摩擦焊原理简介

摩擦焊原理简介
摩擦焊原理简介

连续驱动摩擦焊基本原理

1.焊接过程

连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。

对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。

(1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加

热功率显著增大的b点止。摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~300℃左右。

在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3左右的地方首先开始。

(2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段,该阶段从摩擦加热功率显著增大的b点起,越过功率峰值c点,到功率稳定值的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面的温度继续增高时,金属的塑性增高,而强度和韧性都显著下降,摩擦加热功率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑性状态的局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气隔开。

(3)稳定摩擦阶段(t3)稳定摩擦阶段是摩擦加热过程的主要阶段,其范围从摩擦加热功率稳定值的d点起,到接头形成最佳温度分布的e点为止,这里的e点也是焊机主轴开始停车的时间点(可称为e′点),也是顶锻压力开始上升的点(图10的?点)以及顶锻变形量的开始点。在稳定摩擦阶段中,工件摩擦表面的温度继续升高,并达到1300℃左右。这时金属的粘结现象减少,分子作用现

象增强。稳定摩擦阶段的金属强度极低,塑性很大,摩擦系数很小,摩擦加热功率也基本上稳定在一个很低的数值。此外,其它连接参数的变化也趋于稳定,只有摩擦变形量不断增大,变形层金属在摩擦扭矩的轴向压力作用下,从摩擦表面挤出形成飞边,同时,界面附近的高温金属不断补充,始终处于动平衡状态,只是接头的飞边不断增大,接头的热影响区变宽。

(4)停车阶段(t4)停车阶段是摩擦加热过程至顶锻焊接过程的过渡阶段,是从主轴和工件一起开始停车减速的e′点起,到主轴停止转动的g点止。从图10可知,实际的摩擦加热时间从a点开始,到g点结束,即t?=t1+t2+t3+t4。尽管顶锻压力从?点施加,但由于工件并未完全停止旋转,所以g′点以前的压力,实质上还是属于摩擦压力。顶锻开始后,随着轴向压力的增大,转速降低,摩擦扭矩增大,并再次出现峰值,此值称为后峰值扭矩。同时,在顶锻力的作用下,接头中的高温金属被大量挤出,工件的变形量也增大。因此,停车阶段是摩擦焊接的重要过程,直接影响接头的焊接质量,要严格控制。

(5)纯顶锻阶段(t5)从主轴停止旋转的g(或g′)点起,到顶锻压力上升至最大位的h点止。在这个阶段中,应施加足够大的顶锻压力,精确控制顶锻变形量和顶锻速度,以保证获得优异的焊接质量。

(6)顶锻维持阶段(t6)该阶段从顶锻压力的最高点h开始,到接头温度冷却到低于规定值为止。在实际焊接控制和自动摩擦焊机的程序设计时,应精密控制该阶段的时间tu(tu=t3+t4)。在顶锻维持阶段,顶锻时间、顶锻压力和顶锻速度应相互配合,以获得合适的摩擦变形量△I?和顶锻变形量△Iu。在实际计算时,摩擦变形速度一般采用平均摩擦变形速度(△I?/t?),顶锻变形速度也采用其平均值〔△Iu/(t4+t5)〕。

总之,在整个摩擦焊接过程中,待焊的金属表面经历了从低温到高温摩擦加热,连续发生了塑性变形、机械挖掘、粘接和分子连接的过程变化,形成了一个存在于全过程的高速摩擦塑性变形层,摩擦焊接时的产热、变形和扩散现象都集中在变形层中。在停车阶段和顶锻焊接过程中,摩擦表面的变形层和高温区金属被部分挤碎排出,焊缝金属经受锻造,形成了质量良好的焊接接头。

2.摩擦焊接产热

摩擦焊接过程中,两工件摩擦表面的金属质点,在摩擦压力和摩擦扭矩的作用下,沿工件径向与切向力的合成方向作相对高速摩擦运动,在界面形成了塑性变形层。该变形层是把摩擦的机械功转变成热能的发热层,它的温度高、能量集中,具有很高的加热效率。

(1)摩擦加热功率摩擦加热功率的大小及其随摩擦时间的变化,决定了焊接温度及其温度场的分布,直接影响接头的加热过程、焊接生产率和焊接质量,同时也关系到摩擦焊机的设计与制造。摩擦加热功率就是焊接热源的功率,它的计算与分布如下:

