差速器设计说明书

差速器设计说明书
差速器设计说明书

学号成绩

汽车专业综合实践说明书

设计名称:汽车差速器设计

设计时间 2012年 6月

系别机电工程系

专业汽车服务工程

班级

姓名

指导教师

2012 年 06 月 18日

目 录

任务设计书

已知条件:(1)假设地面的附着系数足够大;

(2)发动机到主传动主动齿轮的传动效率96.0=w η; (3)车速度允许误差为±3%;

(4)工作情况:每天工作16小时,连续运转,载荷较平稳;

(5)工作环境:湿度和粉尘含量设为正常状态,环境最高温度为30

度;

(6)要求齿轮使用寿命为17年(每年按300天计,每天平均10小时); (7)生产批量:中等。 (8)半轴齿轮、行星齿轮齿数,可参考同类车型选定,也可自己设计。

(9)主传动比、转矩比参数选择不得雷同。

差速器的功用类型及组成

差速器——能使同一驱动桥的左右车轮或两驱动桥之间以不同角速度旋转,并传递转矩的机构。起轮间差速作用的称为轮间差速器,起桥间作用的称桥间(轴间)差速器。轮间差速器的功用是当汽车转弯行驶或在不平路面上行驶时,使左右驱动轮以不同的转速滚动,即保证两侧驱动车轮作纯滚动。

1.齿轮式差速器

齿轮式差速器有圆锥齿轮式和圆柱齿轮式两种。

按两侧的输出转矩是否相等,齿轮差速器有对称式(等转矩式)和不对称式(不等转矩式)。目前汽车上广泛采用的是对称式锥齿轮差速器,具有结构简单、质量较小等优点,应用广泛。它又可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器等。其结构见下图:

2.滑块凸轮式差速器

图二—2为双排径向滑块凸轮式差速器。

差速器的主动件是与差速器壳1连接在一起的套,套上有两排径向孔,滑块2装于孔中并可作径向滑动。滑块两端分别与差速器的从动元件内凸轮4和外凸轮3接触。内、外凸轮分别与左、右半轴用花键连接。当差速器传递动力时,主动套带动滑块并通过滑块带动内、外凸轮旋转,同时允许内、外凸轮转速不等。理论上凸轮形线应是阿基米德螺线,为加工简单起见,可用圆弧曲线代替。

滑块凸轮式差速器址一种高摩擦自锁差速器,其结构紧凑、质量小。但其结构较复杂,礼零件材料、机械加工、热处耶、化学处理等方面均有较高的技术要求。

3.蜗轮式差速器

蜗轮式差速器(图二—3)也是一种高摩擦自锁差速器。蜗杆2、4同时与行星蜗轮3与半轴蜗轮1、5啮合,从而组成一行星齿轮系统。蜗轮式差速器的半轴转矩比kb可高达5.67~9.00,锁紧系数是达0.7~0.8。但在如此高的内摩擦情况下,差速器磨损快、寿命短。当把kb降到2.65~3.00,k降到0.45~0.50时,可提高该差速器的使用寿命由于这种差速器结构复杂,制造精度要求高,因而限制了它的应用。

4.牙嵌式自由轮差速器

牙嵌式自由轮差速器(图5—24)是自锁式差速器的一种。装有这种差速器的

汽车在直线行驶时,主动环可将由主减速器传来的转矩按左、右轮阻力的大小分配给左、右从动环(即左、右半轴)。当一侧车轮悬空或进入泥泞、冰雪等路面时,主动环的转矩可全部或大部分分配给另一侧车轮。当转弯行驶时,外侧车轮有快转的趋势,使外侧从动环与主动环脱开,即中断对外轮的转矩传递;内侧车轮有慢转的趋势,使内侧从动环与主动环压得更紧,即主动环转矩全部传给内轮。由于该差速器在转弯时是内轮单边传动,会引起转向沉重,当拖带挂车时尤为突出。此外,由于左、右车轮的转矩时断时续,车轮传动装置受的动载荷较大,单边传动也使其受较大的载荷。

牙嵌式自由轮差速器的半轴转矩比Ab 是可变的,最大可为无穷大。该差速器工作可靠,使用寿命长,锁紧性能稳定,制造加工也不复杂。

综上所述,本次汽车专业综合实践将对对称式锥齿轮差速器进行设计。

主减速器基本参数的选择计算

发动机Nmax: 76kw/6000rmp 发动机Mmax: 142N.m/4000rmp

I 档变比: 3.27 主传动比3.2~3.8 差速器转矩比S=1.3 安全系数为n=1.4

发动机的最大转矩m N M .142max =,rmp n 4000=,发动机到主传动主动齿轮的传动效率

0.96η=,安全系数5.1=n

一档变比27.31=i ,本次设计选用主加速器传动比5.30=i 因此总传动比464.105.327.3012=?=?=i i i

因此输出转矩7.213996.0142464.105.1max 20≈???=???=ηM i n T N.m

差速器转矩比S=1.1~1.4之间选取,这里取S=1.3轴最大转矩为b T ,半轴最小转矩为s T

得到方程???

??=+=0T

T T T T S s b

s b 解得:m N T m N T s b .930.1210==

主减速器直齿圆柱齿轮传动设计

1.选定高速级齿轮类型、精度等级、材料及齿数

1)按题目已知条件,选用直齿圆柱齿轮传动。

2)选用精度等级8级精度 3)齿轮材料用

CrMnTi 20,渗碳淬火,齿面硬度为HRC 62~56

4)选择主、从动锥齿轮齿数时应考虑如下因素:为了磨合均匀,1z ,2z 之间应避免有公约数。选小齿轮171=Z 5.59175.312=?==iZ Z 取602=Z

53.31

2

==

z z μ 2.按齿根弯曲疲劳强度设计

承载能力一般取决于弯曲强度,故先按弯曲强度设计,验算接触强度。有

[]3

2112???

?

??≥F Sa Fa d Y Y z Y KT m σψε 确定式中各项数值:

因载荷有较重冲击,查得5.1=A K 故初选载荷系数2=t K

mm N T .1046.41096.027.3142531?=???=

βεcos 112.388.121???

??

