地铁、隧道施工监测方案

地铁、隧道施工监测方案
地铁、隧道施工监测方案

施工监测方案

第一节 监测方案设计和测点布设原则

18.1.1 监测组织机构

18.1.2 设计原则

1、本工程项目监测方案以安全检测为目的,根据不同的工程项目如(明挖、暗挖、盾构)确定监护对象(建筑物、管线、隧道等),针对监测对象安全稳定的主要指标进行方案设计。

2、本工程项目监测点的布置能够全面地反映监测对象的工作状态。

3、采用先进的仪器、设备和监测技术,如计算机技术、遥测技术等。

项目经理

项目总工

监测测量班

张孙

良生

毛纺

暖堂

竹敏

明辉

4、各监测项目能相互校验,以利数值计算,故障分析和状态研究。

5、方案在满足监测性能和精度的前提下,可适当降低检测频率,减少检测元件,以节约监测费用。

18.1.3 测点布设原则

1、观测点类型和数量的确定应结合工程性质、地质条件、设计要求、施工特点等因素综合考虑。

2、为验证设计数据而设的测点布置在设计中最不利位置和断面,为结合施工而设的测点布置在相同工况下的最先施工部位,其目的是及时反馈信息、指导施工。

3、表面变形测点的位置既要考虑反映监测对象的变形特征,又要便于来用仪器进行观察,还要有利于测点的保护。

4、除埋测点不能影响和妨碍结构的正常受力,不能削弱结构的变形刚度和强度。

5、在实施多项内容测试时,各类测点的布置在时间和空间上应有机结合,力求使一监测部位能同时反映不同的物理变化量,找出内在的联系和变化规律。

6、深层测点应在施工前30 天布置好,以便监测工作开始时,监测元件进入稳定的工作状态。

7、测点在施工过程中遭到破坏时,应尽快在原来位置或尽量靠近原来位置补设测点,保证该点观测数据的连续性。

18.1.4 主要监测仪器

在本标中,若我局中标将采用由中国地震局第一地形变监测中心研制的“隧道形变自动化监测系统”用于本标监测控制。

该自动化监测系统是对整个被监测区域进行多点同时快速扫描式测量,测试的频率可根据实际情况来设定,因此所取得的每一瞬时观测值更真实、更可靠的反映当时被测目标的变形状态。

1、BOY—1 型臂式倾斜仪

该仪器具有传感器体积小,安装简单灵活,既能分散单个观测,又能多臂组合成隧道变形监测系统。该仪器可用来监测隧道纵向倾斜(沉降)、环缝变形错位及隧道收敛变形等。

主要技术指标

灵敏度:0.005mm—0.01mm(1—2 角秒)

测量范围:±5°或±10°(臂的最大倾斜度)

采数频率:自由选择

平均日漂移:小于0.05mm/d

测量精度(单臂):±0.017mm

适宜环境温度:0°—45℃

适宜环境湿度:90%

电源:AC200V 50HZ 0.15W DC±9V 20Ma

2、激光水平位移监测仪

利用激光发散小,能量高的特性,使用激光束做为位移监测的参照系(基准线),用装有硅光电池的光电转换板对激光聚焦中心进行自动跟踪,光电转换板与一个精密位移传感器相连,这样就可以测量出接收端相对激光束的水平位移变化量。

主要技术指标

灵敏度:0.05mm

测量动态范围:50mm

采数速度、频率: 2 分钟以上自由选择

日漂移:小于0.05mm/d

测站精度:0.1mm

非线性误差:小于2%

电源:AC220V 50HZ

3、数据采集及处理软件

为了使监测仪采集的数据使用电脑来分析处理,采用相应的软件和建立数据库。本次处理软件是在windows 下进行数据处理和操作,使用微软公司开发的Visual Basic 6.0 软件,Visual Basic 6.0 可以支持使用多种数据库,Access 是Visual Basic 6.0 的内部数据库,其操作方便,安全性强,因此选择Access 作为数据处理的数据库。

计算机接口采用DC1054A/D 转换器和DC1070A/D 转换器,前者用于激光位移仪,后者用于臂式倾斜仪。

本次采用的软件主要有下述几方面的功能:

A、实时采集数据并同时显示各监测目标点的观测数据和连续变化的图形;

B、对观测数据储存和各种形式的输出;

C、打印数据报表和绘制输出观测图形(全部数据、小时值、日均值、五日均值、月均值);

D、对监测到各项目各组数据(任意时间区段)进行精度计算统计和分析;

E、对观测数据进行相关的数学处理:

(1)滑动滤波(圆滑观测曲线);

(2)低通滤波(去掉高频躁声);

