压制次数对铜基粉末冶金摩擦材料物理性能的影响

压制次数对铜基粉末冶金摩擦材料物理性能的影响
压制次数对铜基粉末冶金摩擦材料物理性能的影响

烧结金属摩擦材料现状与发展动态

烧结金属摩擦材料现状与发展动态 newmaker 1 前言 烧结金属摩擦材料是以金属及其合金为基体,添加摩擦组元和润滑组元,用粉末冶金技术制成的复合材料,是摩擦式离合器与制动器的关键组件。它具有足够的强度,合适而稳定的摩擦系数,工作平稳可靠,耐磨及污染少等优点,是现代摩擦材料家族中应用面最大、量最大的材料。 用粉末冶金技术制造烧结金属摩擦材料已有70年的历史,1929年美国开始了这项工作的研究,30年代末期首先将该材料用在了D-7、D-8铲运机中的离合器片上。发展到现在,所有载荷量高的飞机,包括米格、伊尔、波音707、747和三叉戟等,其制动器摩擦衬材料都采用了烧结金属摩擦材料。在我国,特别是在1965年以后,烧结金属摩擦材料的科研、生产得到迅速发展。迄今,我国已有十多个具有一定生产规模的生产企业,年产铜基和铁基摩擦制品约850万件,广泛应用于飞机、船舶、工程机械、农业机械、重型车辆等领域,基本满足了国内主机配套和引进设备摩擦片的备件供给和使用要求。 2 制造方法与工艺研究 2.1 制造方法 目前,国内外烧结金属摩擦材料的生产仍主要沿用1937年美国S·K·Wellman及其同事们创造的钟罩炉加压烧结法(压烧法),该方法的基本工序是:钢背板加工→往油、电镀铜层(或铜、锡层);配方料混合→压制成薄片→与钢背板烧结成一体→加工沟槽及平面。由于传统的压烧法存在着能耗大、生产效率相对低、原材料粉末利用率低、本钱高等缺点。因此,一些国家对传统工艺作了一些改进,同时十分注重新工艺的研究,在改善或保证产品性能条件下探索和寻求进步经济效益的途径。 新的制造工艺相继问世,其中最令人瞩目的是喷撒工艺(Sprinkling powder procedure),它以生产的高效率和明显的经济效益独具上风。喷撒工艺法以产业规模生产烧结金属摩擦材料始于70年代,美国的威尔曼、西德的奥林豪斯和尤里特、奥地利的米巴等企业拥有这项技术。80年代中期,杭州粉末冶金研究所从奥地利米巴公司引进了该技术。 喷撒工艺的基本流程是:钢背板在溶剂(如四氯化碳中脱脂处理(或钢背板电镀)→在钢背板上喷撒上混合材料→预烧→压沟槽→终烧→精整。 与传统的压烧法相比,喷撒工艺主要有下列一些优点: (1)实现了无加压连续烧结,耗能低。

Fe在铜基粉末冶金摩擦材料中的作用

收稿日期:2006-02-20 基金项目:湖南省科技重大项目产业化研究资助(01-96-10)作者简介:陈 洁(1978-),女(汉),湖南长沙人,在读博士,主要从事复合材料的研究。 Fe 在铜基粉末冶金摩擦材料中的作用 陈 洁,熊 翔,姚萍屏,李世鹏 (中南大学粉末冶金研究院国家重点实验室,湖南 长沙 410083) 摘 要:研究了Fe 在铜基粉末冶金航空摩擦材料中的摩擦磨损作用及机理。研究表明:Fe 在 铜基摩擦材料中起到了摩擦组分的作用,对材料的机械性能和摩擦磨损性能起到了重要的作用。Fe 能提高铜基摩擦材料的强度、硬度;当Fe 含量超过4%后,随Fe 含量的增加,材料的摩擦系数及稳定性增加;高速摩擦条件下,Fe 能促进摩擦面氧化膜的形成,减小材料的摩擦系数和磨损量。 关键词:粉末冶金摩擦材料;摩擦磨损;摩擦组分;摩擦机理中图分类号:TF12512 文献标识码:A 文章编号:1006-6543(2006)04-0016-05 THE WOR KIN G OF Fe IN COPPER -BASED P/M FRICTION MA TERIAL CHEN Jie ,XIONG Xiang ,YAO Ping -ping ,L I Shi -peng (Stare K ey Laboratoty of Powder Metallurgy ,Central S outh University ,Changsha 410083,China ) Abstract :The working mechanism of Fe in a new type of copper -based P/M friction material was studied 1The results show that Fe works as frictional component in copper -based friction ma 2terials ,influening the mechanical and frictional property of materials 1Fe can increase the strength and hardness of friction material ;when Fe is more than 4%,with the increase of Fe ,the friction coefficient and stability of the material are enhanced 1At the same time ,at high speed friction ,Fe takes part in formation of oxide film on friction surface ,so the wear loss of friction material is de 2creased 1 K ey w ords :P/M friction material ;friction and wear ;friction component ;friction mechanism 铜基粉末冶金摩擦材料由于其良好的导热性、耐磨性而被广泛应用于各种离合器和刹车装置中[1]。粉末冶金摩擦材料是以金属及其合金为基体,添加硬质颗粒摩擦组元和固体润滑组元,用粉末冶金的方法制造而成的金属基颗粒复合材料[2]。因此,可以通过调节和控制复合材料中各组元的含量及存在形式来改善材料的物理机械性能,进而提高材料的摩擦磨损性能,最终得到综合性能优异的粉末冶金摩擦材料。 粉末冶金摩擦材料中大都加有Fe 作为摩擦组元,以提高材料的摩擦系数[3,4],其含量一般在5%~25%的范围内。有资料显示[5],Fe 含量在5%以下时,摩擦系数才有所提高,随后Fe 含量增加,材料的摩擦系数变化不大,且Fe 含量增加,材料磨损量增加,对偶磨损量则减少[6]。本文即针对Fe 在新型铜基粉末冶金摩擦材料中的作用机理进行了系统的分析,明确了Fe 对铜基粉末冶金摩擦材料摩擦磨损性能的影响。 第16卷 第4期 2006年8月 粉末冶金工业POWDER METALL URG Y IN DUSTR Y Vol.16No.4Aug.2006