????? ??+-=z z a ,计算端面重合度45.1=a ε

76.075

.025.0=+

=a

Y εε

齿宽系数选取7.0=d ψ

查得95.21=Fa Y ,52.11=Sa Y ,27.22=Fa Y ,73.12=Sa Y

101110306.1)1730016(140006060?=?????==h jL n N

91

210993.3?==

i

N N 查得88.01=N Y ,92.02=N Y ;取25.1min =F S 查得MPa F F 11002lim 1lim ==σσ

[]MPa MPa S Y F F N F 4.77425.188

.01100min

1

1lim 1=?=

=σσ

[]MPa MPa S Y F F N F 6.80925

.192

.01100min

2

2lim 2=?=

=σσ

[]0058.04.77452

.195.2111=?=?F Y Y Sa Fa σ

[]0049.06

.80973

.127.2222=?=?F Y Y Sa Fa σ

[]0058.01

1

1=?F Y Y Sa Fa σ,设计齿轮模数:

将确定后的各项数值代入设计公式 求得:

[]mm mm Y Y z Y T K m F Sa Fa d t t 32.30058.0177.076.01021.422)(232

5

3

111211=??????=?≥σψε

修正t m :s m n z m v t /32.31000

601

1=?=

π

查得 16.1=v K (动载系数) 查得

03.1=βK (齿向载荷分布系数)

查得 2.1=a K (齿间载荷分配系数)

则15.22.103.116.15.1=???==a v A K K K K K β

mm mm K K m m t

t 40.3215.232.333

===

则选取第一系列标准模数mm m 5.3=

齿轮主要几何尺寸:

mm mz d 5.5911==; mm mz d 5.19222==;

()mm z z m

a 1262

21=+=

; mm d b d 65.411==ψ,取142B mm =,247B mm =

校核齿面接触疲劳强度

[]H H E H u u bd KT Z Z Z σσε

≤±?=1

22

1

1 查得MPa Z E 8.189=(弹性系数) 查得5.2=H Z (节点区域系数) 查得83.0=εZ (接触强度重合度系数)

按不允许出现点蚀,查得82.01=N Z ,85.02=N Z

MPa H H 14002lim 1lim ==σσ

取1min =H S 则

[]MPa S Z H N H H 1148min

1

1lim 1=?=σσ

[]MPa S Z H N H H 1190min

2

2lim 2=?=σσ

将确定出的各项数值代入接触度校核公式,得

[]12

5114324.324

.25.59421021.415.2283.05.28.189H H

MPa MPa σσ<=???????=

接触强度满足.

直齿圆柱齿轮传动几何尺寸

差速器设计计算

1.差速器中的转矩分配计算

当变速箱挂1档时,发动机通过变速箱输出的转矩最大,主传动比2.30=i 、1档变速比

54.31=i ;

差速器的转矩()m N i i M M ?=???==2.15605.327.314296.001max 0η

(1) 左右驱动车轮不存在差速情况

由变速器传来的转矩,经差速器壳、行星齿轮轴和行星齿轮传给半轴齿轮。行星齿轮相当于一个等臂杠杆,而两个半轴齿轮半径也是相等的。因此,当行星齿轮没有自转时,总是将转矩0M 平均分配给左、右两半轴齿轮,即:

()m N M M M ?==

=1.7802

1

021 左右驱动车轮存在差速情况

转矩比S :较高转矩侧半轴传递转矩b M 与较低转矩侧半轴传递转矩s M 之比称为转矩比S ,即:

S

b

M M S =

(取S=1.3) 0M M M S b =+ 整理以上两个式子得,

3.10=-b

b

M M M ,代入相关数据得,)(9.881m N M b ?=

在设计过程中要将安全系数考虑上,安全系数范围6.1~2.1=n ,该设计取4.1=n 。 设计中较高转矩侧半轴传递转矩:)(7.12349.8814.1'm N M n M b b ?=?=?=

2.差速器的齿轮主要参数选择

(1)行星齿轮数n

行星齿轮数n 需根据承载情况来选择的,由于是小轿车的差速器所以行星齿轮数n 选择2个。

(2)行星齿轮球面半径b R 和节锥距0A 的确定

行星齿轮球面半径b R 反映了差速器锥齿轮节锥距的大小和承载能力,可根据经验公式来确定 3d b b T K R =

式中:由于是2个行星齿轮的差速器的轿车,所以取行星齿轮球面半径系数0.3=b K ,差速器计算转矩[]).(2.1560,m in 0m N M T T T cs ce d ===,则

mm R b 79.342.15600.33=?= 取整mm R b 35=

差速器行星齿轮球面半径0R 确定后,可初步根据下式确定节锥距0A

b R A )99.0~98.0(0= 取mm R A b 65.343599.099.00=?==

3.行星齿轮和半轴齿轮齿数的选择

小轿车齿轮强度要求不太高,可以选取行星齿轮齿数151=Z ,半轴齿轮齿数2Z 初选为24,

2Z 与1Z 的齿数比为1.6,两个半轴齿数和为48,能被行星齿轮数2整除,所以能够保证装

配,满足设计要求。

行星齿轮和半轴齿轮节锥角1γ、2γ及模数m 行星齿轮和半轴齿轮节锥角1γ、2γ分别为

21132)24/15arctan()/arctan(===Z Z γ 012258)24/15arctan()/arctan(===Z Z γ 当量齿数:65.1785.015

32cos 15cos 111====

γZ Z v 28.4553

.024

58cos 24cos 222====

γZ Z v 当量齿数都大于17,因此满足条件,不会根切21,Z Z

锥齿轮大端端面模数m 为 mm mm Z A Z A m 5.245.2sin 2sin 222

110≈===

γγ 行星齿轮分度圆直径mm mZ d 5.3711==,半轴齿轮分度圆直径mm mZ d 6022==。 压力角α采用推荐值'

3022,齿高系数为0.8。

行星齿轮轴直径d 及支承长度L

行星齿轮轴直径与行星齿轮安装孔直径相同,行星齿轮在轴上的支承长度也就是行星齿轮安装孔的深度。

行星齿轮轴直径d 为 []mm nr T d d

c 1260

4.02981.1107.21391.1103

3

0=?????=

?=

σ

行星齿轮在轴上的支承长度L 为 mm d L 2.13121.11.1≈?== 差速器齿轮的几何尺寸计算

查得修正系数052.0-=τ 齿侧间隙127.0=B

汽车差速器直齿轮锥齿轮的几何尺寸计算步骤见下表

差速器齿轮强度计算 根据轮齿弯曲应力w σ公式,

131310002

255.06095.20.10

.1560.06.01.134********=??????????=?=

Jn d mb k k Tk v m s w σ,2=n ,

J 取0.255,半轴齿轮齿面宽29b mm =。半轴大端分度圆直径2d 前面计算得到mm 60,

质量系数0.1=v k ,由于模数5.2=m ,大于mm 6.1,因此尺寸系数

560.0)4.25/(25.0==s s m k ,齿面载荷分配系数 1.0m k =,半轴齿轮计算转矩

6.0T T =。

[]

cs ce T T T ,min 0=,

[]MPa

Jn d mb k k k T v m s w 219010002

255.06095.20.10

.1560.01.134621023220=?????????=?=

σ;