(3)傅立叶周期分析、回归分析(消除周期变化影响和线性漂移)。

F、按预显条件进行报警。

第一节监测点的布置

18.2.1 监测目的

1、了解地铁明挖段、暗埋段、盾构施工过程中地表隆陷情况及其规律性。

2、了解施工过程中地层不同深度的垂直变位和水平变位情况。

3、了解施工过程中地下水位的变化情况。

4、了解围岩与结构物的相互作用力以及管片的变形情况。

5、指导现场施工,保障建筑物、构筑物及地下管线的安全。

18.2.2 监测内容

1、地面沉降监测

对盾构试验段、a-b 区间隧道上部地表均进行沉降观测。

2、地面建筑物下沉及倾斜监测

对隧道施工影响范围以内的所有建筑物及构筑物进行下沉及倾斜监测,以便当建筑物的某一部位或构件变形过大时,迅速采取有效的维修加固措施,确保建筑物结构安全和正常使用。

3、地下管线监测

地铁、隧道施工监测方案

施工监测方案 第一节监测方案设计和测点布设原则 18.1.1 监测组织机构 18.1.2 设计原则 1、本工程项目监测方案以安全检测为目的,根据不同的工程项目如(明挖、暗挖、盾构)确定监护对象(建筑物、管线、隧道等),针对监测对象安全稳定的主要指标进行方案设计。 2、本工程项目监测点的布置能够全面地反映监测对象的工作状态。 3、采用先进的仪器、设备和监测技术,如计算机技术、遥测技术等。 4、各监测项目能相互校验,以利数值计算,故障分析和状态研究。 5、方案在满足监测性能和精度的前提下,可适当降低检测频率,减少检测元件,以节约监测费用。 18.1.3 测点布设原则 1、观测点类型和数量的确定应结合工程性质、地质条件、设计要求、施工特点等因素综合考虑。 2、为验证设计数据而设的测点布置在设计中最不利位置和断面,为结合施工而设的测点布置在相同工况下的最先施工部位,其目的是及时反馈信息、指导施工。 3、表面变形测点的位置既要考虑反映监测对象的变形特征,又要便于来用仪器进行观察,还要有利于测点的保护。 4、除埋测点不能影响和妨碍结构的正常受力,不能削弱结构的变形刚度和强度。 5、在实施多项内容测试时,各类测点的布置在时间和空间上应有机结合,力求使一监测部位能同时反映不同的物理变化量,找出内在的联系和变化规律。 6、深层测点应在施工前30 天布置好,以便监测工作开始时,监测元件进入稳定的工作状态。 7、测点在施工过程中遭到破坏时,应尽快在原来位置或尽量靠近原来位置补设测点,保证该点观测数据的连续性。 18.1.4 主要监测仪器

在本标中,若我局中标将采用由中国地震局第一地形变监测中心研制的“隧道形变自动化监测系统”用于本标监测控制。 该自动化监测系统是对整个被监测区域进行多点同时快速扫描式测量,测试的频率可根据实际情况来设定,因此所取得的每一瞬时观测值更真实、更可靠的反映当时被测目标的变形状态。 1、BOY—1 型臂式倾斜仪 该仪器具有传感器体积小,安装简单灵活,既能分散单个观测,又能多臂组合成隧道变形监测系统。该仪器可用来监测隧道纵向倾斜(沉降)、环缝变形错位及隧道收敛变形等。 主要技术指标 灵敏度:0.005mm—0.01mm(1—2 角秒) 测量范围:±5°或±10°(臂的最大倾斜度) 采数频率:自由选择 平均日漂移:小于0.05mm/d 测量精度(单臂):±0.017mm 适宜环境温度:0°—45℃ 适宜环境湿度:90% 电源:AC200V 50HZ 0.15W DC±9V 20Ma 2、激光水平位移监测仪 利用激光发散小,能量高的特性,使用激光束做为位移监测的参照系(基准线),用装有硅光电池的光电转换板对激光聚焦中心进行自动跟踪,光电转换板与一个精密位移传感器相连,这样就可以测量出接收端相对激光束的水平位移变化量。 主要技术指标 灵敏度:0.05mm 测量动态范围:50mm 采数速度、频率:2 分钟以上自由选择 日漂移:小于0.05mm/d 测站精度:0.1mm 非线性误差:小于2% 电源:AC220V 50HZ 3、数据采集及处理软件 为了使监测仪采集的数据使用电脑来分析处理,采用相应的软件和建立数据库。本次处理软件是在windows 下进行数据处理和操作,使用微软公司开发的Visual Basic 6.0 软件,Visual Basic 6.0 可以支持使用多种数据库,Access 是Visual Basic 6.0 的内部数据库,其操作方便,安全性强,因此选择Access 作为数据处理的数据库。 计算机接口采用DC1054A/D 转换器和DC1070A/D 转换器,前者用于激光位移仪,后者用于臂式倾斜仪。 本次采用的软件主要有下述几方面的功能: A、实时采集数据并同时显示各监测目标点的观测数据和连续变化的图形; B、对观测数据储存和各种形式的输出; C、打印数据报表和绘制输出观测图形(全部数据、小时值、日均值、五日均值、月均值); D、对监测到各项目各组数据(任意时间区段)进行精度计算统计和分析; E、对观测数据进行相关的数学处理: (1)滑动滤波(圆滑观测曲线); (2)低通滤波(去掉高频躁声);

暗挖隧道监测方案全解

目录 第一章工程概况 (2) 1.1 工程概况 (2) 1.1.1 项目概况: (2) 1.2 工程基本情况 (2) 1.3 工程特点简要说明 (2) 1.4 工程地质和水文地质 (3) 1.5 工程环境 (5) 1.5.1 既有建(构)筑物 (5) 1.5.2 地下现况管线 (5) 第二章施工监测 (6) 2.1.1 监测原则 (6) 2.1.2 监测准备 (6) 2.1.3 监测内容及监测频率 (7) 2.1.4 监测点布置 (8) 2.1.5 监控标准及预警值 (12) 2.1.6 观测要求及报告制度 (13) 2.1.7 变形超过允许值时采取的措施 (14) 第三章风险控制系统 (15) 3.1 监控量测控制标准 (15) 3.2 数据分析与处理 (15) 3.3 风险控制控制方法 (15) 3.4 监测应急预案 (15)