对圆形的焊接工件,假设沿摩擦表面半径方向的摩擦压力p?和摩擦系数μ为常数。为了求出功率分布,在摩擦表面上取一半径为r的圆环,该环的宽度为dr (图11),其面积为dA,则dA=2πrdr,则作用在圆环上的摩擦力为

dF=p?μdA=2πp?μrdr (4)

以O点为圆心的摩擦扭矩为

dM=rdF=2πp?μr2dr (5)

圆环上的摩擦加热功率为

dP≈1.02dM×10-3n

(6)

摩擦加热功率沿接合面半径R方向上的分布dP/dr如图11所示。加热功率在圆心处为零,在外边缘最大。

将式(5)、式(6)积分,可以得到摩擦焊接表面上总的摩擦扭矩和加热功率为

M=2πp?μR3/3 (7)

P=2×10-3πp?nμR3/3

(8)

式中M——摩擦扭矩;

P——摩擦加热功率;

p?——摩擦压力;

n——工件转速;

μ——摩擦系数;

r——圆环半径;

R——待焊工件半径。

实际上p?(r)不是常数,在初始摩擦阶段和不稳定摩擦阶段的前期,摩擦表面还没有全面产生塑性变形,主要是弹性接触,摩擦压力在中心高,外圆低。因此沿摩擦焊接表面半径R的摩擦加热功率最大值不在外圆,而在距圆心2/3R左右的地方,这一点不仅符合计算结果,也被试验所证实。在稳定摩擦阶段,摩擦表面全部产生塑性变形,成为塑性接触时,p?(r)才可以认为等于常数。此外,μ(r)在初始摩擦阶段和不稳定摩擦阶段也不是常数,由高温金属组成的高速塑性变形层热源,在距圆心1/2~1/3半径处形成环状加热带,随着摩擦加热的进行,环状加热带向圆心和外圆迅速展开,当进入稳定摩擦阶段时,摩擦表面的温度才趋于平衡,此时可以认为μ(r)是常数。

摩擦表面上总的加热热量为

式中Q——接合面总的摩擦加热热量;

t——摩擦时间;

to——摩擦加热开始时间(设to=0);

tn——实际摩擦加热时间;

k——常数。

(2)摩擦焊接表面温度摩擦焊接表面的温度会直接影响接头的加热温度、温度分布、摩擦系数、接头金属的变形与扩散。其加热面的温度由摩擦加热功率和散热条件所决定。

在焊接圆断面工件时,摩擦焊接热源被认为是一个线性传播的连续均布的面状热源。如果不考虑向周围空间的散热,根据雷卡林的焊接热过程计算公式,同种金属摩擦焊接表面的温度为

式中T(O,t)——摩擦焊接表面温度(O表面热源中心,t是摩擦加热时间);

q2——单位面积上的加热热量;

λ——焊件热导率;

c——焊件热容。

在式(10)中,如果选定焊接所需要的温度为Tw,热源温度升高到Tw所需要的摩擦加热时间为t?′,则该式可以写成

t?′q22=cπλT2w=常数(11)

从式(11)可以看出,当Tw和t?′确定以后,能够计算出q2的数值,并可以根据q2的要求选择焊接参数。式(10)和式(11)适合于计算以稳定摩擦阶段为主的摩擦加热过程。

实际上,不论何种材料的摩擦焊接,摩擦表面的最高温度是有限制的,不能超过焊件材料的熔点,此外,在采用式(10)和式(11)进行运算时,还应该考虑到摩擦焊接表面温度与加热功率之间的内在联系、相互制约及摩擦加热功率随摩擦时间变化的特殊规律。

