CB-FA FC型高压齿轮泵

CB-FA  FC型高压齿轮泵
CB-FA  FC型高压齿轮泵

CB-FA FC型高压齿轮泵

一、简介

CB-FA、FC齿轮泵采用高强度铸件,径向密封采用齿顶扫膛,轴向密封采用浮动压力平衡侧板,因而达到高效率。该泵具有体积小、重量轻、性能好、工作可靠等特点。广泛应用于工程机械、矿山机械、起重运输机械、建筑机械、石油机械、农业机械等机械设备中。

二、型号说明

CB -F A、F C- *- *- F- *- *- *

(1) (2) (3) (4) (5) (6) (7) (8)

(1)齿轮泵

(2)系列号:压力级(MPa)

(3)主参数:公称排量(Ml/r)

(4)轴伸形式:1.平键 2.渐开线花键

(5)安装方式:法兰安装、螺纹连接

(6)止口尺寸:?85f8 ?90f8 ?100f8

(7)连接形式:L:螺纹连接、F:法兰连接

(8)旋向:右旋(省略)左旋X

三、外形尺寸图

四、技术参数

高压齿轮泵内泄漏的原因

高压齿轮泵内泄漏的原因 1.使外啮合高压齿轮泵内部泄漏的原因是多种性的,好比如密封装置所有部分尺寸相关参数的选择是不是合适的,制造工艺,尤其是密封元件的工艺质量好与不好,使用装配是否正确,密封材料质量的高低及密封元件模具设计准确与否等,都是造成泄漏的重要因素。 2.高压齿轮泵的泄漏主要是间隙泄漏,原始间隙不妥,装配引起间隙,畸变与磨损后间隙扩大(油的污染引起间隙与配合偶件匹配不当引起的间隙扩大)等。而泄漏量的大小?Q1,与缝隙两端的压力差?Q(Pa),油液粘度(μ) ,缝隙长度(l) ,宽度 (b) 和高度(h)等因素有关。 ⑴由于高压齿轮泵泄漏量与间隙大小的三次方成正比,如果间隙增大一倍,则将使泄漏量增大8倍,因此在结构和工艺允许的条件下,合理减小缝隙高度有助于减小泄漏。 ⑵高压齿轮泵的泄漏量与压力差?P成正比,压力越大,则泄漏量越大,压力增加20巴时,则容积效率下降10%-20%。 ⑶泄漏量大小与油液粘度μ和长度l成反比,而油液粘度的变化,主要受油液工作温度及工作压力的影响,当油温的变化比较大时,油液粘度的波动也比较大,压力增加,粘度增大,温度增高,粘度下降,当温度每增加1℃时,则容积效率下降0.1%,压力增大30Pa 时,动力粘度增大一倍。 3.温度 液压系统温升发热引起泄漏,主要由于油液粘度下降,热冲击引起压力增加与间隙变化,以及发热使油液变质所致。另外温升对正常间隙的影响也会使泄漏量增加,温升使正常间隙变小容易因变形发卡而增加磨损,最终使间隙更大而增加了泄漏量。如果温升使间隙增大,则严重影响泄漏。 4.转速 高压齿轮泵泄漏量的绝对值与运转的速度关系不大,运转速度下降时,由于理论流量下降,泄漏量的比例提高,泄漏量与输油量的相对比值越大,使容积效率降低。

CBK10系列高压齿轮泵

CBK系列高压齿轮泵 用途与特征: CBK系列齿轮泵属于高压齿轮泵,是液压系统中的液压动力元件。它采用了承载能力高的DU轴承、高强度铝合金壳体结构。具有压力高、转速范围大、排量规格多、体积小、重量轻、工作可靠、维修方便、寿命长等特点。作为动力源广泛用于工程机械、起重运输机械和矿山机械等液压系统中。 CBK系列齿轮泵可组成双联、多联泵。 型号说明: 性能参数: 型号 理论排量 (mL/r) 压力(MPa) 转速(r/min) 输入功率 (KW) 重量 (kg) 额定最高额定最高最低 CBK1004 4.25 10、16、20、25 28 3500 4000 1400 6.9 3.6 CBK1006 6.4 10、16、20、25 28 3500 4000 1400 10.3 3.65 CBK1008 8.1 10、16、20、25 28 3500 4000 1400 13.1 3.77 CBK1010 10 10、16、20、25 28 3000 3500 1200 13.8 3.88 CBK1012 12.6 10、16、20、25 28 3000 3500 1200 17.5 3.99 CBK1016 15.9 10、16、20、25 28 2000 3000 1000 14.7 4.14 CBK1020 19.9 10、16、20 25 2000 3000 1000 14.7 4.34 CBK1025 25 10、16 20 2000 2500 800 14.8 4.67 工作油液(mm2/s) 过滤精度(μm) 工作油温(℃)容积效率(%)