第一章工程概况 1.1工程概况 1.1.1项目概况: 工程名称:丽泽铁路桥区积水治理工程 工程地点:北京市丰台区京九铁路立交与丽泽路交汇处的东南角; 1.2工程基本情况 本工程为雨水泵站新建雨水调蓄设施,对高强度降雨进行消峰,可以有效应对极端情况下(例如断电、来不及切换发电车等情况)的桥区排水;同时能在雨量较大等特殊情况下进行强排(调蓄池和泵站同时抽水),提高排放能力。 1.3工程特点简要说明 本工程调蓄池设计为浅埋暗挖结构,新建调蓄池位于现状丽泽泵站东侧,采用暗挖施工,开挖竖井在泵站东侧,暗挖调蓄池断面为拱顶直墙型式,净宽7.3m,净高 6.3m,拱顶净高0.7m。调蓄池顶板覆土厚度约2.55-3.1m,隧道共计长度40.6m。 调蓄池初期支护采用钢筋格栅+C20喷射混凝土,厚度300mm,格栅纵向间距500mm。二次衬砌结构为C35强度等级模筑钢筋混凝土,防水等级P8,二衬厚度400mm。 调蓄池暗挖施工采取拱顶小导管超前注浆加固措施,小导管为?42mm花孔无缝钢管,长2.5m,环向间距0.3m,纵向搭接 1.0m。隧道采用台阶法留核心土开挖,初衬贯通后再施做二衬结构。 竖井侧壁开马头门时需在洞口拱顶提前打设大管棚,大管棚为?108mm花孔无缝钢管,长7m,环向间距0.3m。 因本工程埋深较浅,且隧道穿过现况泵站门前一条宽为5m的道路。考虑到施工安全,隧道穿越道路段将采取开挖前全断面注浆施工措施。

地下工程电缆隧道监测方案1

电缆隧道施工监测方案 1.工程概况 本工程为220KV莫双1、2#线下地工程电缆隧道,隧道基本沿新建成的云锦路南北走向。 本工程在盾构隧道两端分别设置盾构到达井、盾构始发井。盾构基坑周边管线密集,道路交通繁忙,盾构始发井位于空地,距离道路较远,目前仅有一条在建的污水管。结合周边环境及地质资料,考虑到施工工期紧的因素,基坑围护结构采用SMW 桩(型钢水泥土搅拌墙)。 盾构隧道线路沿云锦路走向,从万达26#地块地下室及规划的云锦路下穿隧道之间以R=500m半径曲线穿过,曲线长度87.9695m,两端的直线段长度分别为29.336m、731.6945m,盾构隧道总长度849m。 隧道纵坡设计为单面坡形式,盾构始发井井深10.244m,隧道向北分别以1%和0.2%的坡度下坡,坡长分别为200.6 m和648.4m。盾构到达井井深14.747m,隧道最小覆土4.5m;隧道在变坡点设置半径R=5000m竖曲线。该线路隧道距离D800铸铁管最小净距离2.0m,距离D1200铸铁最小净距离2.4m。 2.工程地质及水文地质条件 (1)工程地质条件 拟建场地位于南京河西地区。地貌单元属长江漫滩,场地地层呈二元结构,上部以淤泥质粉质粘土为主,下部以粉土、粉细砂为主。隧道地质条件差,地层分层见表1-2。 隧道主要穿过②-2b4、②-3b3-4淤泥质粉质粘土地层。其中②-2b4淤泥质粉质粘土为隧道穿过的主要地层,有明显河湖相沉积特征,具有高含水量、高压缩性、高灵敏度、低强度,易产生土体流动、开挖面不稳等现象。 (2)水文地质条件 根据地质勘探资料,结合区域地质条件,长江漫滩沉积物呈二元结构,上部主要以淤泥质粉质粘土为主,下部以砂性土为主,赋存于粘性土中的地下水类型属孔隙潜水,赋存于下部粉土、砂性土中的地下水具一定的承压性。 地下水主要补给来源为大气降水及生产、生活用水的入渗。深部承压含水层中地下水与长江及秦淮河均有一定的水力联系。

地铁车站基坑监测方案

地铁车站基坑监测方案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1 工程概况 武汉市轨道交通3号线为武汉市第一条穿汉江地铁,它起始于沌阳大道站,终止于汉口三金潭站。全长28公里,设站23座,范湖站为第14座车站。 范湖站为地下三层单柱两跨式岛式站台车站,地下分站厅、设备、站台三层,车站标准段结构外包尺寸为×,顶部覆土约~。主体建筑面积16443m2,附属建筑面积6808 m2,总建筑面积23251 m2。有效站台宽11m,有效站台中心处轨面绝对标高为。车站主体围护结构采用1000mm厚地下连续墙,并入岩以满足抗浮要求;出入口和风道部分采取SMW工法桩加内支撑,桩径850mm,咬合250mm 本站位于规划马场角路与青年路的交叉路口,沿规划马场角路布置于路下,路口北侧有富苑假日酒店,马场角路北侧为在建葛洲坝国际广场北区住宅小区,南侧为规划葛洲坝国际广场(如图1-1所示)。车站与2号线范湖站通过通道换乘。车站内主要有电力、电信、自来水、排水等管线。 图1-1 现场图片 拟建场区地形平坦,原始地貌属长江冲积I级阶地。场区内地表水体不发育,未发现有河、沟、塘等地表水体分布。地下水按赋存条件,可分为上部滞水、潜水、孔隙承压水、碎屑岩裂隙水。地下水对砼及砼中钢筋不具腐蚀性,对地下钢结构具弱腐蚀性。 2 编制依据及主要原则 编制依据 1)武汉市轨道交通3号线一期工程设计施工图 2)地下铁道、轻轨交通工程测量规范(GB-50308-1999) 3)《建筑变形测量规范》(JGJ8-2007) 4)《工程测量规范》(GB50026-2007) 5)《建筑基坑工程监测技术规范》GB 50497-2009 主要原则 1)对围护体系及支撑系统中相当敏感的区域加密测点数和项目,进行重点监测; 2)对勘察工程中发现地质变化起伏较大的位置,施工过程中有异常的部位进行重点监测; 3)除关键部位优先布设测点外,在系统性的基础上均匀布设监测点;结合施工实际确定测试方法、监测元件的种类、监测点的保护措施,调整监测点的布设位置,尽量减少对施工质量的影响;结合施工实际确定测试频率。