粉末冶金技术论文..

粉末冶金技术 摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。 关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇 Powder metallurgy technology (11 grade material class two) Abstract:Powder metallurgy is used for preparing metal or metal powder (or metal powder and metal powder mixture) as raw material, after forming and sintering, manufacture of metal materials, composite and various types of products technology.Powder metallurgy method and the production of ceramic have similar place, therefore, a series of new powder metallurgy technologies can also be used for preparing ceramic material. Powder metallurgy materials refers to the use of several kinds of metal powder or metal and non metal powder as raw material, through mixing, pressing, sintering process and made of materials.The process to become powder metallurgy method, is different from the melting and casting method.Its production process and ceramic products are similar, so called ceramic metal.Powder metallurgy method not only has some special properties of material preparation method, is also a kind of without cutting or less cutting processing method. It has high productivity, high material utilization rate, saving machine tools and production area etc..But the metal powder and high mold cost, product size and shape are subject to certain restrictions, flexibility is poor.Powder metallurgy method often used for the production of hard alloy, antifriction material, structural material, friction material, refractory metal materials, filter materials, metal ceramic, no segregation in high speed tool steel, magnetic materials, heat resistant materials. Key words:powder metallurgy, basic process, application, development trend, problems and opportunities

粉末冶金摩擦材料-培训教材

粉末冶金摩擦材料 (培训教材) 中国粉末冶金实验基地

目录 1.概述 2.粉末冶金摩擦材料的特点 3.我国生产的粉末冶金摩擦材料4.粉末冶金摩擦材料的装配 5.粉末冶金摩擦材料的组成 6.粉末冶金摩擦材料的生产 7.对摩材料

1.概述 摩擦材料是制动器(刹车制动)、离合器(传递扭矩)使用的一种功能性材料,它对制动器、离合器的工作起着重要的作用。例如,飞机的刹车片、汽车的刹车带、火车的制动闸瓦(闸片)等,是用做制动器中的摩擦材料。离合器片则是用在离合器中的摩擦材料。与摩擦材料一起摩擦进行工作的材料在飞机上称为对偶,或者叫作对摩材料;而在火车和汽车上则称为制动盘材料。摩擦材料和对摩材料构成一组摩擦副。尽管摩擦副的工作是由摩擦材料和对摩材料的共同性质所决定的,但是在其中起主要作用的、决定性作用的仍然是摩擦材料。 制动就是强制运转的机器或机械减速和停止的过程。在制动器中,摩擦副吸收机器或机械的动能,并把它转化为热能。一部分热量发散到周围的环境中去,而另一部分为摩擦副所吸收,使摩擦副本身的温度升高。传递扭矩摩擦副的工作和制动摩擦副的工作没有什么本质的区别,同样都是摩擦副中摩擦材料和对摩材料的相对速度发生变化。工作开始时相对速度最大,而后逐渐减小到零的过程。区别是工作时间的长短(制动时间一般是从几秒到十几秒,传递扭矩的时间一般是十分之几秒到几秒)不同,吸收能量的大小不同,摩擦因数不同,因而摩擦副的工作温度也不同。 摩擦副在工作过程中总是要吸收能量,使本身的温度升高。因此,摩擦材料不是在室温,而是在较高的温度下工作的。 摩擦材料工作时的温度和升温速度,在结构一定的情况下,主要和摩擦副工作时必须吸收的能量大小、吸收这些能量的时间间隔有关。吸收的能量越大、时间间隔越短,那么摩擦材料的温度越高,升温速度也越大。在某些情况下,发生热冲击,也就是在很短的时间间隔之内,摩擦表面产生极高的温度。例如,飞机在着陆制动时,在3~5秒种之内,摩擦材料工作表面温度可达到1000℃以上,体积温度高达400℃~600℃。 在油中工作的离合器摩擦副(称为湿式工作条件下),尽管工作时吸收的能量也很大,但由于有油的存在,一般工作表面的温度和整个摩擦材料的体积温度不超过200℃。 摩擦材料是靠表面工作的。在工作中,摩擦材料的工作表面温度很快升高,而后靠传导作用,使整个摩擦材料的温度升高。因此,摩擦材料的工作表面温度和整