注:1.由上述单泵可组成三十六个规格的双联泵,具体型号参照双联泵外形安装连接尺寸附表。 2.用户选用三联以上(含三联)的多联泵,具体要求请与我厂技术部门联系。 3.油液最高污染等级:按GB/T14039之20/17。 4.非额定工况下(压力、转速)的容积效率值参见P70-71工作性能曲线。 5. 泵输入功率计算公式: 单泵外形安装连接尺寸:

齿轮泵工作原理及结构

齿轮泵工作原理及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿轮 泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,

这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积 中〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图 3-5(b) 〕,封闭容积为最小,齿轮再继续转动时,封闭容积又 逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。当封闭容积增大时,由 于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气 泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。

全国高压齿轮泵厂家前十名企业排名

1.上海阳光泵业制造有限公司 上海阳光泵业是集设计/生产/销售泵、给水设备及泵用控制设备于一体的大型综合性泵业集团,是中国泵行业的龙头企业。总资产达38亿元,在上海、浙江、河北、辽宁、安徽等省 市拥有7家企业,5个工业园区,占地面积67万平方米,建筑面积35万平方米。上海阳光获 得了“上海市质量金奖”、“上海市科技百强企业”、“上海市名牌产品”、“中国质量信用AAA级”、“全国合同信用等级AAA级”、“质量、信誉、服务三优企业”、“中国最具竞争 力的商品商标”、“五星级服务认证”等荣誉,连续多年入选全国机械500强。高端人才和 高素质的员工队伍是阳光发展的动力。集团现有员工4500余人,其中工程技术人员500多名,主要由国内知名水泵专家教授、博士硕士、中高级工程师、高级工艺师组成,形成了具有创新思维的梯队型人才结构。科技创新,是阳光基业长青的生命之源。集团是上海市高新技术企业、上海市知识产权示范企业和上海市专利示范企业。上海市级的“企业技术中心”,每年以销售总额的5%,用于技术创新和新产品研发。 2.天津双河泵业有限公司 天津双河泵业是一家集研发、设计、制造、销售、服务于一体的现代化泵业公司。位于天津市津南区,交通便利,人才聚集。企业以开放创新的发展理念,引进国内外的研发设计系统,生产装备,管理理念。产品广泛用于工矿企业、城镇供水、海水提升、污水处理、地热供暖、水利建设、农田灌溉等诸多领域。 主导产品有:潜水泵系列;QJ深井泵;QJR温泉泵;QJH耐腐蚀潜水泵;QJW卧式潜水等系列 产品。 3.上海丹天泵业有限公司 上海丹天泵业有限公司作为国内泵类,给排水设备及相关电气控制设备的主要供应商之一,丹天泵业在中国。企业位于上海市奉贤区,通过iso9001、14001、18001国际质量、环境、职业健康安全管理体系认证,拥有先进的生产设备和一流的测试中心,全面引进德国技术,充分实现丹天泵业公司“技术+资本”的优势,为中国及世界各地用户提供一流品质的泵类产品资源,为高速增长的市场提供更好的服务保障,并进一步致力于实现为国内用户提供随需应变的水处理解决方案。 丹天泵业主营产品:wq排污泵,qw排污泵,jywq排污泵,污水排污泵,通过项目合作、 技术专家支持各类工程师及高级管理人员培训等多种手段,实现专业技术上的领先水平。不同

齿轮泵设计说明书

% 武汉科技大学 本科毕业设计(论文) · 题目:中高压外啮合齿轮泵设计 姓名: 专业: 学号: 指导教师: 【 武汉科技大学机械工程学院 二0一三年五月

目录 摘要.................................................................. I Abstract.......................................................................... II 1绪论. (1) 研发背景及意义 (1) 齿轮泵的工作原理 (2) 齿轮泵的结构特点 (3) 外啮合齿轮泵基本设计思路及关键技术 (3) 2 外啮合齿轮泵设计 (5) 齿轮的设计计算 (5) 轴的设计与校核 (7) 齿轮泵的径向力 (7) 减小径向力和提高齿轮轴轴颈及轴承负载能力的措施 (8) 轴的设计与校核 (8) 卸荷槽尺寸设计计算 (11) 困油现象的产生及危害 (11) 消除困油危害的方法 (13) 卸荷槽尺寸计算 (15) 进、出油口尺寸设计 (17) 选轴承 (17) 键的选择与校核 (17) 连接螺栓的选择与校核 (18) 泵体壁厚的选择与校核 (18) 总结 (19) 致谢 (20) 参考文献 (22)