城市轨道交通地铁项目施工监测方案

城市轨道交通地铁项目施工监测方案 1.1 测点布置 1.1.1测点布置原则 1、按监测方案在现场布设测点,当实际地形不允许时,可在靠近设计测点位置设置测点,以能达到监测目地为原则。 2、为验证设计参数而设的测点布置在设计最不利位置和断面,为指导施工而设的测点布置在相同状况下最先施工部位,其目的是为了及时反馈信息,以修改设计和指导施工。 3、地表变形测点的位置既要考虑反映对象的变形特征,又要便于采用仪器进行观测,还要有利于测点的保护。 4、深埋测点(结构变形测点等)不能影响和妨碍结构的正常受力,不能削弱结构的刚度和强度。 5、各类监测测点的布置在时间和空间上有机结合,力求同一监测部位能同时反映不同的物理变化量,以便找出其内在的联系和变化规律。 6、测点的埋设应提前一定的时间,并及早进行初始状态的量测。 7、测点在施工过程中一旦破坏,尽快在原来位置或尽量靠近原来位置补设测点,以保证该测点观测数据的连续性。

1.1.2 车站测点布置 车站测点布设情况如下表9-4所示。 表9-4 测点布设表

1.1.3 区间测点布置 (1)地面沉降(隆起)监测点: 一般地沿隧道中线方向每隔5m布设一个测点,每隔一定距离布设一个监测横断面,见表9-5。 地面沉降监测横断面间距表 表9-5 横断面方向测点间隔,一般为5~8m,在一个监测断面内设9个测点,地表测点顶突出地面5mm以内。 地面沉降测量应在盾构机开挖面附近,每天进行及每周进行后期观测直到沉降稳定。 (2)地面建筑物及临近建筑物沉降、倾斜和水平位移:在每栋建筑物四角各设置一个观测点,以测量其位移、倾斜,沉降点的数量不少于4点,规模较大的建筑物根据需要增加测点数量。地面和建筑物沉降监测断面沿隧道纵向每30m设一断面。

地铁隧道及车站监控量测方案

地铁隧道及车站监控量测方案 1施工监测目的 将监控量测作为一道工序纳入到施工组织设计中去。其主要目的为: ⑴了解暗挖隧道和明开车站的支护结构和周围地层的变形情况,为施工日常管理提供信息,保证施工安全。 ⑵为修改工程设计方案提供依据。 ⑶保证施工影响范围内建筑物、地下管线的正常使用,为合理确定保护措施提供依据。 ⑷验证支护结构设计,为支护结构设计和施工方案的修订提供反馈信息。 ⑸积累资料,以提高地下工程的设计和施工水平。 2监控量测设计原则 ⑴可靠性原则 可靠性原则是监测系统设计中所考虑的最重要的原则。为了确保其可靠性,必须做到:第一,系统需要采用可靠的仪器。第二,应在监测期间保护好测点。 ⑵多层次监测原则 多层次监测原则的具体含义有四点: ①在监测对象上以位移为主,兼顾其它监测项目; ②在监测方法上以仪器监测为主,并辅以巡检的方法; ③在监测仪器选择上以机测仪器为主,辅以电测仪器; ④考虑分别在地表、及临近建筑物与地下管线上布点以形成具有一定测点覆盖率的监测网。 ⑶重点监测关键区的原则 在具有不同地质条件和水文地质条件、周围建筑物及地下管线段,其稳定的标准是不同的。稳定性差的地段应重点进行监测,以保证建筑物及地下管线的安全。 ⑷方便实用原则 为减少监测与施工之间的干扰,监测系统的安装和测量应尽量做到方便实用。 ⑸经济合理原则 系统设计时考虑实用的仪器,不必过分追求仪器的先进性,以降低监测费用。 3监测项目

3.1监测项目分类 本工程的施工监测项目分为A类和B类。 ⑴A类监测项目: 包括地质及支护观察、周边位移、拱顶下沉、地表沉降、地下水位等项目,属必测项目,施工时严格按照有关规范设计要求进行监测。 ⑵B类监测项目: 包括土体水平位移、土体垂直位移、围岩压力、钢架应力,属于选测项目,根据设计要求,施工的实际要求和地层情况选择有实际意义的监测项目进行监测,以保证结构施工满足设计要求。 各种观测数据相互印证,确保监测结果的可靠性,为确保周围建筑物的安全,合理确定施工参数提供依据,达到反馈指导施工的目的。 3.2区间隧道监测项目 区间隧道标准断面监测项目如下表所示。 区间隧道标准断面监测项目表