[]w w MPa σσ<=1313满足设计要求。

半轴计算

半轴的主要尺寸是它的直径,在设计时首先根据对使用条件和载荷情况相同或相近的同类汽车同形式半轴的分析比较,大致选定从整个驱动桥的布局来看比较合适的半轴半径,然后对他进行强度核算。 1.半轴计算转矩?T 及杆部直径 本设计选全浮式半轴

根据《汽车工程手册》P1209公式(4-9-37)

m .6105596.06875.35.31426.0)/(X T r max 2?=????===N r r i T r r w L r ηξ式中:

2X ——个车轮的驱动力,r L r i T /X max 2ηξ= 单位为N

r r ——轮胎的滚动半径,单位为m

ξ——差速器转矩分配系数,对于圆锥行星齿轮差速器可取0.6;

L i ——传动系最低档传动比,6875.34.3?=L i

w η——传动系效率,根据任务已知条件有w η=0.96

根据《汽车工程手册》P1213公式(4-9-50) 杆部直径可按照下式进行初选。

[]

mm

T d )()()(8.22295.20925.6106718.205.218.205.2196.010T 3333

-=?-=-=?=τ 选22mm

式中,[τ]——许用半轴扭转切应力,MPa ;[τ]=490-588MPa

d ——初选半轴杆部直径,mm 。

半轴杆部直径计算结果应根据结构设计向上进行圆整。根据初选的d ,按应力公式进行强度校核。 2.半浮式半轴强度校核计算

根据《汽车工程手册》P1211公式(4-9-44) 半轴的扭转应力为

4MPa 9.5101022

14.3925.610671610163

3

33

=???=

?=

d T

πτ <[τ]=490-588MPa 式中,τ——半轴扭转应力,MPa ;

d ——半轴直径,mm 。

根据《汽车工程手册》P1212公式(4-9-47) 半轴的最大扭转角为

6.3614

.337..22986335800

925.61067180180=????=

=

π

θp Gl l T ?-?=≤156θ

式中,θ——最大扭转角扭转角;?-?=156θ

l ——半轴长度;mm 由凯越车型初选800mm

G ——材料剪切弹性模量,N ·2m 选45号钢G=335MPa 查

工程材料与成行技术基础P93表(4-9);

p I ——半轴断面极惯性矩,

44

4

37.2298632

2214.332mm d l p =?==π

半轴计算时的许用应力与所选用的材料、加工方法、热处理工艺及汽车的使用条件有关。当采用40Cr ,40MnB ,40MnVB ,40CrMnMo ,40号及45号钢等作为全浮式半轴的材料时,其扭转屈服极限达到784MPa 左右。在保证安全系数在1.3~1.6范围时,半轴扭转许用应力可取为[]τ=490~588MPa 。

半轴花键设计计算

为了使半轴的花键内径不小于其杆部直径,常常将加工花键的端部做得粗些,并适当地减小花键槽的深度,因此花键齿数必须相应地增加,半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过渡部分的圆角半径以减小应力集中。重型车半轴的杆部较粗,外端突缘也很大,当无较大锻造设备时可采用两端均为花键联接的结构,且取相同花键参数以简化工艺。在现代汽车半轴上,渐开线花键用得较广,但也有采用矩形或梯形花键的。

本设计半轴和半轴齿轮采用渐开线花键连接,对花键应进行剪切应力和花键挤压应力验算。

1)根据《汽车工程手册》P1211公式(4-9-45)半轴花键的

剪切应力

MPa 4.6875

.0665.14025).523.526(10925.610674)(1043

3=????+??=+?=φτb zL d D T p s

式中: T ——半轴计算转矩,为1067.6925N ·m 据国标GB/3478.1-1983渐开线花键花键尺寸: 选30度平齿根,m=1,Z=25

D ——半轴花键外径,取26.5mm d ——与之相配的花键孔内径,取23.5mm z ——花键齿数,取25

L P ——花键工作长度,取40mm b ——花键齿宽,取1.665mm

φ——载荷分配不均匀系数根据机械设计基础P159查得φ在(0.7-0.8)之间,计算时可取0.75

2)根据《汽车工程手册》P1212公式(4-9-46)半轴花键的挤压应力

MPa zL d D p c 39.7575

.04025)5.23.526(10925.610678)(10T 82

23

223=???-??=-?=φσ 式中根据机械设计基础表(10-11)剪切应力不大于73MPa ,挤压应力不大于200MPa ,根据要求,以上均合格。

最小离地间隙

根据别克凯越汽车维修手册表(1-14)有轮胎型号:185/65R14 查表GB9743-1997的轮胎型号为14185R 的参数为:

辋度静

径度

91 95 5J

5.5J

6.J

184 652 293 316 191 664 615 690 240 290

表4-2-1

根据《汽车工程手册》P1187表(4-9-1)有汽车驱动桥最小离地间隙:

最小离地间隙 h=车轮滚动半径–大齿轮分度圆半径-间隙-壳厚

=361-203/2-4-28=227.5mm>190mm(图4-2-3)合格

总结

附图

参考文献

1.陈家瑞. 汽车构造(下册). 北京:人名交通出版社,2008;

2.杨可桢、程光藴. 机械设计. 北京:高等教育出版社,2004;

3.张春林. 机械原理. 北京:高等教育出版社,2005;

4.何铭新、钱可强. 机械工程图学.高等教育出版社,2003;

5.电子版《机械设计手册》;

6.庞国星. 工程材料与成型技术基础.北京:机械工业出版社2004

汽车单级主减速器及差速器的结构设计与强度分析毕业论文

汽车单级主减速器及差速器的结构设计 与强度分析毕业论文 第一章绪论 1.1 选题的背景与意义 通过学校的实习我对汽车的构造及各总成的原理有了一定的了解,同时结合以前课堂学习的理论知识,对于进行汽车一些总成的设计有了一定的理论基础,现选择课题内容为对BJ2022汽车的使用性能的驱动桥(主减速器及差速器)进行设计。通过本课题可以进一步加深对汽车构造、汽车设计及汽车各总成的工作原理,特别是本课题驱动桥中的主减速器及差速器与半轴的认识和了解;同时经过设计过程,了解学习一些现代汽车工业的新设计方法及新技术,对于即将从事汽车行业工作的我也是一种锻炼,为即将的工作做铺垫。 1.2 研究的基本内容 1.2.1 主减速器的作用 汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。而主减速器是在汽车传动系中起降低转速,增大转矩作用的主要部件。当发动机纵置时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。汽车正常行驶时,发动机的转速通常比较高,如果将很高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需要很大,齿轮的半径也相应加大,也就是说变速箱的尺寸会加大。另外,转速下降,扭矩必然增加,也加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可以使主减速器前面的传动部件,如变速箱、