摘要 外啮合齿轮泵是一种常用的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,并且对轴和轴承的要求较高。为解决泄漏问题,低压外啮合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。 关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽 (此毕业设计获得2013届优秀毕业设计荣誉,共有5张零件图,1张装配图,并且有开题报告、外文翻译、答辩稿,答辩ppt,保证让你的毕业设计顺利过关!先找份好的工作,不再为毕业设计而发愁!!!有需要零件图和装配图的同学请联系)

齿轮泵工作原理和结构

齿轮泵工作原理以及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿 轮泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿

进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对

齿轮泵工作原理及结构

齿轮泵工作原理及结构标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

齿轮泵工作原理及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿轮泵 工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封

容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为~,大流量泵为~。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取~。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积中 〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图3-5(b)〕,封闭容积为最小,齿轮再继续转动时,封闭容积 又逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。当封闭容积增大时,由于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。

高压齿轮泵

在工业生产生活中,先进的生产工具是我们提高生产效率的关键,只有一直保持在科技的前沿,才能领跑同行业,要是始终落后于同行,那么迟早会被市场淘汰。高压齿轮化工泵就是一种十分先进的泵,在工业生产中使用范围十分广泛,可以大大地提高工业生产效率。下面我就来给大家简单介绍一下它。 高压齿轮泵压力一般在35公斤-40公斤,高压齿轮泵在隙自动调节结构,要零件均高耐磨材料制造。该泵摆脱了传统设计的束缚,使得齿轮泵在设计、生产和使用上进入了一个新的领域。高压齿轮泵具有结构紧凑、自吸性好、效率高、适应性强等特点,在输送液体含有杂质的场合,泵的工作寿命比一般齿轮泵长2-10倍。泵也称KCB 系列“强劲型”,在输送有润滑无杂质的介质时更显示出泵的长寿命、压力稳定的重要特点。 高压齿轮泵适用于输送介质温度不高于200℃,粘度不大于1500mm2/s,含有非金属杂质的重油、柴油、煤焦油以及其它类

低档劣质燃烧油等。特别适用于石油、化工、粮油、建材、日用化学、筑路、电力和沥青拌合站部门和行业的燃油喷射场合。也更适用要求工作压力稳定,长期连续工作的场合。由于结构简单,体积小,制造成本低;供油均匀,转速允许范围大,性能和维修等都能满足液压起网机的要求,因此在渔船起网机液压系统中,高压齿轮泵应用十分广泛。 高压齿轮泵常常被用于流量计量,或被用于粘稠流体或稀流体的输送。用于液压起网机中,辅助元件:油箱、滤油器、油管及附件。在工业中应用广泛,非常重要。 淄博德信泰达泵业有限公司创立于2016年,以化工泵为主营方向。采用成熟工艺,产品运行稳定,故障率低,大大提高了产品寿命,电机采用YE3电机,更加放心和环保节能。泵阀规格全,30多个系列可满足客户需求,也可按需定制。多年生产经验、强大技术团队保证产品性能强,价格合理。公司备有库存,可交货期快。公司产品具