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

青岛地铁监测方案

测点布设原则及要求 3.1 监测点埋设 1)建(构)筑物沉降、倾斜监测 建筑物沉降监测采用水准测量,测点埋设形式按《建筑变形测量规范》JGJ8-2007要求形式埋设;对重要建(构)筑物倾斜监测采用平面测量,在建(构)筑物上下分别埋设水平位移测点。 2)地下管线沉降及差异沉降监测 地下管线沉降采用水准测量的方法,对有管沟的观测管沟结构顶沉降,有窨井的可直接在管顶或沟顶制作沉降标识。其它管线监测点的可用地表沉降测点替代。 3)道路、地表沉降监测 道路、地表沉降采用水准测量,对于路面、地表观测点的埋设可采用标准方法和浅层设点的方法。 4)地下水位监测 依据地下水分层情况设置一组地下水位观测孔,观测孔制作工艺包括:钻探成孔、下管、填砾封填、洗井、检查止水效果,最后封加孔盖。 5)爆破震速监测 传感器与埋件必须牢固固定在测点处,留出少量螺栓,以和传感器拧紧为原则,不要使传感器离测量面太远,以防止产生相对运动,影响测量精度。 6)桩(坡/墙)顶水平位移监测 桩(坡/墙)顶水平位移监测采用测水平小角度法或极坐标法,测点设置于围护结构桩顶或边坡坡顶,埋设强制对中装置。 7)桩顶沉降监测 桩顶沉降监测采用水准测量。 8)围护结构桩体水平位移监测

桩体水平位移采用测斜仪测量,测斜管绑扎在桩钢筋笼上随其一起下放到孔槽内,并将其浇筑在混凝土中。 9)支撑轴力监测 支撑轴力监测采用轴力计或钢筋计,对于钢支撑埋设于端头部位,钢筋砼支撑埋设于中部。 10)锚杆轴力监测 施工锚杆钻孔并注浆,并在墙体受力面之间增设钢垫板,将测力计套在锚杆外,放在钢垫板和工程锚具之间,然后进行张拉,最后将读数电缆引出、保护。 11)拱顶下沉 矿山法隧道初支拱顶下沉测点在拱顶布设,测点标志采用焊接的挂钩标志。 12)净空收敛 矿山法隧道初支净空收敛测点在腰部布设,测点标志采用焊接的挂钩标志。 13)采用钻孔方式埋设地表及管线测点前,应详细探明地下有无其他管线,保证施工安全。 14)水准沉降和水平位移基准点设于变形影响区(50m)外,每测区不少于3个,以便相互校核。 15)格栅钢架监测是在拱顶、拱腰或拱脚、边墙及仰拱等部位,在格栅内外侧主筋处埋设钢筋计进行监测,最好与拱顶下沉、净空收敛布置在相同断面处,以便结构的相互校核。 16)监测过程中,应注意协同施工单位加强对测点的保护。3.2 监测布点基本要求 1)同点监测原则:监测方案制定时同时考虑第三方监测及施工监测的要求,第三方监测项目、测点应包含在施工监测范围内。 2)优先布置、重点布置原则:监测点优先布置重点风险工程、

隧道施工监测方案

中铁十四局集团武广项目部XXTJIII标隧道监控量测实施方案 编制: 复核: 审核: 日期: 中铁十四局集团武广项目部XXTJIII标第三项目队 二○○六年八月

隧道施工监控测量方案 一、工程概况 我管区内共有四座隧道(马家冲1#隧道,长度133m(其中明洞28m);马家冲2#隧道,长度307m(其中明洞34m);茶园林隧道,长度231m(其中明洞97m);大塘冲隧道,长度150m,(其中明洞68m)),共计长度821m。所有隧道埋深浅,围岩属V级软岩,为褐黄~褐红色,全风化、强风化砂质板岩,强度在200~350Kpa之间。节理裂隙与板理及层面等结构面极发育,易软化、变形,易造成塌顶、坍塌。隧道范围内地下水总体不发育。设计采用双侧壁导坑法施工,后变更为三台阶留核心土法施工。 二、监控量测的目的 为了掌握围岩在开挖过程中的动态信息和支护结构的稳定状态,提供有关隧道施工全面、系统的信息资料,为评价和修改支护参数,力学分析及二次衬砌施作时提供信息依据,确保施工安全和支护结构的稳定。在新奥法施工中,监控量测是施工过程中必须的施工程序。对围岩支护系统的稳定状态进行监测,是确保施工安全、指导施工程序、便利施工管理的重要手段。三、监控量测项目 隧道施工监测量测项目主要有:洞内外观测、水平相对净空变化值的量测、拱顶下沉量测。 四、监控测量设备仪器、量测方法、频率

五、测量监控方案 A、洞内外观察 ①洞内外观察(即地质和支护状态观察)分开挖工作面观察和已施工区段观察两部分,开挖工作面观察在每次开挖后进行一次,内容包括围岩岩性、产状、变形、围岩风化变质情况、节理裂隙发育、断层分布和形态、地下水情况、工作面稳定状态、底板情况、及喷射砼的效果等,观测后应绘制开挖工作面地质素描图,填写工作面状态记录表及围岩类别识别卡,对已成区段的观测应每天进行一次,观察内容包括喷射砼、锚杆、钢架的状况,并将观测情况进行记录。 ②洞外观察包括洞口地表情况、地表沉陷、边坡及仰拱的稳定、地表水

深圳地铁5号线民五区间盾构隧道监测方案

深圳地铁5号线(环中线)工程 民治~五和盾构区间隧道 施工监测方案 编制: 审核: 审查: 中铁西南科学研究院有限公司 深圳地铁5号线BT项目土建工程施工监测项目部 二○○九年一月十日

目录 一、编制依据........................................................................................................... - 1 - 二、工程概况........................................................................................................... - 1 - 三、监测方案说明................................................................................................... - 2 - 四、质量保证、成果及时性保证、安全保证措施............................................. - 11 - 五、民五盾构区间建(构)筑物专项监测方案................................................. - 13 - 六、附图............................................................................................................... - 16 -