分动器、万向传动装置等传递的扭矩减小,同时也减小了变速箱的尺寸和质量,而且操控灵敏省力。 1.2.2 主减速器的工作原理 从变速器或分动器经万向传动装置输入驱动桥的转矩首先传到主减速器,主减速器的一对齿轮增大转矩并相应降低转速,以及当发动机纵置时还具有改变转矩的旋转方向。 1.2.3 国内主减速器的状况 现在国家大力发展高速公路网,环保、舒适、快捷成为汽车市场的主旋律。对整车主要总成之一的驱动桥而言,小速比、大扭矩、传动效率高、成本低逐渐成为汽车主减速器技术的发展趋势。 在产品上,国内汽车市场用户主要以承载能力强、齿轮疲劳寿命高、结构先进、易维护等特点的产品为首选。目前己开发的产品,如陕西汉德引进德国撇N 公司技术的485单级减速驱动桥,一汽集团和东风公司的13吨级系列车桥为代表的主减速器技术,都是在有效吸收国外同类产品新技术的基础上,针对国内市场需求开发出来的高性能、高可靠性、高品质的车桥产品。这些产品基本代表了国内车用减速器发展的方向。通过整合和平台化开发,目前国内市场形成了457、460、480、500等众多成型稳定产品,并被用户广泛认可和使用。设计开发上,CAD、CAE等计算机应用技术,以及AUT优AD、UG16、CATIA、proE等设计软件先后应用于主减速器的结构设计和齿轮加工中,有限元分析、数模建立、虚拟试验分析等也被采用;齿轮设计也初步实现了计算机编程的电算化。新一代减速器设计开发的突出特点是:不仅在产品性能参数上进一步进设计上完全遵从模块化设计原则,产品配套实现车型的平台化,造型和结构更加合理,更宜于组织批量生产,更适应现代工业不断发展,更能应对频繁的车型换代和产品系列化的特点,这些都对基础件产品提出愈来愈高的配套要求,需要在产品设计上不断地进行二次开发和持续改进,以满足快速多变的市场需求。

差速器毕业设计

目录 摘要 .............................................................................................................................................. I Abstract........................................................................................................................................... II 1 引言 (3) 1.1 差速器的作用 (3) 1.2 差速器的工作原理 (3) 1.3 差速器的方案选择及结构分析 (7) 1.3.1 差速器的方案选择 (7) 1.3.2差速器的结构分析 (7) 2 差速器的设计 (8) 2.1 差速器设计初始数据的来源与依据 (8) 2.2 差速器齿轮的基本参数的选择 (8) 2.3 差速器齿轮的几何尺寸计算 (12) 2.3.1 差速器直齿锥齿轮的几何参数 (12) 2.3.2 差速器齿轮的材料选用 (13) 2.3.3 差速器齿轮的强度计算 (14) 3 差速器行星齿轮轴的设计计算 (15) 3.1 行星齿轮轴的分类及选用 (15) 3.2 行星齿轮轴的尺寸设计 (16) 3.3 行星齿轮轴材料的选择 (16) 3.4 差速器垫圈的设计计算 (16) 3.4.1 半轴齿轮平垫圈的尺寸设计 (17) 3.4.2 行星齿轮球面垫圈的尺寸设计 (17) 4 差速器标准零件的选用 (17) 4.1 螺栓的选用和螺栓的材料 (17) 4.2 螺母的选用和螺母的材料 (18) 4.3 差速器轴承的选用 (18) 4.4 十字轴键的选用 (18) 5 半轴的设计 (18) 5.1 半轴的选型 (18) 5.2 半轴的设计计算 (19) 5.2.1 半轴的受力分析 (19) 5.2.2 半轴计算载荷的确定 (20) 5.2.3 半轴杆部直径初选 (21) 5.2.4 半轴的强度计算 (21) 5.2.5 半轴的材料 (22) 6 差速器总成的装配和调整 (23) 6.1 差速器总成的装配 (23) 6.2 差速器总成的装配 (23)

汽车差速器与主减速器设计毕业设计

摘要 本文介绍了轿车差速器与主减速器的设计建模过程,论述了轿车差速器与主减速器的结构和工作原理,通过对轿车主要参数的分析与计算对差速器和主减速器进行设计,并使用Pro/E对差速器与主减速器进行3D建模,生成2D工程图。完成装配后,对主减速器、差速器进行运动仿真,以论证差速器的差速器原理。 关键词:建模,差速器,主减速器,分析

Abstract This paper discusses the automobile differential design and modeling process of the final drive, and the structure and the principle of automobile differential and the final drive.the car After the analysis and calculation of final drive and differential,to use Pro/E to complete make 3D model of the final drive and differential, then to produce 2D drawings.There is going to analysis the final drive to prove the principle after finishing the composing. Keywords: Modeling, Differential,Final drive,Analysis

目录 摘要........................................................ I Abstract ................................................... II 目录...................................................... III 1绪论 (1) 1.1课题来源 (1) 1.2课题研究现状 (1) 1.2.1国内外汽车行业CAD研究与应用情况 (1) 1.3主减速器的研究现状 (1) 1.4 差速器的研究现状 (2) 1.5 课题研究的主要内容 (3) 2QY7180概念轿车主减速器与差速器总体设计 (4) 2.1QY7180概念轿车主要参数与主减速器、差速器结构选型 (4) 2.1.1QY7180概念轿车的主要参数 (4) 2.1.2QY7180概念轿车主减速器与差速器结构选型 (4) 2.2主减速器与差速器的结构与工作原理 (5) 2.3QY7180概念轿车主减速器主减速比i0的确定 (6) 3主减速器和差速器主要参数选择与计算 (7) 3.1主减速器齿轮计算载荷的确定 (7) 3.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转 矩Tce (7) 3.1.2按驱动车轮打滑转矩确定从动齿轮的计算转矩Tcs (7) 3.1.3按日常平均使用转矩来确定从动齿轮的计算转矩 (8) 3.2主减速器齿轮传动设计 (8) 3.2.1按齿面接触强度设计 (8)