摩擦材料

摩擦材料 一、概论 摩擦材料是一种应用在动力机械上,依靠摩擦作用来执行制动和传动功能的部件材料。它主要包括制动器衬片(刹车片)和离合器面片(离合器片)。刹车片用于制动,离合器片用于传动。 任何机械设备与运动的各种车辆都必须要有制动或传动装置。摩擦材料是这种制动或传动装置上的关键性部件。它最主要的功能是通过摩擦来吸收或传递动力。如离合器片传递动力,制动片吸收动能。它们使机械设备与各种机动车辆能够安全可靠地工作。所以说摩擦材料是一种应用广泛又甚关键地材料。 摩擦材料是一种高分子三元复合材料,是物理与化学复合体。它是由高分子粘结剂(树脂与橡胶)、增强纤维和摩擦性能调节剂三大类组成及其它配合剂构成,经一系列生产加工而制成的制品。摩擦材料的特点是具有良好的摩擦系数和耐磨损性能,同时具有一定的耐热性和机械强度,能满足车辆或机械的传动与制动的性能要求。它们被广泛应用在汽车、火车、飞机、石油钻机等各类工程机械设备上。民用品如自行车、洗衣机等作为动力的传递或制动减速用不可缺少的材料。 二、摩擦材料发展简史 自世界上出现动力机械和机动车辆后,在其传动和制动机构中就使用摩擦片。初期的摩擦片系用棉花、棉布、皮革等作为基材,如:将棉花纤维或其织品浸渍橡胶浆液后,进行加工成型制成刹车片或刹车带。其缺点:耐热性较差,当摩擦面温度超过120℃后,棉花和棉布会逐渐焦化甚至燃烧。随着车辆速度和载重的增加,其制动温度也相应提高,这类摩擦材料已经不能满足使用要求。人们开始寻求耐热性好的、新的摩擦材料类型,石棉摩擦材料由此诞生。 石棉是一种天然的矿物纤维,它具有较高的耐热性和机械强度,还具有较长的纤维长度、很好的散热性,柔软性和浸渍性也很好,可以进行纺织加工制成石棉布或石棉带并浸渍粘结剂。石棉短纤维和其布、带织品都可以作为摩擦材料的基材。更由于其具有较低的价格(性价比),所以很快就取代了棉花与棉布而成为摩擦材料中的主要基材料。1905年石棉刹车带开始被应用,其制品的摩擦性能和使用寿命、耐热性和机械强度均有较大的提高。1918年开始,人们用石棉短纤维与沥青混合制成模压刹车片。20世纪20年代初酚醛树脂开始工业化应用,由于其耐热性明显高于橡胶,所以很快就取代了橡胶,而成为摩擦材料中主要的粘结剂材料。由于酚醛树脂与其他的各种耐热型的合成树脂相比价格较低,故从那时起,石棉-酚醛型摩擦材料被世界各国广泛使用至今。 20世纪60年代,人们逐渐认识到石棉对人体健康有一定的危险性。在开采或生产过程中,微细的石棉纤维易飞扬在空气中被人吸入肺部,长期间处于这种环境下的人们比较容易患上石棉肺一类的疾病。因此人们开始寻求能取代石棉的其它纤维材料来制造摩擦材料,即无石棉摩擦材料或非石棉摩擦材料。20世纪70年代,以钢纤维为主要代替材料的半金属材料在国外被首先采用。80年代-90年代初,半金属摩擦材料已占据了整个汽车用盘式片领域。20世纪90年代后期以来,NAO(少金属)摩擦材料在欧洲的出现是一个发展的趋势。无石棉,采用两种或两种以上纤维(以无机纤维为主,并有少量有机纤维)只含少量钢纤维、铁粉。NAO(少金属)型摩擦材料有助于克服半金属型摩擦材料固有的高比重、易生锈、易产生制动噪音、伤对偶(盘、鼓)及导热系数过大等缺陷。目前,NAO (少金属)型摩擦材料已得到广泛应用,取代半金属型摩擦材料。2004年开始,随汽车工业飞速发展,人们对制动性能要求越来越高,开始研发陶瓷型摩擦材料。陶瓷型摩擦材料主要以无机纤维和几种有机纤维混杂组成,无石棉,无金属。其特点为: 1. 无石棉符合环保要求; 2. 无金属和多孔性材料的使用可降低制品密度,有利于减少损伤制动盘(鼓)和产生制动噪音的粘度。 3. 摩擦材料不生锈,不腐蚀; 4. 磨耗低,粉尘少(轮毂)。 三、摩擦材料分类 在大多数情况下,摩擦材料都是同各种金属对偶起摩擦的。一般公认,在干摩擦条件下,同对偶摩擦系数大于0.2的材料,称为摩擦材料。 材料按其摩擦特性分为低摩擦系数材料和高摩擦系数材料。低摩擦系数材料又称减摩材料或润滑材料,其作用是减少机械运动中的动力损耗,降低机械部件磨损,延长使用寿命。高摩擦系数材料又称摩阻材料(称为摩擦材料)。