高压齿轮泵的结构

高压齿轮泵的结构 高压齿轮泵常常被用于流量计量,或被用于粘稠流体或稀流体的输送。用于液压起网机中,辅助元件:油箱、滤油器、油管及附件。在工业中应用广泛,非常重要,下面小编与大家分享关于高压齿轮泵的结构,了解一下它的工作性能。 高压齿轮泵压力高,适用于喷射,增压用。该齿轮油泵内四个轴承套在泵体内安装,随工作压力大小自动调整端面间隙,因此泵的压力稳定,输出流量脉动小,容积率高。该泵是由泵体、泵盖、齿轮、轴承套以及轴端密封等零部件组成。2CY齿轮泵的齿轮、轴都是经过氮化处理,有较高的硬度和耐磨性,与轴一同安装在轴套内。泵内所有运转部件均利用其输送的介质润滑。该齿轮泵结构简单紧凑,使用维护方便,适应性强,效率高。 由于结构简单,体积小,制造成本低;供油均匀,转速允许范围大,性能和维修等都能满足液压起网机的要求,因此在渔船起网机液压系统中,应用最为广泛。油泵是将输入的机械能转换成为流动油液的压力能的转换装置。在吸油过程中,工作空间容积逐渐增大,形成部分真空,油箱中的油液在大气压力作用下进入油泵,在压油过程中,工作空间的容积逐渐减小,油液被挤压而出。齿轮油泵吸油与压油过程。 当齿轮泵吸油在第一位置时,主动齿轮l在被动齿轮的齿间中,占据齿间的相当容积,该体积大小等于阴形部分乘齿宽。随着齿轮的旋转,主动齿轮齿逐渐退出被动齿轮齿间,到第二位置,被动齿轮齿间被齿占去的容积大大减小,由于容积的增大,压力降低,在大气压力作用下,油箱内的汕液从进油管流入吸油腔并进入齿间。到第三位置时,主动齿轮齿完全退出被动齿轮齿间,油液完全充满了齿间,完成了吸油过程。当齿轮刚转动,封闭容积内的油液被带到压油区,在第一位置时,被动齿轮齿还没有进入主动轮的齿间3,在齿间3中充满油液。当齿轮转到第二位置时,被动齿轮齿4开始进入主动轮齿间3,把油液挤出去一部分,挤出油液多少等于阴影部分乘齿宽。到第三位置时,齿4进入齿间3的部分增大,就挤出了更多的油液,这样油连续被挤出,完成了压油过程。CB型齿轮油泵,是单级传动容积不能调节的不可变量的中高油泵。它由下列主要零件组成:油泵壳体,油泵盖、齿轮轴、轴套、密封件和连接件等高压齿轮泵用于液压起网机中,辅助元件:油箱、滤油器、油管及附件等。日常生活中经常接触到高压齿轮泵,因此了解他的结构是必要的,希望大家认真阅读以上文章,相信一定会受益匪浅的。 一、YCB型圆弧齿轮泵概述与特点: YCB圆弧齿轮泵采用了国际上被认为输送泵最先进的一点连续接触齿轮,即双圆弧加正弦曲线复合成齿形,可彻底淘汰渐开线齿轮输送泵。曾获国家级重大科技成果项目,并获国家教委科技进步三等奖。圆弧齿轮在两啮合齿廓间为一点连续接触,不会产生困油现象,彻底解决了渐开线齿轮泵因困油现象导致泵的振动、噪声、轴承负载增大等现象。因此圆弧齿轮泵具有效率、噪声低,并具有良好的节能效果。 本系列圆弧齿轮泵主要有齿轮、轴、泵体、泵盖、轴承套、轴端密封等组成。齿轮采用双圆弧正弦曲线齿形制造。它与渐开线齿轮相比最突出的优点是齿轮啮合过程中齿廓面没有相对滑动,所以齿面无磨损,运转平稳,无因液现象,噪音低、寿命长、效率高。该泵摆脱了传统设计的束缚,使得齿轮泵在设计、生产和使用上进入了一个新的领域。 泵设有安全阀作为超载保护,安全阀全回流压力为泵额定排出压力的1.5倍。也可在允许排出压力范围内根据实际需要另行调整。但注意本安全阀不能作减压阀长期工作,需要时可在管路上另行安装。 泵轴端密封设计为两种形式,一种为机械密封,一种是填料密封,可根据具体使用情况和用户要求确定。 二、YCB型圆弧齿轮泵用途: YCB圆弧齿轮泵主要用于各种机械设备中的润滑系统中输送润滑油,适用于输送粘度为5×10-6~1.5×10-3m2/s (5-1500cSt),温度在300℃以下的具有润滑性的油料。不锈钢YCB圆弧齿轮泵,可输送无润滑性的油料、饮料、低腐蚀性的液体。配用铜齿轮可输送低内点液体,如汽油、苯等。本系列泵除配置普通电机外,还可根据用户需要配置同规格的防爆电机。 三、YCB型圆弧齿轮泵应用范围:

外啮合齿轮泵的结构及工作原理

齿轮泵是一种常用的液压泵,它的主要特点是结构简单,制造方便,价格低廉,体积小,重量轻,自吸性好,对油液污染不敏感,工作可靠;其主要缺点是流量和压力脉动大,噪声大,排量不可调。齿轮泵被广泛地应用于采矿设备,冶金设备,建筑机械,工程机械,农林机械等各个行业。 齿轮泵按照其啮合形式的不同,有外啮合和内啮合两种,其中外啮合齿轮泵应用较广,而内啮合齿轮泵(Internal Gear Pump)则多为辅助泵,下面分别介绍。 外啮合齿轮泵的结构及工作原理Operation of the External Gear Pump 外啮合齿轮泵的工作原理和结构如图所示。泵主要由主、从动齿轮,驱动轴,泵体及侧板等主要零件构成。 图2.3 外啮合齿轮泵的工作原理 1-泵体(Housing);2.主动齿轮(Driver Gear);3-从动齿轮(Driven Gear) 泵体内相互啮合的主、从动齿轮2和3与两端盖及泵体一起构成密封工作容积,齿轮的啮合点将左、右两腔隔开,形成了吸、压油腔,当齿轮按图示方向旋转时,右侧吸油腔内的轮齿脱离啮合,密封工作腔容积不断增大,形成部分真空,油液在大气压力作用下从油箱经吸油管进入吸油腔,并被旋转的轮齿带入左侧的压油腔。左侧压油腔内的轮齿不断进入啮合,使密封工作腔容积减小,油液受到挤压被排往系统,这就是齿轮泵的吸油和压油过程。在齿轮泵的啮合过程中,啮合点沿啮合线,把吸油区和压油区分开。 齿轮泵的结构特点Construction Character of Gear Pumps