汽车差速器的设计与分析

摘要 本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解,通过利用CATIA软件对差速器进行建模工作,也让我在学习方面得到了提高。 关键词:半轴,差速器,齿轮结构

目录 1.引言 (1) 1.1汽车差速器研究的背景及意义 (1) 1.2汽车差速器国内外研究现状 (1) 1.2.1国外差速器生产企业的研究现状 (1) 1.2.2我国差速器行业市场的发展以及研究现状 (2) 1.3汽车差速器的功用及其分类 (3) 1.4毕业设计初始数据的来源与依据 (4) 1.5本章小结 (5) 2.差速器的设计方案 (6) 2.1差速器的方案选择及结构分析 (6) 2.2差速器的工作原理 (7) 2.3本章小结 (9) 3.差速器非标准零件的设计 (10) 3.1对称式行星齿轮的设计计算 (10) 3.1.1对称式差速器齿轮参数的确定 (10) 3.1.2差速器齿轮的几何计算图表 (15) 3.1.3差速器齿轮的强度计算 (17) 3.1.4差速器齿轮材料的选择 (18) 3.1.5差速器齿轮的设计方案 (19) 3.2差速器行星齿轮轴的设计计算 (19) 3.2.1行星齿轮轴的分类及选用 (19) 3.2.2行星齿轮轴的尺寸设计 (20) 3.2.3行星齿轮轴材料的选择 (20) 3.3差速器垫圈的设计计算 (20) 3.3.1半轴齿轮平垫圈的尺寸设计 (21) 3.3.2行星齿轮球面垫圈的尺寸设计 (21) 3.4本章小结 (21) 4.差速器标准零件的选用 (22)

差速器建模装配仿真

湖南农业大学东方科技学院 课程设计说明书 课程名称:现代设计方法 题目名称:差速器建模装配仿真 班级: 2008 级机制专业二班姓名:李攀 学号:200841914213 指导教师陶栋材 评定成绩: 教师评语: 指导老师签名: 20 年月日

第一章建模分析 在菜单栏选取【文件】下拉菜单,选取【新建】选项,系统将弹出如图1-1所示的【新增】对话框,选中其中的【零件】单选按钮,在【名字】编辑框中输 入“zwp”。单击对话框下部的按钮,进入三维实体建模 这是建立三维实体模型的第一步:其中需要注意的是在左图片中一定要把使用缺省模板前方框中选择的默认项去掉,这是欧美标准。在右图中我们需要选择mans_part_solid这个是表示在公尺下建模。默认选择是英尺这点也要注意不要回给自己带来很多麻烦。 第二章建模过程 本课程设计是针对减速器装配和仿真,建模过程只是大概叙述一下。 (1)建立装配基准JIZHUN.PAT 根据安装要求,通过点·线·面建立安装基准图

(2)建立CHILUN60.PRT 斜齿轮这是个斜齿轮盘建模过程有些简单,平时在建立模型时,会用到族表和关系,利用齿轮特有的关系建立驱动尺寸的齿轮。这次我采用的建模过程,通过建立几条相关的尺寸线,利用边界混合·合并·实体化,生成齿形,再通过阵列完成齿轮的外形轮廓。最后通过旋转和拉伸,完成最后模型。重要建模过程如下些图所示: 边界混合

红色部分模型阵列前单个齿形 阵列后

完成后的模型图 (3)建立ZHOU_4.PRT 旋转和倒角完成建模

(4)建立XIGAN.PRT 建模过程如下图中 (5)建立模型ZHUICHILUN2O_PRT 建模过程跟CHILUN60_PRT,在此不再重述。

差速器开题报告

山东科技大学 本科毕业设计(论文)开题报告 题目 学院名称机械电子工程学院 专业班级机械设计制造及其自动化07-4 学生姓名魏循中 学号 200703021225 指导教师李学艺 填表时间: 2011年 3月 21 日 填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用a4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。篇二:汽车差速器毕业设计开题报告 轻型载货汽车的差速器设计 2. 课题研究背景和意义 目前国内轻型货车乃至重型货车的差速器产品的技术基本来源于美国、德国、日本等几个传统的工业国家,我国现有的技术基本上是引进国外技术而发展的,在目前看来有了一定的成果和规模,但是们目前我国的差速器没有自己的核心技术产品,开发能力依然很弱、影响了整车新车的开发成本,所以在差速器开发的技术开发上还有很长的路要走。 在汽车行业发展初期,法国雷诺汽车公司的创始人雷诺发明了汽车差速器,汽车差速器作为汽车必不可少的部件之一曾被汽车专家誉为“小零件大功用”。汽车差速器是汽车传动中的最重要的部件之一,它有三大作用:首先是将发动机输出的动力传输到车轮上;其次,将主减速器已经增加的扭矩一分为二的分配给左右两根半轴;然后,它担任汽车主减速齿轮,在动力传输至车轮前将传动系的转速减下来,将动力传到车轮上,同时允许两侧车轮以不同的轮速转动。差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 3. 1国内外发展动态 从目前来看,我国差速器行业已经顺利完成了由小到大的转变,正处于由大到强的发展阶段。由小到大是一个量变的过程,科学发展观对它的影响或许仅限于速度和时间,但由大到强却是一个质变的过程,能否顺利完成这一蜕变,科学发展观起着至关重要的作用。然而,在这个转型和调整的关键时刻,提高汽车车辆差速器的精度、可靠性是中国差速器行业的紧迫任务。近年来年中国汽车差速器市场发展迅速,产品产出持续扩张,国家产业政策鼓励汽车差速器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对汽车差速器行业的关注越来越密切,这使得汽车差速器行业的发展需求增大。对国外而言,国外的那些差速器生产企业的研究水平已经很高,而且还在不断地进步,年销售额达到18亿美金的伊顿公司汽车集团是全球化的汽车零部件制造供应商,主要产品包括发动机气体管理部分及动力控制系统,其中属于动力控制系统的差速器类产品年销售量达250万只,在同类产品居领导地位。国内的差速器起步较晚,目前的发展主要靠引进消化国外产品来满足需求。 3.2差速器的发展趋势 差速器作为车辆上必不可少的重要传动零件,要使车辆的舒适性以及通过性有所提高,

普通锥齿轮差速器设计

第一章绪论 汽车行驶时,左、右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;汽车在不平路面上行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直路面上行驶,由于轮胎气压、轮胎符合、胎面磨损程度不同以及制造误差等因素的影响,也会引起左、右车轮因滚动半径不同而使左、右车轮行程不等。如果驱动桥的左、右、车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性能恶化。为了防止这些现象的发生,汽车左、右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器按其结构特征不同,分为齿轮、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 本次设计选择的是对称锥齿轮式差速器中的普通锥齿轮式差速器。