FeSO4对铜基粉末冶金摩擦材料性能的影响

FeS04对铜基粉末冶金摩擦材料性能的影响/龙波等445 FeS04对铜基粉末冶金摩擦材料性能的影响 龙波,白同庆,李东生 (北京百慕航材高科技股份有限公司,北京100095) 摘要研究了FeS04对铜基粉末冶金摩擦材料性能的影响。结果表明,摩擦材料中添加FeS04产生了较好的润滑效果。在烧结过程中FeSO。发生分解生成S02和如03,s02与基体材料中的金属反应生成FeS、M nS等金属硫化物。随着F eS04含量增加,材料的密度与硬度逐渐降低;在M M-1000摩擦试验机上进行摩擦性能测试,结果表明随着Fes04含量的增加,摩擦副摩擦系数降低;当材料中FeS04含量为4%时,金属陶瓷摩擦材料具有最佳的摩擦磨损性能。 关键词FeSO‘金属陶瓷摩擦系数磨损 E f f ect of FeS04A ddi t i on on Pr oper t i es of C oppe r-ba sed Pow der M e t al l ur gy Fr i ct i on M at er i al L O N G B o,B A I Tongqi ng,L I D ongs heng (B A I M T E C M at er i al C o.,Lt d,B ei j i ng100095) A bs t ract T he ef fect of FeS04o n t he copper-ba se d pow der m e t al l ur gy f ri ct i o n m at er i aI i s i nves t i gat ed i n t h i s pa per.T he r es u l t s ho w s t hat t he addi t i on of FeS04m ak es pr ef e r abl e l ubr i cat i ve act i on t O t he f r ict ion m at eri al.D uri ng t he s i nt er i n g per i od,FeS04i s decom pos ed i n t O S02and如03.The SQ r eact s w i t h t he m e t a l i n t he m a t r i x and FeS,M nS e t c m e t a l s ul t ides ar e ge nera t ed.W i t h t he i ncr ease of FeS04addi t i on i n t he f ri ct i o n m at er i al t he den si t y a nd har d—nes s of t he m at er i al de bas e gr a dual l y.The f ri ct i o n w ear t e st i s eval ua t ed o n t he M M-1000f ri ct i o n w e ar t est er.W i t h t he r i sing of FeS04addi t i o n。t he f ri ct i o n coe“i ci ent re duc es w h i l e t he s t abi l it y coef f ici ent i ncr e ases.As t he FeS04addi t i on i n t he f ri ct i o n m a t er i al i s a bout4%,t he coppe r-base d f ri et i o n m at er i al posses ses t he best f r ict ion and w ea r per f or m ance.K ey w or ds FeS04,cer m e t,f r i ct i on coef f i ci ent,w ear 粉末冶金摩擦材料又称烧结金属摩擦材料,是以金属及合金为基体,添加摩擦组元和润滑组元,用粉末冶金技术制成的复合材料,是摩擦式离合器与制动器的关键组件[1’2]。 随着科学技术日新月异的发展,飞机、坦克、火车、汽车、船舶及工程机械等的运转速度及负荷迅速增长,对制动材料提出了越来越高的要求,粉末冶金摩擦材料因其具有足够的强度、合适而稳定的摩擦因数、工作平稳可靠、耐磨及污染少等优点而得到广泛应用。粉末冶金摩擦材料主要有铁基和铜基摩擦材料,为充分利用二者性能优势又发展了铁铜基摩擦材料[3~5]。 摩擦材料中加入润滑组元的作用是改善其抗卡滞性能、提高其耐磨性。金属陶瓷摩擦材料中常用的固体润滑剂有石墨、二硫化钼、氮化硼以及一些低熔点金属等[6~8]。FeS04作为固体润滑剂已在铁基粉末冶金摩擦材料中得到应用[9],而未见关于FeS04用于铜基摩擦材料的报导,本文选择铜基粉末冶金摩擦材料作为研究对象,考察了FeS04含量对航空制动用金属陶瓷摩擦材料性能的影响。 1试验 1.1实验材料及制备方法 为了排除其他组元对实验结果的影响,本实验仅改变C u 和FeS04的配比,其他组元固定不变,具体配方如表1所示。. 表1材料配方(%(质量分数)) Tabl e1M a t er i a l com pos i t i on(w t%) 按比例称取各种粉末,在V型混料筒内混合4~6h;混合料在400M Pa压力下压制成压坯;装入钟罩炉中,于900930℃和H z的保护气氛下加压烧结,烧结压力为2.o~3.0M P a,保温3h,降温随炉冷,小于100℃出炉。 1.2测试方法 采用H B3000型布氏硬度计测量试样的硬度。在盼1450扫描电镜下观察组织形貌并进行微区元素分析。将摩擦材料加工成量75m m×①53m m的试环,对偶材料为30Cr Si M oV A钢,在M M-1000摩擦试验机上进行摩擦磨损实验,按照H B5434.7-1989《航空机轮刹车材料摩擦试验法》进 龙波:男,1980年生,硕士,工程师,主要从事摩擦材料的研制、开发与生产E-m a i l:l b904221@ya hoo.com.c a