如图所示,齿轮泵因受其自身结构的影响,在结构性能上其有以下特征。 图2.4 齿轮泵的结构 1-壳体(Housing);2.主动齿轮(Driver Gear);3-从动齿轮(Driven Gear);4-前端盖(Front Cover);5-后端盖 (Back Cover); 6-浮动轴套(Floating Shaft Sleeve);7-压力盖(Pressure Cover) 困油的现象Trapping of Oil 齿轮泵要平稳地工作,齿轮啮合时的重叠系数必须大于1,即至少有一对以上的轮齿同时啮合,因此,在工作过程中,就有一部分油液困在两对轮齿啮合时所形成的封闭油腔之内,如图所示,这个密封容积的大小随齿轮转动而变化。图(a)到(b),密封容积逐渐减小;图(b)到(c),密封容积逐渐增大;图(c)到(d)密封容积又会减小,如此产生了密封容积周期性的增大减小。受困油液受到挤压而产生瞬间高压,密封容腔的受困油液若无油道与排油口相通,油液将从缝隙中被挤出,导致油液发热,轴承等零件也受到附加冲击载荷的作用;若密封容积增大时,无油液的补充,又会造成局部真空,使溶于油液中的气体分离出来,产生气穴,这就是齿轮泵的困油现象。 困油现象使齿轮泵产生强烈的噪声,并引起振动和汽蚀,同时降低泵的容积效率,影响工作的平稳性和使用寿命。消除困油的方法,通常是在两端盖板上开卸槽,见图2.5(d)中的虚线方框。当封闭容积减小时,通过右边的卸菏槽与压油腔相通,而封闭容积增大时,通过左边的卸荷槽与吸油腔通,两卸荷糟的间距必须确保在任何时候都不使吸、排油相通。

高压齿轮泵.docx

高压齿轮泵结构原理及维护与保养 1.高压齿轮泵的结构原理 齿轮泵的概念是很简单的,即它的最基本形式就是两个尺寸相同的齿轮在一个紧密配合的壳体内相互啮合旋转,这个壳体的内部类似“8”字形,两个齿轮装在里面,齿轮的外径及两侧与壳体紧密配合。来自于挤出机的物料在吸入口进入两个齿轮中间,并充满这一空间,随着齿的旋转沿壳体运动,最后在两齿啮合时排出。在术语上讲,齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。由于齿的不断啮合,这一现象就连续在发生,因而也就在泵的出口提供了一个连续排除量,泵每转一转,排出的量是一样的。随着驱动轴的不间断地旋转,泵也就不间断地排出流体。图1所示为齿轮泵外观图和内部结构图。 图1 齿轮泵外观图和内部结构图 高压齿轮泵的工作压力是指它的输出压力。即油液为了克服阻力(包括管道阻力,运动件的摩擦阻力和外加负载等)所必须建立起来的压力。阻力增大,则压力升高,反之,压力降低。所以高压齿轮泵的工作压力决定于外加负载的大小。高压齿轮泵额定压力是指在保证泵的容积效率、使用寿命和额定转速的前题下,泵连续运转时所允许使用的最大的压力,超过此值就是过载。高压齿轮泵有外啮合和内啮合两种。 1.1外啮合高压齿轮泵 外啮合齿轮泵结构如图2所示,一对啮合着的、齿数相同的齿轮安装于壳体内部,齿轮的两端面由端盖密封,这样两个齿轮就在壳体内腔分成了左右两个密封的油腔,并且每个齿间都形成一个密封的工作容积。当齿轮按图示方向旋转时,轮齿从右侧出啮合,露出齿间,使该腔容积增大,形成局部真空,油箱中的油液在大气压的作用下,经液压泵的吸油管进入右腔(吸油腔),完成吸油过程随着

高压齿轮泵型号

化工泵是我们日常生活生产中很重要的一种生产工具,高压齿轮泵就是一种很先进的泵,可以大大地提高我们的生产效率,是在工业生产中很重要的一环。高压齿轮泵的型号有很多,不同的型号有不同的用途与用法。 目前比较常见的高压齿轮泵的型号有:2CY和KCB两款。高压齿轮泵的型号根据电机功率、转速、流量、排出压力和进出口径等参数的不同而有所区别。齿轮采用双圆弧正弦曲线齿形制造。它与渐开线齿轮相比突出的优点是齿轮啮合过程中齿廓面没有相对滑动,所以齿面无磨损,运转平稳,无因液现象,噪音低、寿命长、效率高。该泵摆脱了传统设计的束缚,使得齿轮泵在设计、生产和使用上进入了一个新的领域。