地铁车站监控量测方案_(车站)

一、汉中门车站基坑施工监测方案 1.1 工程概况 汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m车站总长度为:161. 50米, 车站标准段宽度:20. 90米。顶板埋深约2. 8?3. 6米,基坑开挖深度约20. 93?23. 1米。车站西端南北侧在施工阶段各设一个10nm8m的盾构吊出井,东端车站底板设1. 9X1. 9的电缆过轨通道与I号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11 . 5m 考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m 有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3 号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用? 800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的? 1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的?1200人工挖孔 桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用?609mm勺钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m

1. 2工程地质条件和周边环境情况 1. 2. 1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1. 80—4. 30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5. 10—22. 90米,主要为全新世?上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层” ,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。汉中门车站地质参数由《南京地铁二号线汉中门站岩土工程详细勘察报告》(编号:2004168-1)提供。穿越的主要土层由上至下依次为:①—杂填土; ①—2b2-3素填土;②—15-2粉质粘土;②一3b2-3粉质粘土;③一lb |-2粉质粘土:③一2b2-3粉质粘土;③一3b1- 2粉质粘土:③一4e粉质粘土:Klg-1a强风化泥质粉砂岩:Klg-2a中风化泥质粉砂岩。 1. 2. 2.水文 本站地下水类型主要为上层滞水、孔隙潜水和基岩风化裂隙水。上层滞水主要赋存于①层填土的碎砖、碎石等杂物的孔隙格架中;孔隙潜水分布在②层软土中;③层硬可塑粉质粘土,可视为相对隔水层;基岩风化裂隙水土要分布于岩石风化界面和粉砂岩、泥质粉砂岩裂隙中,裂隙多被允填、裂隙一般不富水。地下水年变幅0. 50?1. 50米,地下水对砼无腐蚀性,对钢筋砼结构中的钢筋无腐蚀性,对钢结构具有弱腐蚀性。场地土对砼无腐蚀性,对钢结构有弱腐蚀性。 设计时,地下水位埋深按1. 00米考虑。 1. 2. 3.气象 本项目所在区域处于长江下游北热带季风气候区,具有气候温和,雨量充沛,日照充足,无霜期长,四季分明等特点,因受大陆、海洋以及来自南北天气系统段影响,气候比较复杂,年际间的变化大,气象灾害比较频繁,年降雨量为1000?1200mm年内分布也不

地铁车站主体基坑施工监测方案

基坑和区间隧道施工监测方案 二〇〇六年八月

一、x基坑施工监测方案 1.1工程概况 位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m。车站总长度为:161.50米,车站标准段宽度:20.90米。顶板埋深约2.8~3.6米,基坑开挖深度约20.93~23.1米。车站西端南北侧在施工阶段各设一个10m×8m的盾构吊出井,东端车站底板设1.9×1.9的电缆过轨通道与l号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11.5m考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m,有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用φ800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的φ1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的φ1200人工挖孔桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用φ609mm 的钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m。 1.2工程地质条件和周边环境情况 1.2.1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1.80—4.30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5.10—22.90米,主要为全新世~上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层”,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。x地质参数由《南京地铁二号线汉中门站岩土工程详细勘察报告》(编号:2004168-1)提供。穿越的主要土层由上至下依次为:①-杂填土;①-2b2-3素填土;②-1b1-2粉质粘土;②

广州地铁基坑及围护结构施工监测方案

广州市轨道交通二十一号线工程【施工15标】土建工程项目 施工监测方案 编制: 审核: 批准: 中铁电气化局集团有限公司 广州地铁二十一号线15标项目经理部 2014年10月

目录 1.编制依据 (1) 2. 工程概况 (1) 2.1 区间概况............................................................................................................... 错误!未定义书签。 2.2 区间工程地质概况 (2) 2.3 水文地质概况....................................................................................................... 错误!未定义书签。 2.4 周围建筑及其管线............................................................................................... 错误!未定义书签。 2.5 风险工程内容....................................................................................................... 错误!未定义书签。 3. 监测组织机构和设备配置 (10) 3.1监测组织机构 (10) 3.2主要的试验/测量/质检仪器设备表 (11) 4.施工监测内容及巡视内容 (11) 4.1监测基本项目及要求 (11) 4.2施工安全性判别 (15) 5.主要监测和巡视技术方案 (16) 5.1建筑物沉降监测 (16) 5.2 地下管线沉降及差异沉降监测 (19) 5.3 道路及地表沉降监测 (20) 5.4 围护结构桩顶水平位移监测 (21) 5.5 围护结构桩体水平位移监测 (23) 5.6 支撑轴力监测 (25) 5.7 地下水位观测 (27) 5.8 临时立柱垂直位移监测 (28) 5.9 施工期间现场监测、巡视作业要求 (28) 6. 成果报送要求 (29) 7.视频监控系统要求 (29) 8.安全质量保证措施 (30) 9. 应急预案 (31) 9.1 应急领导小组建立 (31) 9.2 成立应急队伍 (31) 9.3 应急响应 (31) 10. 附件 (32)

地铁车站监控量测方案

一、汉中门车站基坑施工监测方案 1.1工程概况 汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m。车站总长度为:161.50米,车站标准段宽度:20.90米。顶板埋深约2.8~3.6米,基坑开挖深度约20.93~23.1米。车站西端南北侧在施工阶段各设一个10m×8m的盾构吊出井,东端车站底板设1.9×1.9的电缆过轨通道与l号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11.5m考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m,有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用φ800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的φ1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的φ1200人工挖孔桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用φ609mm 的钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m。 1.2工程地质条件和周边环境情况 1.2.1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1.80—4.30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5.10—22.90米,主要为全新世~上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层”,岩