第二章 普通锥齿轮差速器基本原理 普通锥齿轮差速器由于结构简单、工作平稳可靠,一直广泛用于一般使用条件下的汽车驱动桥中。图2-1为其示意图,图中ω0为差速器壳的角速度; ω1、ω2分别为左、右两半轴的角速 度;To 为差速器壳接受的转矩;T r 为 差速器的内摩擦力矩;T 1、T 2分别为左、右两半轴对差速器的 反转矩。 图2-1 普通锥齿轮式差速器示意图 根据运动分析可得 ω1+ω2=2ω0 (2 - 1) 显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当差速器壳体不转时,左右半轴将等速反向旋转。 根据力矩平衡可得 T0 T2T1T0T1-T2{ =+= (2 - 2) 差速器性能常以锁紧系数k 是来表征,定义为差速器的内摩擦力矩与差速器壳接受的转矩之比,由下式确定 K=r T /0T (2 - 3) 结合式(5—24)可得 k ) -0.5T0(1T1k ) 0.5T0(1T2{ =+= (2 - 4) 定义快慢转半轴的转矩比kb=T2/T1,则kb 与k 之间有

货车汽车后桥差速器的设计计算说明书

货车汽车后桥差速器的设计计算说明书

第一章驱动桥结构方案分析 由于要求设计的是货车的后驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。 驱动桥的结构形式有多种,基本形式有三种如下: 1)中央单级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的基本形式,在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承,有差速锁装置供选用。 2)中央双级驱动桥。在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”(即系列化,通用化,标准化)程度高,桥壳、主减速器等均可通用,锥齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用,锥齿轮有2个规格。 由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。 3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。 ①圆锥行星齿轮式轮边减速桥。由圆锥行星齿轮式传动构成的轮边减速器,轮边减速比为固定值2,它一般均与中央单级桥组成为一系列。在该系列中,中央单级桥仍具有独立性,可单独使用,需要增大桥的输出转矩,使牵引力增大或速比增大时,可不改变中央主减速器而在两轴端加上圆锥行星齿轮式减速器即可变成双级桥。这类桥与中央双级减速桥的区别在于:降低半轴传递的转矩,把增大的转矩直接增加到两轴端的轮边

BJ2022汽车单级主减速器及差速器的结构设计与强度分析-毕业设计说明书

BJ2022汽车单级主减速器及差速器的结构设计与强度分析-毕业设计说明书

毕业设计说明书 BJ2022汽车单级主减速器及差速器的结构设计与强度分析 学生姓名:学号:学院: 专业: 指导教师: 2012年6月0801074117 机电工程学院地面武器机动工程

BJ2022汽车单级主减速器及差速器的结构设计与强度分析 摘要 汽车主减速器及差速器是汽车传动中最重要的部件之一。它能够将万向传动装置传来的发动机转矩传给驱动车轮,以实现降速增扭。 本次设计的是有关BJ2022汽车的主减速器和差速器,并要使其具有通过性。本次设计的内容包括有:方案选择,结构的优化与改进。齿轮与齿轮轴的设计与校核。并且在设计过程中,描述了主减速器的组成和差速器的差速原理和差速过程。 方案确定主要依据原始设计参数,对比同类型的减速器及差速器,确定此轮的传动比,并对其中重要的齿轮进行齿面接触和齿轮弯曲疲劳强度的校核。而对轴的设计过程中着重齿轮的布置,并对其受最大载荷的危险截面进行强度校核。 主减速器及差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 关键词:驱动桥,主减速器,差速器,半轴

BJ2022 car single stage and the structure of the main reducer differential design and strength analysis ABSTRACT Automobil reduction final drive and differential is one of the best impossible parts in automobile gearing. It can chang speed and driving tuist within a big scope . The problem of this design is BJ2022 car differential unit ,it’ s properly in common use . The design of scheme, the better design and improvement of structure ,the design and calibration of gear and gear shiftes , and the select of bearings , and also the design explain the construction of differential action . The ting of the scheme desierment main deside. The drive ratio of gear,according to orginal design parameter and constrasting the same type reduction final drive ang differential assay . It realize planet gear in the design of structure . It put to use alteration better gears transmission in the design of gear , and compare the root contact tired strength of some important gears and the face twirl tired strength . It eraphaize pay attention to the place of gears. Compare the strength of the biggest load dangraes section. It require structure simple and accord with demand in select of bearings . The Lord reducer to improve the car driving and differential stability and its through sex has a unique function, is one of the focal points of automotive design. Key words : Drive axle,Main reducer,Differential,Axle

文献综述-汽车差速器的设计

汽车差速器的设计 摘要:本文阐述了汽车差速器的历史、现状以及未来的发展趋势,通过对差速器的结构、作用和工作原理进行分析,最后确定研究课题使用差速器类型为对称式圆锥行星齿轮差速器。 关键词:汽车; 差速器; 对称式圆锥行星齿轮

引言 当汽车转弯时,由于外侧轮有滑脱现象,内侧轮有滑转现象,两个驱动轮就会产生两个方向相反的附加力,由于“最小能耗原理”,必然导致两边车轮的转速不同,从而破坏了三者的平衡关系,并通过半轴反映到半轴齿轮上,迫使行星齿轮自转,使外侧半轴转速加快,内侧半轴转速减慢,从而实现两边车轮转速的差异,这就是差速器的原理。这里涉及到“最小耗能原理”,也就是地球上所有物体都倾向于耗能最小的状态。例如把一粒豆子放进一个完内,豆子就会自动停留在这个碗的碗底,它自动选择静止(动能最小)而不会不断运动[1]。同样的,车轮在转弯时也会自动趋向最低耗能状态,自动地按照转弯半径调整左右轮的转速。 1汽车差速器的发展历史 汽车自上个世纪末诞生以来,已经走过了风风雨雨的一百多年。从卡尔本茨造出的第一辆三轮汽车以每小时18公里的速度,跑到现在,竟然诞生了从速度为零到加速到100公里/小时只需要三秒钟多一点的超级跑车。这一百年,汽车发展的速度是如此惊人!同时,汽车工业也造就了多位巨人,他们一手创建了通用、福特、丰田、本田这样一些在各国经济中举足轻重的著名公司。在我国,随着长春第一生产汽车厂的建成投产,1955年生产了61辆汽车,才结束了我国一直不能生产汽车的历史。经过几十年的努力,目前我国建立了自己的汽车工业[2]。在汽车行业发展初期,法国雷诺汽车公司的创始人雷诺发明了汽车差速器,它作为汽车必不可少的部件之一曾被汽车专家誉为“小零件大功用”。 汽车行驶时,左右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;即使在平直路面上行驶,由于轮胎气压、轮胎负载、胎面磨损程度不同以及制造误差等因素的影响,也会引起左、右车轮因滚动半径不同而使左、右车轮行程不等。如果驱动桥的左、右车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性能恶化。为了防止这些现象的发生,汽车左、右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等等[3]。基于以上事实,