高压齿轮泵的特点是体积小,重量轻,结构简单,制造方便,价格低,工作可靠,自吸性能较好,对油液污染不敏感,维护方便等。 高压齿轮泵适用于输送介质温度不高于200℃,粘度不大于1500mm2/s,含有非金属杂质的重油、柴油、煤焦油以及其它类低档劣质燃烧油等。特别适用于石油、化工、粮油、建材、日用化学、筑路、电力和沥青拌合站部门和行业的燃油喷射场合。也更适用要求工作压力稳定,长期连续工作的场合。在输送有润滑无杂质的介质时更显示出泵的长寿命、压力稳定的重要特点。设有齿轮端面间隙可调结构,当泵工作一定时间出现工作压力下降时,可通过泵盖上的外置微调结构对泵内齿轮端面间隙进行调整,从而使泵的工作压力得恢复,并可以进行数次调整。 淄博德信泰达泵业有限公司以化工泵为主营方向,工艺成熟,产品运行稳定,故障率低,产品寿命高,采用YE3电机,更加放心和

环保节能。泵阀规格全,30多个系列可满足客户需求,也可按需定制。多年生产经验、强大技术团队保证产品性能强,价格合理。公司备有库存,可交货期快。产品具有6大优势:外观上,匠心工艺,美观大方;性能上,耐腐蚀,可输送有腐蚀性粘度类似于水的液体;噪声上,噪声较低,符合国家标准;售前上,在线客服,快速为您答疑解惑;售中上,定时交货快,送货上门;售后上,免费安装和维修。

齿轮泵结构原理介绍

CB-B10低压齿轮油泵是将机械能转换为液压能的转换装置。 CB-B10齿轮泵应用范围:用于机床、工程机械的液压系统,作为液压系统的动力源,也可作润滑泵,输油泵使用。 CB-B10齿轮泵型号 CB-B10齿轮泵外形图 CB-B10齿轮泵技术参数 型号 额定流量 h/min 额定压力 Pa 额定转速 min 容积效率 ηv% 总效率 ηbdt% 压力脉动 Pa 噪声值 分贝 电机功率 w 重量 g CB-B2.5 2.5 2.5 1450 ≤70 ≤63 ±0.20 62~65 0.37 2.4 CB-B4 4 ≤80 ≤72 2.8 CB-B6 6 0.55 3.2 CB-B10 10 ≤90 ≤81 3.5 CB-B16 16 67~70 1.1 5.2 CB-B20 20 5.4 CB-B25 25 1.5 5.5 CB-B32 32 ≤94 ≤85 6.0 CB-B40 40 74~77 2.2 10.5 CB-B50 50 11.0 CB-B63 63 3 11.8 CB-B80 80 78~80 4 17.6 CB-B100 100 ≤95 ≤86 18.7 CB-B125 125 5.5 19.5

CB-B10齿轮泵技术规格 型号 C E H C 1 C 2 D D 1 d E 1 T b M K 1 K 2 CB-B2.5 79 66 96 25 30 a35 a50 a12 35 30 4 M6 Z 3 /8" Z 3 /8" CB-B4 82 CB-B6 86 CB-B10 94 CB-B16 107 90 132 30 35 a50 a65 a6 50 42 5 M8 Z 3 /4" Z 3 /4" CB-B20 111 CB-B25 115 CB-B32 121 CB-B40 132 102 154 35 40 a55 a80 a22 55 52 6 M8 Z1" Z 3 /4" CB-B50 138 CB-B63 144 CB-B80 158 121 186 45 50 a70 a95 a30 65 65 8 M8 Z 1 /4" Z1" CB-B100 165 CB-B125 174 CB-B10低压齿轮油泵是将机械能转换为液压能的转换装置。 CB-B10齿轮泵应用范围:用于机床、工程机械的液压系统,作为液压系统的动力源,也可作润滑泵,输油泵使用。 CB-B10齿轮油泵,CB-B16齿轮油泵,CB-B25齿轮油泵,CB-B32齿轮油泵,CB-B40齿轮油泵,CB-B50齿轮油泵,CB-B63齿轮油泵,CB-B80齿轮油泵,CB-B100齿轮油泵,CB-B125齿轮油泵是将机械能转换为液压能的转换装置。 CB-B10齿轮泵,CB-B16齿轮泵,CB-B25齿轮泵,CB-B32齿轮泵,CB-B40齿轮泵,CB-B50齿轮泵,CB-B63齿轮泵,CB-B80齿轮泵,CB-B100齿轮泵,CB-B125齿轮泵应用范围:用于机床、工程机械的液压系统,作为液压系统的动力源,也可作润滑泵,输油泵使用。 XCB-B10齿轮油泵,XCB-B16齿轮油泵,XCB-B25齿轮油泵,XCB-B32齿轮油泵,XCB-B40齿轮油 泵,XCB-B50齿轮油泵,XCB-B63齿轮油泵,XCB-B80齿轮油泵,XCB-B100齿轮油泵,XCB-B125齿轮油泵 齿轮泵工作原理是通过齿轮啮合产生的空间将油从油箱挤压到润滑部位 在术语上讲,齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。由于齿的不断啮合,这一现象就连续在发生,因而也就在泵的出口提供了一个连续排除量,泵每转一转,排出的量是一样的。随着驱动轴的不间断地旋转,泵也就不间断地排出流体。泵的流量直接与泵的转速有关。实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到100%,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体100%地从出口排出,所以少量的流体损失是必然的。然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到93%~98%的效率。对于粘度或密度在工艺中有变化的流体,这种泵不会受到太多影响。如果有一个阻尼器,比如在排出口侧放一个滤网或一个限制器,泵则会推动流体通过它们。如果这个阻尼器在工作中变化,亦即如果滤网变脏、堵塞了,或限制器的背压升高了,则泵仍将保持恒定的流量,直至达到装置中最弱的部件的机械极限(通常装有一个扭矩限制器)。 对于一台泵的转速,实际上是有限制的,这主要取决于工艺流体,如果传送的是油类,泵则能以很高的速度转动,但当流体是一种高粘度的聚合物熔体时,这种限制就会大幅度降低。推动高粘流体进入吸入口一侧的两齿空间是非常重要的,如果这一空间没有填充满,则泵就不能排出准确的流量,所以PV 值(压力×