地铁隧道施工监控方案

地铁隧道施工监控系统 设计方案

目录 第一章技术方案设计 (3) 一、概述 (3) 二、用户需求分析 (4) 三、设计依据 (5) 四、设计原则: (6) 五、总体设计 (7) 5.1前端部分 (8) 5.2传输部分 (10) 5.3中心控制部分 (11) 5.4网络分控系统设计说明 (12) 5.5视频显示和记录设计说明 (12) 5.6报警部分(可选) (13) 六、监控系统原理及分控拓朴图 (14) 七、光纤数字监控系统的特点 (15) 八、系统功能 (17) 九、主要设备介绍 (18) 9.1超低照度彩色摄像机 (18) 9.2超低照度彩色摄像机 (18) 9.3四数字视频光端机 (19)

9.4室外防护罩 (22) 9.5嵌入式数字硬盘录像机 (22) 9.6主控键盘 (25) 十、系统配置清单 (27) 10.1地面工地监控系统 (27) 10.2分段隧道施工监控系统 (29) 第一章技术方案设计 一、概述 目前,地铁隧道井下作业因为在地下,地形复杂,环境恶劣,如瓦斯爆炸、地下渗水等事故经常发生。利用远程视频监控系统,地面监控值班人员可以直接对井下工作面情况进行实时监控,不仅能直观的监视和记录井下工作现场的安全生产情况,对于存在的隐患能够迅速做出处理,避免可能发生的事故。也能为事后分析事故提供有关的第一手图像资料。因此远程视频监控系统是现代隧道施工安全生产监控系统的重

要组成部分。同时,地面工地的安全生产及安全防范也是地铁施工安防系统的重要组成部份,因此,本设计方案包含了隧道施工远程监控及地面工地监控两部份。另外,因为此地铁工程为双向复线,且同时施工,故需要设计两隧道施工点的远程监控系统。为便于统一管理及资源共享,将二系统构成一个统一的监控平台。 随着科学技术的发展,基于光纤传输及应用为基础的监控系统的系列产品的推出,为诸如地铁隧道施工等远程监控提供了全新的观念和更广阔的空间,实现了远程实时监控、远程遥控摄像机的功能。光端机产品的出现即在各个行业得到了广泛应用。所以在地铁隧道安全生产监控系统中光纤加数字硬盘录像监控系统将取代传统模拟监控是一种必然的趋势。 光纤数字监控系统拥有强大的管理功能、良好的兼容性、方便的可扩展性、优越的性价比、超强的抗干扰性、图像数据双向传输功能等众多优点,完全能够替代传统模拟监控系统,此系统已在众多领域中得到应用。其中包括电力系统的变电站及高速公路收费站、医院高等病房、学校、工厂、地铁隧道、跨地区的企业集团等等。二、用户需求分析 井下采掘点(监控点)是动态的,并随着生产推进不断改变; 要求系统扩展(增减监控点)、安装、维护方便,且能远距离传输; 系统监控图像清晰,能够在环境恶劣的条件下稳定、可靠的工作; 监控图像可在施工区局域网中传输; 普通的闭路电视监控系统,采用的是传统模拟视频信号,具有很大的局限性:首先,有线模拟视频信号的传输对距离十分敏感,当传输距离大于500米时,信号容易产生衰耗、畸变、群延时,并且易受干扰,使图像质量下降,当用于井下复杂的工作现场时,图像质量下降的更加明显;其次,传统模拟视频监控无法联网,只能以点对

隧道施工监测方案

中铁十四局集团武广项目部XXTJIII标隧道监控量测实施方案 编制: 复核: 审核: 日期: 中铁十四局集团武广项目部XXTJIII标第三项目队 二○○六年八月

隧道施工监控测量方案 一、工程概况 我管区内共有四座隧道(马家冲1#隧道,长度133m(其中明洞28m);马家冲2#隧道,长度307m(其中明洞34m);茶园林隧道,长度231m(其中明洞97m);大塘冲隧道,长度150m,(其中明洞68m)),共计长度821m。所有隧道埋深浅,围岩属V级软岩,为褐黄~褐红色,全风化、强风化砂质板岩,强度在200~350Kpa之间。节理裂隙与板理及层面等结构面极发育,易软化、变形,易造成塌顶、坍塌。隧道范围内地下水总体不发育。设计采用双侧壁导坑法施工,后变更为三台阶留核心土法施工。 二、监控量测的目的 为了掌握围岩在开挖过程中的动态信息和支护结构的稳定状态,提供有关隧道施工全面、系统的信息资料,为评价和修改支护参数,力学分析及二次衬砌施作时提供信息依据,确保施工安全和支护结构的稳定。在新奥法施工中,监控量测是施工过程中必须的施工程序。对围岩支护系统的稳定状态进行监测,是确保施工安全、指导施工程序、便利施工管理的重要手段。 三、监控量测项目 隧道施工监测量测项目主要有:洞内外观测、水平相对净空变化值的量测、拱顶下沉量测。 四、监控测量设备仪器、量测方法、频率