粉末冶金摩擦材料原料作用分析

高铁粉末冶金刹车片用原材料作用分析粉末冶金摩擦材料的问世距今已有近百年的历史,尤其在近几年发展尤为迅猛。粉末冶金工艺可以将金属和非金属组分的不同性能很好地配合于一种材料中,已有逐渐代替有机物粘结高分子材料的趋势。 粉末冶金摩擦材料一般由三部分组成:构成基体金属骨架的组元、润滑组元和摩擦组元。是一种含有金属和非金属多种组分的假合金。 1构成基体金属骨架的组元 简称基体组元。常用铜、铁、二硫化钼、镍、钛、铬、钼、钨、磷、锡、铝、锌等。 基体组元由基本组元和辅助组元两部分组成,基本组元在成分中占的比重最大。在铁基中,基本组元是铁。在铜基中,基本组元是铜。辅助组元与基本组元形成合金,从而改善基本组元的性能,或者是赋予基本组元以某种所需要的性能。辅助组元在铁基材料中有二硫化钼、镍、铬、钼、铜及磷等。在铜基中主要是锡、铝、锌及磷等。 粉末冶金摩擦材料的性能、工艺特点在很大程度上取决于基体组元的化学成分、结构和物理机械性能。基体组元保证了材料的承载能力、热稳定性、耐磨性,以及在高温工作时保持住摩擦剂和润滑剂颗粒的能力。一般在粉末冶金摩擦材料中,基体组元占铁基材料的50%~70%,占铜基材料的60%~90%。 1.1铁 近年来铁基粉末冶金摩擦材料的发展很快,主要是由于它节省有色金属,在高温高负荷下显示出更加优良的摩擦性能,机械强度高,能够承受比较大的压力,因而它应用在很多领域。但是,由于铁与对偶具有很强的亲和性,有利于粘结过程的发展,因此需加入大量的其他元素使铁合金化以降低铁的塑性,提高其强度、屈服极限和硬度,以克服次缺点,但同时也提高了成本和加工工艺复杂度。 铁基材料的基体组元中,加入镍、铬、钼,主要目的在于提高材料机械-物理性能和耐热耐腐性能。加入磷,能提高材料的强度,提高耐磨性。加入二硫

烧结气氛论文:烧结工艺对铜基粉末冶金摩擦材料性能的影响

烧结气氛论文:烧结工艺对铜基粉末冶金摩擦材料性能的影响 【中文摘要】随着我国铁路运输业的飞速发展,列车运行速度一提再提,这就对制动摩擦材料提出了更为苛刻的要求。铜基粉末冶金摩擦材料因其具有高的机械强度、高导热性和优良的摩擦磨损性能而成为高速列车制动闸片的首选材料,如何通过制备工艺和原料体系的改进提高材料的耐温性能和摩擦稳定性一直是人们研究的重点。本文通过采用不同的烧结工艺制备了铜基粉末冶金摩擦材料,研究不同烧结温度和烧结气氛对材料显微组织、物理机械性能和摩擦磨损性能的影响,并探讨了材料在不同制动条件下的摩擦磨损行为及机理,结果 表明:(1)铜基粉末冶金摩擦材料中各组元分布均匀,组元间接触紧密,鳞片状石墨垂直于压制方向呈层状分布,SiO2以黑色大颗粒状镶嵌于铜基体内。随的烧结温度提高,材料中各组元间的孔隙减少,当达到一定程度后,孔隙不再减少;烧结气氛对材料的形貌无明显影响。(2) 烧结工艺对材料的物理-机械性能影响较大。随烧结温度的提高,采用N2和N2+H2混合气制备材料的密度先升后降,抗压强度较大,且随之呈上升趋势;H2气氛制备材料的密度呈下降趋势,抗压强度与其他两种气氛下制备的相比显著降低,且呈下降趋势。(3)相同制动压力下,材料的摩擦系数随的转速的提高先升高后降低,磨损量随着转速的提高逐渐增加;在较低转速时,磨损以粘着磨损为主,随着转速提高,磨损逐渐表现为氧化磨损和疲劳磨损。N2+H2混合气氛烧结材料在较低

