 学院:自动化与电气工程学院 课题:LABVIEW的数字信号的分析处理介绍学号:612081101033 姓名:周衍 导师:张兴华 2011 年12 月 2 日

0 引言 LabVIEW(Laboratory Virtual Instrumentation Engineering Workbench,实验室虚拟仪器工程平台)是由美国国家仪器公司所开发的图形化程序编译平台,发明者为杰夫·考度斯基(Jeff Kodosky),程序最初于1986年在苹果电脑上发表。LabVIEW早期是为了仪器自动控制所设计,至今转变成为一种逐渐成熟的高级编程语言。图形化程序与传统编程语言之不同点在于程序流程采用"数据流"之概念打破传统之思维模式,使得程序设计者在流程图构思完毕的同时也完成了程序的撰写。 LabVIEW率先引入了特别的虚拟仪表的概念,用户可通过人机界面直接控制自行开发之仪器。此外LabVIEW提供的库包含:信号截取、信号分析、机器视觉、数值运算、逻辑运算、声音震动分析、数据存储...等。目前可支持Windows,UNIX,Linux,Mac OS等操作系统。由于LabVIEW特殊的图形程序简单易懂的开发接口,缩短了开发原型的速度以及方便日后的软件维护,因此逐渐受到系统开发及研究人员的喜爱。目前广泛的被应用于工业自动化之领域上。LabVIEW默认以多线程运行程序,对于程序设计者更是一大利器。此外LabVIEW通信接口方面支持:GPIB,USB,IEEE1394,MODBUS,串行接口,并发端口,IrDA,TCP,UDP,Bluetooth,.NET,ActiveX,SMTP...等接口。 本文旨在综合实际应用时对原始数据的处理,简单地介绍此软件在对信号方面的的分析方式,剖析其中的优点。(待改) 1 LABVIEW数据处理 原始数据并不总能即刻传递有用、正确的信息。通常,用户必须变换信号来去除噪声干扰、纠正因设备故障损坏的数据或补偿环境的影响(如:温度与湿度)。为此,信号处理,作为对信号的分析、解释和操作,是几乎各类工程应用中的基本需求。借助LABVIEW软件完整的分析功能,无需浪费时间去移动不相容工具之间的数据,无需编写自己的分析规程,就能处理各类信号。 2 LABVIEW数据分析方式 用户在实际操作中可根据不同情况选择在线分析或离线分析。 2.1 在线分析 用户可借助在线分析, 加快决策,及时得到数据结果。 在线分析表明:数据接受相同应用程序的分析和采集。若应用程序可根据进入数据的特征监测信号并作改变,用户就需要在采集数据时加以分析。通过测量和分析信号的某些方面,用户能让应用数据适合某些情况并启用合适的执行参数,并可以将数据保存至磁盘来提高采样率。尽管这只是一个范例,但有数千种应用程序都需要一定的智能(根据不同的条件作出相应决定的能力);适应性也是必需的,只能将分析算法在数据处理之前添加到应用程序中才有实现的可能。 通常,作出决定基于自动化数据处理。这意味着:逻辑在应用程序中已经建立,用来进行某些行为操作。例如,当温度越过阈值或振动水平过高时,工厂监控系统会点亮1个LED来给出提示。然而,并非所有基于采获的数据的决定都是自动作出的。为确定系统是否按预期运行,用户往往必须时刻监测执行。您不需要记录数据、从文件或数据库中提取数据,再对它进行离线分析只为发现采集中的问题,而应在采集数据时当时就可辨识分析问题。这时候,应用程序必须处理采获的数据,再用一种最适用的方式对数据进行处理、简化、规范化和显示。LABVIEW中对话的内置套件,可令创建的应用程序向操作人员或用户提供选件。例如,若温度过高,对话可以提示操作人员采用指定操作,然后按“确定(OK)”

基于LabVIEW 的声卡信号采集分析系统设计

基于LabVIEW 的声卡信号采集分析系统设计 0704115 班02 号 摘要:要在LABVIEW 环境中进行对声卡编程,就是运用常用周期信号及测试领域 特殊信号的双通道模拟输出。由于专用数据采集卡成本比较昂贵、而且和计算机兼容性 比较差等缺点,这个论文就是应用性能良好、价格低廉的计算机声卡设计一套基于LabVIEW 的信号采集分析系统。该系统具有双通道、高保真、22K 甚至44KHz 的采样率,实现了音频信号的实时采集、实时存储、回放、信号分析(时域分析和频域分析)等多 种功能。实验结果表明:该设计方案具有设计简便、成本低、通用性高、扩展性好、界 面大方简洁等优点,可广泛应用于工程测量和科学实验室等环境。 关键词:声卡;数据采集;虚拟仪器;LabVIEW ; 引言 数据采集是信号分析与处理的一个重要环节,在许多工业控制与生产状态监控中, 都需要对各种物理量进行数据采集与分析。但是,专用数据采集卡的价格一般比较昂贵, 而我们PC 机的声卡就是一个很好的双通道数据采集卡。实际测量中,在满足测量要求的 前提下,可以充分利用计算机自身资源,完成数据采集任务,从而节省成本。 虚拟仪器是基于计算机的软硬件测试平台。虚拟仪器技术的优势在于可由用户定义 自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。目前应用最广、发 展最快、功能最强的图形化软件集成开发环境是美国国家仪器公司的创新软件产品[1]。 它是将仪器装入计算机中, 以通用的计算机硬件及操作系统为依托, 可以实现各种仪器 的功能。 LabVIEW 是一种图形化编程语言,广泛应用于工业界、学术界和研究实验室,主要应 用于仪器控制、数据采集、数据分析、数据显示等领域,适用于多种不同的操作系统平台。 与传统C、C++等编程语言不同,LabView 采用强大的图形化语言编程,面向测试工程师而 非专业程序员,编程方便,人机交互界面直观友好,具有强大的数据可视化分析和仪器控 制能力等特点[2]。 1 声卡信号采集系统总体设计方案 声卡采集系统原理框图如下图 1 所示。它主要由声源、信号调理模块、计算机声卡 以及安装于计算机机上的LabVIEW 软件等几部分组成。 图1 声卡采集系统原理框图 工作过程为:输入时,测试信号首先经过信号调理电路,利用PC 机声卡的麦克风输 入(mic in)或线路输入(line in)作为信号的输入端口,将获取到的模拟音频信号经 过左右两个通道和A/D 转换后送入计算机,通过LabVIEW 编写的采集程序进行各种处理和保存;输出时,经过采集系统处理的数据通过总线将数字化的信号以PCM 方式送到D/A 转换器,编程模拟的音频信号由线路输出(line out)端口通过耳机或音响转换为音波 播放出来。