五、测量监控方案 A、洞内外观察 ①洞内外观察(即地质和支护状态观察)分开挖工作面观察和已施工区段观察两部分,开挖工作面观察在每次开挖后进行一次,内容包括围岩岩性、产状、变形、围岩风化变质情况、节理裂隙发育、断层分布和形态、地下水情况、工作面稳定状态、底板情况、及喷射砼的效果等,观测后应绘制开挖工作面地质素描图,填写工作面状态记录表及围岩类别识别卡,对已成区段的观测应每天进行一次,观察内容包括喷射砼、锚杆、钢架的状况,并将观测情况进行记录。 ②洞外观察包括洞口地表情况、地表沉陷、边坡及仰拱的稳定、地表水渗透的观察。 ③观测方法:地质罗盘和眼睛进行观测。 ④在观察过程中如发现地质条件恶化,初期支护发生异常现象,立即通

最新(地铁隧道)XXXX站-XXXX站区间监测方案教案资料

XX市及轨道交通XX号线 监控量测方案 编制: 审核: 批准: XX集团XX项目部 年月

目录 一、监测方案编制依据 (2) 二、工程概况 (2) 三、监测的目的和意义 (3) 四、信息化施工组织 (3) 五、施工监测设计 (4) 5.1、地表沉降监测 (4) 5.2、地表建筑物(构造物)沉降、位移、倾斜、裂缝监测 (6) 5.3、管线变形监测 (8) 5.4、隧道内管片沉降、收敛监测 (9) 5.5、东风渠、七里河交叉口过河监测 (9) 六、警戒值的确定及监测频率 (9) 七、人员设置及仪器配备 (10) 八、监测质量保证 (11) 九、监测成果报告 (11)

XX市及轨道交通XX号线体育中心站~博学路站隧道工程 监控量测方案 一、监测方案编制依据 1、XX市轨道交通XX号线XX标段设计图纸; 2、《地铁工程监控量测技术规程》DBI 1/490-2007 5、《地铁设计规范》GB50157-2003 6、《地下铁道、轻轨交通工程测量规范》GB50308-1999 7、《地下铁道工程施工及验收规范》GB50299-2003 8、《工程测量规范》(GB50026-2007) 9、《建筑基坑工程监测技术规范》GB50497-2009 10、《XX市轨道交通工程监控量测管理办法》; 二、工程概况 本工程为XX市轨道交通XX线一期工程土建施工第XX标段,包括一个车站(XX站)和两个区间段,区间段即XX站——XX站盾构区间段,XX站——XX段区间段(其间包括盾构区间、明挖区间)。 第XX合同段全长XXXX米,其中XXXX站长XXXX米,盾构区间长XXXX米,盾构段双线总长XXXX米,明挖区间长XXXX米。 XXXX站——XXXX站盾构区间段起止里程为,西起左线CK32+487.74(右CK32+487.74),东至CK34+698.25(CK34+698.25);XXXX站——车辆出入线段区间段,西起RCK0+056.152东至RCK2+962.0 ;XXXX站的起止里程为CK34+698.25至RCK0+056.152 。 其中XXXX站至XXXX区间工程区间长度约为XXXX米,联络通道三处,其中中间联络通道带有通风井。三处联络通道离始发井距离分别约为:490米、1309米、1869米。 线路平面包含两段圆曲线,曲率半径分别为350米和450米。竖曲线由21.4‰-2‰等坡度组成的V字型。 隧道盾构施工选用德国Herrenknecht公司生产的复合盾构机作为隧道掘进设备。该设

地铁基坑监测方案

地铁XXXX深基坑监测技术方案 第一章工程概况 1、工程概况 XXXX是XXXX轨道交通二号线一期工程的第三个车站,车站位于金雅二路中段,东侧是正在建设中的XXXXC区,西侧是XXX移动公司,站前折返线上部地面东侧为常青花园空地,西侧为建设中的XXXXD区。周边空间比较狭窄。长港路以北西北角拟占用作为轨排基地。车站外包尺寸为530.2×30.5×12.61m(长×宽×高),车站顶部覆土约3.0m。车站所处位置周边交通处于发育中,车流量不大。 XXXX主体结构为两层两跨局部单跨双层矩形框架结构,采用明挖法施工。车站标准段明挖基坑深度15.89米,宽度18.5米;盾构井加宽段明挖基坑北侧深度约17.8米,宽度约30.5米;南侧深度16.822米,宽度约为23.3米。根据本站基坑深度和周边环境条件,确定本基坑安全等级为一级,支护结构的水平位移ε≤3‰H,且ε≤30mm。 2、工程地质、水文地质情况 2.1工程地质 拟建场区地形平坦,原始地貌属长江冲积一级阶地。根据钻探揭示及对地层成因、年代的分析,本代地层主要由第四纪全新统人工堆积层(Q4ml)组成,岩性为粉质粘土、淤泥质粉质粘土、淤泥质粉质粘土夹粉土、粉质粘土粉土粉砂互层、粉砂夹粉土、粉砂、砂类土。各土层描述如下: (1-1)层杂填土:松散,由粘性土,砂土与砖块、碎石、块石、炉渣等建筑及生活垃圾混成。该层全场地分布,层厚约0.6~2.4m。 (1-2)素填土:褐黄~灰色,松散,高压缩性,粘性土及砂土为主组成,混少量碎石,砖瓦片等。该层局部分布,层厚1.1~1.7m。 (1-3)层淤土:灰黑色,软~流塑,高压缩性,含有机质及生活垃圾。该层局部分布,层厚2.8~3.9m。 (3-1)层粘土:黄褐~褐黄~灰褐色,可塑(局部偏硬塑),中压缩性,含氧化钛、铁锰质结核。该层大部分地段分布,厚1.0~6.8m。 (3-1a)层粘土:褐黄色,中偏高压缩性,含氧化铁、铁锰质结核。该层局部分

相关文档
最新文档