转速下具有较好的摩擦性能,磨损量很低,且随烧结温度提高呈下降 趋势;N2气氛烧结材料在较高转速下摩擦性能较好,摩擦稳定性好,而且磨损量也较低。(4)在一定转速下,随着制动压力的提高,材料的摩擦系数呈下降趋势,摩擦稳定性系数先升高后下降,磨损量显著增加;较低压力时,磨损主要由粘着机理控制,较高压力时,磨损主要表现为疲劳磨损和剥层脱落。N2+H2混合气氛烧结材料在高制动压力下具有较好的摩擦性能,摩擦稳定性最高,磨损量最小,且随烧结温度升高先减少后增加,在1000℃时最低。 【英文摘要】With the development of train transport, the requirements are stiffer and stiffer in the properties of the braking materials by the speed improvement. Because of the high mechanical strength, high conductibility and excellent friction and wear properties, Cu-based P/M friction materials have been the leading material for friction brake of high-speed train.Cu-based P/M friction material has been made by different sintering process. The effect of sintering temperature and atmosphere on the micro-structure, physical and mechanical properties and friction and wear properties of material have been investigated, and the friction and wear behavior and mechanism in the different braking conditions have been discussed. The results show:(1) Scaly graphite and SiO2 are well-distributed in Cu-based P/M materials. With the

粉末冶金成形技术

第四章粉末冶金成形技术 一、粉末冶金成形定义: 用金属粉末或金属与非金属粉末的混合物作原料,采用压制、烧结及后处理等工序来制造某些金属材料、复合材料或制品的工艺技术。粉末冶金生产工艺与陶瓷制品的生产工艺相似,因此粉末冶金成型技术又常常叫金属陶瓷法。 方法:将均匀混合的粉末材料压制成形,借助粉末原子间的吸引力和机械啮合作用,使制品结合成为具有一定强度的整体,然后再高温烧结,进一步提高制品的强度,获得与一般合金相似的组织。 二、粉末冶金材料或制品 1. 难熔金属及其合金(如钨、钨——钼合金); 2. 组元彼此不相溶,熔点十分悬殊的特殊性能材料,如钨——铜合金; 3. 难溶的化合物或金属组成的复合材料(如硬质合金、金属陶瓷) 三、粉末冶金成型技术特点: 1. 某些特殊性能材料的唯一成型方法; 2. 可直接制出尺寸准确,表面光洁的零件,是少甚至无切削的生产工艺; 3. 节约材料和加工工时; 4. 制品强度较低; 5. 流动性较差,形状受限; 6. 压制成型的压强较高,制品尺寸较小; 7. 压模成本较高。 四、粉末冶金成形过程 原始粉末+添加剂→混合→压制成型→烧结→零件成品 五、粉末冶金工艺理论基础 一)、金属粉末的性能 金属粉末的性能对其成型和烧结过程及制品质量有重要影响,分为化学成分、物理性能和工艺性能。 固态物质按分散程度不同分为致密体、粉末和胶体。 致密体:通常所说的固体,粒径在1mm以上; 胶体微粒:粒径在0.1μm以下; 粉末体或简称粉末:粒径介于二者之间。 1. 粉末的化学成分 主要金属或组元的含量,杂质或夹杂物的含量,气体的含量。 金属的含量一般不低于98-99%。 2. 粉末的物理性能 1)颗粒形状:球状、粒状、片状和针状。影响粉末的流动性、松装密度等。 2)粒度:粉末颗粒的线性尺寸,用“目”来表示,用筛分法等测量。对压制时的比压、烧结时的收缩及烧结制品的力学性能有影响。 3)粒度分布:按粒度不同分为若干级,每一级粉末(按质量、数量或体积)所占的百分比。对粉末的压制和烧结有影响。 4)颗粒比表面积:单位质量粉末的总表面积,可算出颗粒的平均尺寸。对粉末的压制和烧结有影响。 3. 粉末的工艺性能 1)流动性:粉末的流动能力,用50g粉末在规定条件下从标准漏斗中流出所需的时间来表示,单位为s/50g。

粉末冶金摩擦材料原料作用分析

高铁粉末冶金刹车片用原材料作用分析 粉末冶金摩擦材料的问世距今已有近百年的历史,尤其在近几年发展尤为迅猛。粉末冶金工艺可以将金属和非金属组分的不同性能很好地配合于一种材料中,已有逐渐代替有机物粘结高分子材料的趋势。 粉末冶金摩擦材料一般由三部分组成:构成基体金属骨架的组元、润滑组元和摩擦组元。是一种含有金属和非金属多种组分的假合金。 1构成基体金属骨架的组元 简称基体组元。常用铜、铁、二硫化钼、镍、钛、铬、钼、钨、磷、锡、铝、锌等. 基体组元由基本组元和辅助组元两部分组成,基本组元在成分中占的比重最大。在铁基中,基本组元是铁。在铜基中,基本组元是铜。辅助组元与基本组元形成合金,从而改善基本组元的性能,或者是赋予基本组元以某种所需要的性能。辅助组元在铁基材料中有二硫化钼、镍、铬、钼、铜及磷等。在铜基中主要是锡、铝、锌及磷等。 粉末冶金摩擦材料的性能、工艺特点在很大程度上取决于基体组元的化学成分、结构和物理机械性能。基体组元保证了材料的承载能力、热稳定性、耐磨性,以及在高温工作时保持住摩擦剂和润滑剂颗粒的能力。一般在粉末冶金摩擦材料中,基体组元占铁基材料的50%~70%,占铜基材料的60%~90%。 1.1铁 近年来铁基粉末冶金摩擦材料的发展很快,主要是由于它节省有色金属,在高温高负荷下显示出更加优良的摩擦性能,机械强度高,能够承受比较大的压力,因而它应用在很多领域。但是,由于铁与对偶具有很强的亲和性,有利于粘结过程的发展,因此需加入大量的其他元素使铁合金化以降低铁的塑性,提高其强度、屈服极限和硬度,以克服次缺点,但同时也提高了成本和加工工艺复杂度。 铁基材料的基体组元中,加入镍、铬、钼,主要目的在于提高材料机械-物理性能和耐热耐腐性能。加入磷,能提高材料的强度,提高耐磨性.加入二硫化钼,