差速器设计3.31分析

差速器设计 在车辆行驶过程中,会碰到多种情形的车况,导致左右车轮的行走的里程不同,即左右车轮会以不同的速度行驶,即会有左右车轮的转速不同。例如: (1)汽车在进行转弯时,外侧的车轮要经过更多的路程,速度要比内侧车轮速度大; (2)当车辆上的货物装的左右不均匀时,两侧车轮也会产生速度差; (3)当两侧车轮的气压不相等时,会导致车轮外径大小不同,导致速度差; (4)当一侧车轮碰到有阻碍,另一侧没有阻碍或是两侧车轮都碰到阻碍,但阻碍的情况不同时,也会有速度差; (5)当两侧车轮的磨损状况不同时,也会导致车轮大小不同,或者是受到的摩檫力矩大小不同,产生速度差; 所以从上述列出的几种情况中可以得出这样一个结论,即使是在直线道路上行驶,左右车轮也会不可避免地出现速度差。如果此时两侧车轮是由一根驱动轴驱动,那么传给两侧车轮的转速一样,那么无论是在什么路况下行驶,必然会发生车轮的滑移或者滑转现象。在这种情况下,轮胎的损耗将比正常情况下的损耗剧烈,同时也使得发动机的功率得不到充分的发挥。另一方面也会使得车辆不能按照预订的要求行驶,可能造成危险。为了使车轮相对地面的滑磨尽量减少,因此在驱动桥中安装有差速器,并通过两侧半轴驱动车轮,使得两侧的车轮可以以不同的速度行驶,使车轮接近纯滚动。 差速器按结构可分为齿轮式、凸轮式、涡轮式和牙嵌式等多种型式。在一般用途的汽车上,差速器常选择对称锥齿轮式差速器。它的特点是,左右两个半轴齿轮大小相同,然后将转矩分配给左右两个驱动轮。因此此次设计选用对称式锥齿轮式差速器。 差速器结构: P147图 差速器壳由左右两半组成,用螺栓固定在一起整个壳体的两端以锥形滚柱轴承支承在主传动壳体的支座内,上面用螺钉固定着轴承盖。两轴承的外端装有调整圈,用以调整轴承的紧度。并能配合主动齿轮轴轴承壳与壳体之间的调整垫片,调整主动,从动锥齿轮的啮合间隙和啮合印痕。为了防止松动,在调整圈外缘齿间装有锁片,锁片用螺钉固定在轴承盖上。 十字轴的4个轴颈分别装在差速器壳的轴孔内,其中心线与差速器的分界面重合。从动齿轮固定在差速器壳体上,当从动齿轮转动时,便带动差速器壳体和十字轴一起转动。 4个行星齿轮分别活动地装在十字轴轴颈上,两个半轴齿轮分别装在十字轴的左右两侧,与4个行星齿轮常啮合,半轴齿轮的延长套内表面制有花键,与半轴内端部用花键连接,这样就把十字轴传来的动力经4个行星齿轮和2个半轴齿轮分别传给两个半轴。行星齿轮背面做成球面,以保证更好地使半轴齿轮正确啮和以及定中心。 行星齿轮和半轴齿轮在转动时,其背面和差速器壳体会造成相互磨损,为减少磨损,在它们之间要装有止推垫片,那么就可用垫片的磨损来减少差速器和半轴的磨损,当磨损到一定程度时,只需更换垫片即可,这样既延长了主要零件的使用寿命,又便于维修。另外,差速器工作时,齿轮又和各轴颈及支座之间有相对的转动,为保证它们之间的润滑,在十字轴上铣有平面,并在齿轮的齿间钻有小孔,供润滑油循环进行润滑。在差速器壳上还制有窗孔,以确保壳中的润滑油能进出差速器。 差速器工作原理 P148

差速器毕业设计-论文

目录 摘要.................................... I Abstract .................................... II 1 引言 (3) 1.1 差速器的作用. (3) 1.2 差速器的工作原理. (3) 1.3 差速器的方案选择及结构分析. (7) 1.3.1 差速器的方案选择. (7) 1.3.2 差速器的结构分析 (7) 2 差速器的设计. (8) 2.1 差速器设计初始数据的来源与依据. (8) 2.2 差速器齿轮的基本参数的选择. (8) 2.3 差速器齿轮的几何尺寸计算. (12) 2.3.1 差速器直齿锥齿轮的几何参数. (12) 2.3.2 差速器齿轮的材料选用. (13) 2.3.3 差速器齿轮的强度计算. (14) 3 差速器行星齿轮轴的设计计算. (15) 3.1 行星齿轮轴的分类及选用. (15) 3.2 行星齿轮轴的尺寸设计. (16) 3.3 行星齿轮轴材料的选择. (16) 3.4 差速器垫圈的设计计算. (16) 3.4.1 半轴齿轮平垫圈的尺寸设计. (17) 3.4.2 行星齿轮球面垫圈的尺寸设计. (17) 4 差速器标准零件的选用. (17) 4.1 螺栓的选用和螺栓的材料. (17) 4.2 螺母的选用和螺母的材料. (18) 4.3 差速器轴承的选用. (18) 4.4 十字轴键的选用. (18) 5 半轴的设计. (18) 5.1 半轴的选型. (18) 5.2 半轴的设计计算. (19) 5.2.1 半轴的受力分析. (19) 5.2.2 半轴计算载荷的确定. (20) 5.2.3 半轴杆部直径初选. (21) 5.2.4 半轴的强度计算. (21) 5.2.5 半轴的材料. (22) 6 差速器总成的装配和调整. (23) 6.1 差速器总成的装配. (23) 6.2 差速器总成的装配. (23)