CBY系列高压齿轮泵

CBY 系列高压齿轮泵 用途与特征: CB**E 系列齿轮泵属于中高压齿轮泵,是CB 系列齿轮泵的换代产品。它采用了承载能力高的DU 轴承、铝合金壳体、浮动轴套等结构,具有结构简单、重量轻、体积小能长期保持较高的容积效率、使用可靠等特点,广泛用于自卸车、冶金、农业机械等液压系统中作动力源,也适用于其它工程机械行业的液压系统中。 型号说明: 性能参数: 型 号 理论排量 (mL/r) 压力(MPa) 转速(r/min) 输入功率 (KW) 重量 (kg) 容积效 率 (%额定 最高 额定 最高

CBY2032 32.23 16 20 35.6 12.0 ≥90 CBY2040 40.15 44.6 12.5 CBY3040 40.6 2000 2500 30.1 20.7 CBY3050 50.3 37.3 21.5 CBY3063 63.6 47.1 22.5 CBY3080 80.4 59.6 23.4 CBY3100 100.7 74.6 24 CBY4125 125.95 2200 93.3 CBY4140 139.95 103.7 CBY4150 150.13 23 111.2 CBY4160 160.30 22 118.7 CBY4170 170.48 126.3 CBY4180 180.66 10 16 20 2000 107.1 CBY4190 190.84 18 113.1 CBY4200 201.02 119.1 工作油液(mm 2/s) 过滤精度(μm) 工作油温(℃) 20~43 液压油 ≤25 -20~+80 注:1.油液最高污染等级:按GB/T14039之20/17; 2.非额定工况下(压力、转速)的容积效率值参见齿轮泵工作性能曲线或特殊定货产品工作性能曲线。 CBY2,CBY3外形安装连接尺寸:

齿轮泵常见问题分析报告

遇事询问:班次、何人、数量、那几台机床、目前状况。 齿轮泵提高容积效率的方法 增加容积效率对于齿轮泵而言就是增大供油量与内泄的比例。 方法有两方面。1 增大流量 2减小内泄。 具体方法有 1增大模数、减少齿数、增加转速、使卸荷槽适当偏向排油一侧。 2压力较高时用间隙补偿结构就是加浮动侧板、提高加工精度主要是减小齿轮端面跳动。 液压齿轮泵扭矩大是哪的原因? 齿轮中心距偏小,或者配合面粗糙度不高,配合尺寸偏紧。 齿轮泵容积效率 增加容积效率对于齿轮泵而言就是增大供油量与内泄的比例。方法有两方面。1 增大流量 2减小内泄。具体方法有 1增大模数、减少齿数、增加转速、使卸荷槽适当偏向排油一侧。 2压力较高时用间隙补偿结构就是加浮动侧板、提高加工精度主要是减小齿轮端面跳动。 工艺改进齿轮泵效率容积和性能的讨论 文章热度:105 齿轮泵容积效率较低,主要是端面泄漏较大,约占总泄漏量的70~80%.所以,提高齿轮泵的端盖和壳体之间的配合精度,提高泵的容积效率和性能是技术人员努力的方向。齿轮泵端面和壳体的加工基本上是定位销来保证其加工和配合精度。但是由于定位销孔的孔径尺寸较小,仅为φ8mm,而且加工精度、内表面粗糙度等要求较高,我们以前经过多方努力,