摩擦材料

摩擦材料 定义:是一种由粘结剂、增强纤维、摩擦性能调节剂和其它配合剂组成的复合材料 粘结剂: ★酚醛树脂 ★橡胶 ★橡胶和酚醛树脂共混 增强材料:无机或有机纤维 填料:摩擦性能调节剂和配合剂组成 粘结剂: 摩擦材料所用的有机粘结剂为酚醛类树脂和合成橡胶,而以酚醛类树脂为主。它们的特点和作用是当处于一定加热温度下时先呈软化而后进入粘流态,产生流动并均匀分布在材料中形成材料的基体,最后通过树脂固化作用的橡胶硫化作用,把纤维和填料粘结在一起,形成质地致密的有相当强度及能满足摩擦材料使用性能要求的摩擦片制品。 增强纤维: 纤维增强材料构成摩擦材料的基材,它赋予摩擦制品足够的机械强度,使其能承受摩擦片在生产过程中的磨削和铆接加工的负荷力以及使用过程中由于制动和传动而产生的冲击力、剪切力、压力。 填料: 增摩填料: 莫氏硬度通常为3~9。硬度高的增摩效果显著明显。5.5硬度以上的填料属硬质填料,但要控制其用量、粒度。(如氧化铝、锆英石等) 减磨填料: 一般为低硬度物质,低于莫氏硬度2的矿物。如:石墨、二硫化钼、滑石粉、云母等。它既能降低摩擦系数又能减少对偶材料的磨损,从而提高摩擦材料的使用寿命。 分类: 石棉摩擦材料分为以下几类: a 石棉纤维摩擦材料,又称为石棉绒质摩擦材料。生产:各种刹车片、离合器片、火车合成闸瓦、石棉绒质橡胶带等。 b 石棉线质摩擦材料。生产:缠绕型离合器片、短切石棉线段摩擦材料等。 c 石棉布质摩擦材料。生产:制造层压类钻机闸瓦、刹车带、离合器面片等。 d 石棉编织摩擦材料。生产:制造油浸或树脂浸刹车带。石油钻机闸瓦等。 分类: B 无石棉摩擦材料分为以下几类: a 半金属摩擦材料,应用于轿车和重型汽车的盘式刹车片。其材质配方组成中通常含有30%~50%左右的铁质金属物(如钢纤维、还原铁粉、泡沫铁粉)。半金属摩擦材料因此而得名。是最早取代石棉而发展起来的一种无石棉材料。其特点:耐热性好,单位面积吸收功率高,导热系数大,能适用于汽车在高速、重负荷运行时的制动工况要求。但其存在制动噪音大、边角脆裂等缺点。 b NAO摩擦材料。从广义上是指非石棉-非钢纤维型摩擦材料,但现盘式片也含有少量的钢纤维。NAO摩擦材料中的基材料在大多数情况下为两种或两种以上纤维(以无机纤维,并有少量有机纤维)混合物。因此NAO摩擦材料是非石棉混合纤维摩擦材料。通常刹车片