汽车差速器三维建模设计

差速器设计 汽车在行驶过程中,左、右车轮在同一时间内所滚过的路程往往是不相等的,如转弯时内侧车轮行程比外侧车轮短;左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行驶阻力不等等。这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行驶或直线行驶,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左、右车轮间都装有轮间差速器。在多桥驱动的汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷、传动系零件损坏、轮胎磨损和燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同角速度转动。差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 一、差速器结构形式选择 (一)齿轮式差速器 汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。他又可分为普通 锥齿轮式差速器、摩擦片式差速器 和强制锁止式差速器等 1.普通锥齿轮式差速器 由于普通锥齿轮式差速器结 构简单、工作平稳可靠,所以广泛 应用于一般使用条件的汽车驱动 桥中。图5—19为其示意图,图中 ω0为差速器壳的角速度;ω1、ω 2分别为左、右两半轴的角速度; To为差速器壳接受的转矩;T r为差速器的内摩擦力矩;T1、T2分别为左、右两半轴对差速器的反转矩。 根据运动分析可得 ω1+ω2=2ω0 (5—23) 显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当

机械毕业设计英文外文翻译402驱动桥和差速器 (2)

附录 附录A Drive axle/differential All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road. Powerflow The drive axle must transmit power through a 90° angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels. This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.

差速器设计说明书

学号成绩 汽车专业综合实践说明书 设计名称:汽车差速器设计 设计时间 2012年 6月 系别机电工程系 专业汽车服务工程 班级 姓名 指导教师 2012 年 06 月 18日

目 录 任务设计书 已知条件:(1)假设地面的附着系数足够大; (2)发动机到主传动主动齿轮的传动效率96.0=w η; (3)车速度允许误差为±3%; (4)工作情况:每天工作16小时,连续运转,载荷较平稳; (5)工作环境:湿度和粉尘含量设为正常状态,环境最高温度为30 度; (6)要求齿轮使用寿命为17年(每年按300天计,每天平均10小时); (7)生产批量:中等。 (8)半轴齿轮、行星齿轮齿数,可参考同类车型选定,也可自己设计。 (9)主传动比、转矩比参数选择不得雷同。 差速器的功用类型及组成 差速器——能使同一驱动桥的左右车轮或两驱动桥之间以不同角速度旋转,并传递转矩的机构。起轮间差速作用的称为轮间差速器,起桥间作用的称桥间(轴间)差速器。轮间差速器的功用是当汽车转弯行驶或在不平路面上行驶时,使左右驱动轮以不同的转速滚动,即保证两侧驱动车轮作纯滚动。 1.齿轮式差速器 齿轮式差速器有圆锥齿轮式和圆柱齿轮式两种。 按两侧的输出转矩是否相等,齿轮差速器有对称式(等转矩式)和不对称式(不等转矩式)。目前汽车上广泛采用的是对称式锥齿轮差速器,具有结构简单、质量较小等优点,应用广泛。它又可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器等。其结构见下图:

2.滑块凸轮式差速器 图二—2为双排径向滑块凸轮式差速器。 差速器的主动件是与差速器壳1连接在一起的套,套上有两排径向孔,滑块2装于孔中并可作径向滑动。滑块两端分别与差速器的从动元件内凸轮4和外凸轮3接触。内、外凸轮分别与左、右半轴用花键连接。当差速器传递动力时,主动套带动滑块并通过滑块带动内、外凸轮旋转,同时允许内、外凸轮转速不等。理论上凸轮形线应是阿基米德螺线,为加工简单起见,可用圆弧曲线代替。

汽车差速器毕业设计开题报告

轻型载货汽车的差速器设计 2.课题研究背景和意义 目前国内轻型货车乃至重型货车的差速器产品的技术基本来源于美国、德国、日本等几个传统的工业国家,我国现有的技术基本上是引进国外技术而发展的,在目前看来有了一定的成果和规模,但是们目前我国的差速器没有自己的核心技术产品,开发能力依然很弱、影响了整车新车的开发成本,所以在差速器开发的技术开发上还有很长的路要走。 在汽车行业发展初期,法国雷诺汽车公司的创始人雷诺发明了汽车差速器,汽车差速器作为汽车必不可少的部件之一曾被汽车专家誉为“小零件大功用”。汽车差速器是汽车传动中的最重要的部件之一,它有三大作用:首先是将发动机输出的动力传输到车轮上;其次,将主减速器已经增加的扭矩一分为二的分配给左右两根半轴;然后,它担任汽车主减速齿轮,在动力传输至车轮前将传动系的转速减下来,将动力传到车轮上,同时允许两侧车轮以不同的轮速转动。差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 3.1国内外发展动态 从目前来看,我国差速器行业已经顺利完成了由小到大的转变,正处于由大到强的发展阶段。由小到大是一个量变的过程,科学发展观对它的影响或许仅限于速度和时间,但由大到强却是一个质变的过程,能否顺利完成这一蜕变,科学发展观起着至关重要的作用。然而,在这个转型和调整的关键时刻,提高汽车车辆差速器的精度、可靠性是中国差速器行业的紧迫任务。 近年来年中国汽车差速器市场发展迅速,产品产出持续扩张,国家产业政策鼓励汽车差速器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对汽车差速器行业的关注越来越密切,这使得汽车差速器行业的发展需求增大。对国外而言,国外的那些差速器生产企业的研究水平已经很高,而且还在不断地进步,年销售额达到18亿美金的伊顿公司汽车集团是全球化的汽车零部件制造供应商,主要产品包括发动机气体管理部分及动力控制系统,其中属于动力控制系统的差速器类产品年销售量达250万只,在同类产品居领导地位。国内的差速器起步较晚,目前的发展主要靠引进消化国外产品来满足需求。 3.2差速器的发展趋势 差速器作为车辆上必不可少的重要传动零件,要使车辆的舒适性以及通过 性有所提高,对差速器的设计和改进是必然的。目前车辆上主要采用的是普通 对称锥齿式差速器,具有结构简单、质量较小等优点。但是当一侧轮子打滑时,另一侧轮子不能提供任何力矩,所以具有的通过性不高。目前市场上出现了大 量的防滑差速器,如伊顿公司开发的伊顿锁式差速器则可以在发现车轮打滑后,

托森差速器的设计说明书(可编辑)

托森差速器的设计说明书(可编辑)本科毕业设计(论文)通过答辩 目录 一 . 托森差速器的简介 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 二 . 托森差速器的工作原理 - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 三 . 蜗轮、蜗杆设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 四 . 蜗杆前、后轴的设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 五 . 空心轴的设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0 六 . 直齿圆柱齿轮设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 七 . 蜗轮轴设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 4 八 . 差速器外壳的设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 6 九 . 参考车型相关数据 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 7 十 . 设计心得 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 7

相关文档
最新文档