采用各种加工方法,质量仍难以保证,对此,我们进行了一定的研究,改进了加工和装配工艺,取得了一定的效果。 齿轮泵端盖与壳体配合误差对泵的性能和效率的影响 主动齿轮回转轴线与前盖定位止口同轴度误差大,齿轮旋转阻力大,甚至卡死,造成泵的机械性能大大下降。零件的动配合不好,磨损加快,缩短了齿轮泵的使用寿命,并且浮动轴套轴向移动阻力较大,使齿轮泵端面与轴套之间的间隙不能及时消除,甚至不能移动,导致齿轮泵容积效率下降。另外,由于主动轮轴与传动轴受其自身同轴度的影响,加大了泵的振动和噪声。 定位销孔加工工艺比较及试验 一、定位销加工工艺比较 (1)采用钻、铰(钻模)工艺,虽然保证了2-φ8mm孔径尺寸精度和内径表面粗糙度,但销孔孔距误差大,而且不太稳定。 (2)采用钻、成型(模具挤压)工艺,虽然保证了两销孔加工精度、孔径精度,并且稳定可靠,但是又带来销孔表面粗糙、部分孔径不圆度增大的问题。 (3)在两个+13mm紧固螺钉孔口部添置套管销,去掉原来2-φ8mm销孔,采用钻、铰、镗工艺,保证了各方面的精度,但是工艺复杂,成本较高。针对以上情况,我们进行了分析研究,认为解决定位销问题是关键所在,改进加工工艺是解决问题的路子。 二、对比试验分析 我们采用一个定位销和主动轮轴作为定位加工、装配,去掉另一个定位销,然后再随机抽取六台齿轮泵分三组按不同的组装方式在齿轮泵全性能试验台上做性能试验,检测它们在试验前和试验后主动轮轴线与前盖定位止口同轴度的误差变化,从而选取最佳方案。具体情况如表1。 从表1上对比情况可见,第三种方法径向跳动变化最小,证明采用这种工艺方案是成功可行的。为了提高齿轮泵的装配精度,我们又专门设计制造了以主动齿轮轴为基准的定位夹具,在装配时利用该夹具将前盖位置精确地控制后,再拧紧四只紧固螺钉。 4结束语 实践证明,采用新的工艺以后,较好地解决齿轮泵的端盖和壳体之间的配合及加工问题,保证了泵的各项技术指标,提高了泵的容积效率和机械性能,取得了较为满意的效果,并且较为经济实用。 油泵常见故障排除方法

齿轮泵设计步骤2016

第2章 液压泵的设计与计算 齿轮泵的设计与计算 设计齿轮泵时,应该在保证所需性能和寿命的前提下,尽可能使泵的尺寸小、重量轻、制造容易、成本低,以求技术上先进,经济上合理。因此,合理选择齿轮泵的各项参数及有关尺寸是非常关键的,设计时通常给出泵的额定压力p 和排量V 作为原始设计参数。现以两个齿轮基本参数相同的高压齿轮泵为例来说明其设计要点。 2.1.1齿轮泵各参数的选择原则 齿轮泵各参数的主要关系式是平均流量计算公式,即: 620102-?=n BZm Q πχ (min /L ) (2—1) 62102-?=V n BZm Q ηπχ (min /L ) (2—2) 式中:0Q ——泵的理论流量; Q ——泵的实际流量; χ——流量修正系数;χ值通常为~; 低压齿轮泵齿数Z 一般为13~19,推荐66.62=πχ; 高压齿轮泵齿数Z 一般为6~13,推荐72=πχ; B ——齿宽(mm); Z ——齿数; m ——模数(mm); n ——转速(r/min); V η——容积效率,—般V η=~。 流量Q 是设计参数,只要确定B 、Z 、m 、n 后泵的结构尺寸就大体确定了,然后参考有关结构进行设计,最后进行强度校验。下面来讨论如何确定B 、Z 、m 、n 这些参数。 1.确定转速n :从流量公式可知,齿轮泵的流量Q 与转速n 成正比,转速越高,则流量越大。但转速不能太高,因为转速太高时,油液在离心力的作用下,不能填满吸油腔的工作容积,并且对吸油腔的吸油也造成阻力,这时很容易产生气蚀现象,使泵的容积效率降低,特别是当油液粘度高时,齿轮节圆的线速度就受一定限制。在各种油液粘度下,允许最大节圆线速度见表2-1。 此外,液压泵的转速也不能太低,因为当工作压力一定时,液压泵的泄漏量也接近于一定值,它与转速的关系不大;但转速越低,流量越小,则液压泵的泄漏量与输油量的相对比值将越大,也就是液压泵的容积效率越低。当转速低至液压泵的理论流量和泄漏量相等时,则液压泵就不能出油。最低节圆圆周速度m in V 可按下列经验公式确定: 50 min 17.0E p V ?= (s m /) (2—3)

相关文档
最新文档