关于摩擦材料

无石棉摩擦材料分为以下几类: a 半金属摩擦材料,应用于轿车和重型汽车的盘式刹车片。其材质配方组成中通常含有30%~50%左右的铁质金属物(如钢纤维、还原铁粉、泡沫铁粉)。半金属摩擦材料因此而得名。是最早取代石棉而发展起来的一种无石棉材料。其特点:耐热性好,单位面积吸收功率高,导热系数大,能适用于汽车在高速、重负荷运行时的制动工况要求。但其存在制动噪音大、边角脆裂等缺点。 b NAO摩擦材料。从广义上是指非石棉-非钢纤维型摩擦材料,但现盘式片也含有少量的钢纤维。NAO摩擦材料中的基材料在大多数情况下为两种或两种以上纤维(以无机纤维,并有少量有机纤维)混合物。因此NAO摩擦材料是非石棉混合纤维摩擦材料。通常刹车片为短切纤维型摩擦块,离合器片为连续纤维型摩擦片。 c 粉末冶金摩擦材料。又称烧结摩擦材料,系将铁基、铜基粉状物料经混合、压型,并在在高温下烧结而成。适用于较高温度下的制动与传动工况条件。如:飞机、载重汽车、重型工程机械的制动与传动。优点:使用寿命长;缺点:制品价格高,制动噪音大,重而脆性大,对偶磨损大。 d 碳纤维摩擦材料。系用碳纤维为增强材料制成的一类摩擦材料。碳纤维具有高模量、导热好、耐热等特点。碳纤维摩擦材料是各种类型摩擦材料中性能最好的一种。碳纤维摩擦片的单位面积吸收功率高及比重轻,特别适合生产飞机刹车片,国外有些高档轿车的刹车片也使用。因其价格昂贵,故其应用范围受到限制,产量较少。在碳纤维摩擦材料组分中,除了碳纤维外,还使用石墨,碳的化合物。组分中的有机粘结剂也要经过碳化处理,故碳纤维摩擦材料也称为碳——碳摩擦材料或碳基摩擦材料。 编辑本段5 摩擦材料的技术要求 5.1 适宜而稳定的摩擦系数 摩擦系数是评价任何一种摩擦材料的一个最重要的性能指标,关系着摩擦片执行传动和制动功能的好坏。它不是一个常数,而是受温度、压力、摩擦速度或表面状态及周围介质因素等影响而发生变化的一个数。理想的摩擦系数应具有理想的冷摩擦系数和可以控制的温度衰退。由于摩擦产生热量,增高了工作温度,导致了摩擦材料的摩擦系数发生变化。 温度是影响摩擦系数的重要因素。摩擦材料在摩擦过程中,由于温度的迅速升高,一般温度达200℃以上,摩擦系数开始下降。当温度达到树脂

粉末冶金常识

粉末冶金常识 1.粉末冶金常识之什么是粉末冶金 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称"金属粉末")。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为"粉末冶金材料")或制品(称为"粉末冶金制品")。 2、粉末冶金常识之粉末冶金最突出的优点是什么 粉末冶金最突出的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造出合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高达95%以上,它还能在一些制品中以铁代,做到了"省材、节能"。 粉末冶金件 3、粉末冶金常识之什么是"铁基"什么是铁基粉末冶金 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3)消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物理性能主要包括那几项

烧结金属摩擦材料现状与发展动态(9)

烧结金属摩擦材料现状与发展动态 1前言烧结金属摩擦材料是以金属及其合金为基体,添加摩擦组元和润滑组元,用粉末冶金技术制成的复合材料,是摩擦式离合器与制动器的关键组件。它具有足够的强度,合适而稳定的摩擦系数,工作平稳可靠,耐磨及污染少等优点,是现代摩擦材料家族中应用面最大、量最大的材料。 用粉末冶金技术制造烧结金属摩擦材料已有70 年的历史,1929 年美国 开始了这项工作的研究,30 年代末期首先将该材料用在了D-7、D-8 铲运机中的离合器片上。发展到现在,所有载荷量高的飞机,包括米格、伊尔、波音707、747 和三叉戟等,其制动器摩擦衬材料都采用了烧结金属摩擦材料。在我国,特别是在1965 年以后,烧结金属摩擦材料的科研、生产得到迅速发展。迄今,我国已有十多个具有一定生产规模的生产企业,年产铜基和铁基摩擦制品约850 万件,广泛应用于飞机、船舶、工程机械、农业机械、重型车辆等领域,基本满足了国主机配套和 引进设备摩擦片的备件供应和使用要求。 2制造方法与工艺研究 2.1制造方法 目前,国外烧结金属摩擦材料的生产仍主要沿用1937 年美国S? K? Wellman 及其同事们创造的钟罩炉加压烧结法(压烧法),该方法的基 本 工序是:钢背板加工f去油、电镀铜层(或铜、锡层);配方料混合―压 制成薄片f与钢背板烧结成一体f加工沟槽及平面。由于传统的压烧法 存在着能耗大、生产效率相对低、原材料粉末利用率低、成本高等缺点。因此,一些国家对传统工艺作了一些改进,同时十分注重新工艺的研究,在改善或保证产 品性能前提下探索和寻求提高经济效益的途径。 新的制造工艺相继问世,其中最令人瞩目的是喷撒工艺(Sprinkling powder procedure),它以生产的高效率和显著的经济效益独具优势。喷撒工艺法以工业规模生产烧结金属摩擦材料始于70 年代,美国的威尔曼、西德的奥林豪斯和尤里特、奥地利的米巴等企业拥有这项技术。 80 年代中期,粉末冶金研究所从奥地利米巴公司引进了该技术。 喷撒工艺的基本流程是:钢背板在溶剂( 如四氯化碳中脱脂处理(或钢背板电镀)f在钢背板上喷撒上混合材料f预烧f压沟槽f终烧f精整。

相关文档
最新文档