LabVIEW的数据采集与信号处理

LabVIEW的数据采集与信号处理 摘要: 针对虚拟仪器技术具有性能高, 易于实现硬件和软件集成等特点, 将虚拟仪器技术和LabvIEW 应用于测试领域。以计算机和NI 9201 数据采集卡为硬件, 以LabVIEW8. 6 软件作为开发平台, 构建了数据采集与信号处理的虚拟测试系统。系统由信号源和信号处理模块组成。 关键词:虚拟仪器; LabVIEW; 数据采集; 信号处理 虚拟仪器是指以通用计算机作为系统控制器, 由软件来实现人机交互和大部分仪器功能的一种计算机仪器系统。NI 公司开发的LabVIEW 是目前最为成功的虚拟仪器软件之一, 它是一种基于G 语言的32 位编译型图形化编程语言, 其图形化界面可以方便地进行虚拟仪器的开发, 并在测试测量、数据采集、仪器控制、数字信号处理等领域得到了广泛的应用。 1虚拟仪器测试系统的结构 以美国国家仪器公司N I 的LabV IEW8. 6 作为开发平台, 配合NI 公司的N I 9201 数据采集卡作为硬件实现该测试系统的设计。该系统可实现单、双通道的模拟信号的采集、虚拟信号的产生, 同时完成对信号的分析与处理, 测试系统的核心是前端数据采集和后续信号处理。虚拟仪器测试系统的结构框图如图1 所示。 图1 虚拟仪器测试系统的结构框图 2 程序设计模块 该测试系统体现了NI公司提出的软件即是仪器的思想, 以LabVIEW8.6为平台, 设计的虚拟仪器能够完成对数据采集卡采集的模拟信号进行分析与处理, 同时, 利用LabVIEW 的强大功能, 开发了虚拟信号发生器模块, 使得该虚拟仪器对仿真信号进行分析与处理。也即该测试系统的信号源包括: 数据采集卡采集的模拟信号; 虚拟信号发生器模块产生的仿真信号。据采集与信号处理系统的结构框图如图2 所示。 图2数据采集及信号处理系统的结构框图 2. 1. 1 数据采集卡采集的模拟信号 以NI 公司的NI 9201 数据采集卡作为硬件, 实现该数据采集系统的设计。NI 9201 提供8 个

使用LabVIEW进行心电信号处理

使用LabVIEW进行心电信号处理 心电图是一种记录心脏产生的生物电流的技术。临床医生可以利用心电图对患者的心脏状况进行评估,并做出进一步诊断。ECG记录是通过对若干电极(导联)感知到的生物电流进行采样获得的。图1中显示了典型的单周期心电图波形。 图1 典型的单周期心电图波形 通常说来,记录的心电信号会被噪声和人为引入的伪影所污染,这些噪声和伪影在我们感兴趣的频段内,并且与心电信号本身有着相似的特性。为了从带有噪声的心电信号中提取出有用的信息,我们需要对原始的心电信号进行处理。 从功能上来说,心电信号的处理可以大致分为两个阶段:预处理和特征提取(如图2所示)。预处理阶段消除和减少原始心电信号中的噪声,而特征提取阶段则从心电信号中提取诊断信息。

图2 典型的心电信号处理流程图 使用LabVIEW和相关工具箱,如高级信号处理工具箱(ASPT)和数字滤波器设计工具箱(DFDT)等,用户可以方便地创建针对两个阶段的信号处理应用,包括消除基线漂移、清除噪声、QRS综合波检测、胎儿心率检测等。本文着重讨论使用LabVIEW进行典型的心电信号处理的方法。 1. 心电信号预处理 心电信号预处理可以帮助用户去除心电信号中的污染。广义上讲,心电信号污染可以分为如下几类: ?电源线干扰 ?电极分离或接触噪声 ?病人电极移动过程中人为引入的伪影 ?肌电(EMG)噪声 ?基准漂移 在这些噪声中,电源线干扰和基准漂移是最为重要的,可以强烈地影响心电信号分析。除了这两种噪声,其它噪声由于可能是宽频带的且复杂的随机过程,也会使心电信号失真。电源线干扰是以60 Hz (或50 Hz)为中心的窄带噪声,带宽小于1Hz。通常,心电信号的采集硬件可以消除电源线干扰。但是,基准漂移和其它宽带噪声通过硬件设备很难抑制。而软件设计则成为更为强大而可行的离线式心电信号处理方法。用户可以使用以下方法来消除基准漂移和其它宽带噪声。 消除基准漂移 基准漂移的产生通常源于呼吸,频率在0.15 到0.3 Hz之间,可以通过使用高通数字滤波器进行抑制。用户还可以使用小波变换通过消除心电信号的趋势来消除基准漂移。

相关文档
最新文档