螺柱焊接技术

目前,我国汽车制造业主要应用的螺柱焊接技术是短周期拉弧式螺柱焊,辅以相关的自动控制设备,大幅提高了汽车的焊接质量,提升了汽车品质。 螺柱焊接技术由于具有快速、可靠、操作简单和成本低等优点,可替代铆接、钻孔、手工电弧焊和钎焊等连接工艺,可焊接碳钢、不锈钢、铝以及铜及其合金等金属,现在已广泛应用在汽车、船舶制造等领域。我国应用螺柱焊接技术的历史不长,但是随着我国经济的快速发展和制造业水平的不断提高,螺柱焊接技术正被越来越多的国内企业所采用。 螺柱焊接技术及原理 将螺柱或类似的金属柱状物及其他紧固件焊接在工件上的方法称为螺柱焊。实现螺柱焊的方法有多种:电阻焊、摩擦焊、爆炸焊及电弧焊等。目前应用最广泛的方法是电弧法螺柱焊,根据焊接电源的不同,可细分为储能式(电容放电)螺柱焊和拉弧式螺柱焊。 1.储能式螺柱焊 储能式螺柱焊由充电电容放电提供焊接所需的能量,当电容放电时,螺柱和工件之间出现很短时间的电弧,电弧会熔化工件表面和螺柱顶端的少量金属,随后螺柱浸入熔池,熔化金属迅速冷却,形成焊接接头。储能式螺柱焊的焊接时间极短,通常情况下在5ms 之内,无需保护气体;熔池浅,约0.1mm,工件背面无变形、压痕,适于薄板焊接; 可用于焊接碳钢、不锈钢、铝、铜及其合金等金属;板厚与螺柱直径比可达1∶10。 储能式螺柱焊设备根据焊枪的配置不同,可分为接触式和间隙式两种。 接触式螺柱焊依靠焊枪内置弹簧压紧螺柱,工件和螺柱之间的距离由螺柱顶部小凸台来保证,当电容放电时,小凸台迅速气化,螺柱和工件之间出现电弧,电弧产生的热量使螺柱顶部形成熔化层,工件表面形成很浅的熔池。在焊枪内置弹簧压力下,螺柱快速下

连续驱动摩擦焊基本原理

连续驱动摩擦焊基本原理 1.焊接过程 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过 程结束。 对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 (1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加热功率显着增大的b 点止。摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表 面温度将升到200~300℃左右。 在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高 的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3 左右的地方首先开始。 (2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段,该阶段从摩擦加热功率显着增大的b点起,越过功率峰值c点,到功率稳定值的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面的温度继续增高时,金属的塑性增高,而强度和韧性都显着下降,摩擦加热功率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑性状态的

直流高频电阻焊基本原理介绍

直流高频电阻焊基本原理介绍高频焊接起源于上世纪五十年代,它是利用高频电流所;接推动了直缝焊管产业的巨大发展,它是直缝焊管(E;质量的好坏,直接影响到焊管产品的整体强度,质量等;所谓高频,是相对于50Hz的交流电流频率而言的,;电流;集肤效应是指以一定频率的交流电流通过同一个导体时;分布于导体的所有截面的,它会主要向导体的表面集中;方根成正比,与频率和磁导率的平方根成反比;钢板的表面; 高频焊接起源于上世纪五十年代,它是利用高频电流所产生的集肤效应和相邻效应,将钢板和其它金属材料对接起来的新型焊接工艺。高频焊接技术的出现和成熟,直接推动了直缝焊管产业的巨大发展,它是直缝焊管(ERW)生产的关键工序。高频焊接质量的好坏,直接影响到焊管产品的整体强度,质量等级和生产速度。 1高频焊接的基本原理 所谓高频,是相对于50Hz的交流电流频率而言的,一般是指50KHz~400KHz的高频电流。高频电流通过金属导体时,会产生两种奇特的效应:集肤效应和邻近效应,高频焊接就是利用这两种效应来进行钢管的焊接的。那么,这两个效应是怎么回事呢?集肤效应是指以一定频率的交流电流通过同一个导体时,电流的密度不是均匀地分布于导体的所有截面的,它会主要向导体的表面集中,即电流在导体表面的密度大,在导体内部的密度小,所以我们形象地称之为:“集肤效应”。集肤效应通常用电流的穿透深度来度量,穿透深度值越小,

集肤效应越显著。这穿透深度与导体的电阻率的平方根成正比,与频率和磁导率的平方根成反比。通俗地说,频率越高,电流就越集中在钢板的表面;频率越低,表面电流就越分散。必须注意:钢铁虽然是导体,但它的磁导率会随着温度升高而下降,就是说,当钢板温度升高的时候,磁导率会下降,集肤效应会减小。邻近效应是指高频电流在两个相邻的导体中反向流动时,电流会向两个导体相近的边缘集中流动,即使两个导体另外有一条较短的边,电流也并不沿着较短的路线流动,我们把这种效应称为:“邻近效应”。邻近效应本质上是由于感抗的作用,感抗在高频电流中起主导的作用。邻近效应随着频率增高和相邻导体的间距变近而增高,如果在邻近导体周围再加上一个磁心,那么高频电流将更集中于工件的表层。这两种效应是实现金属高频焊接的基础。高频焊接就是利用了集肤效应使高频电流的能量集中在工件的表面;而利用了邻近效应来控制高频电流流动路线的位置和范围。电流的速度是很快的,它可以在很短的时间内将相邻的钢板边部加热,熔融,并通过挤压实现对接。 2 高频焊接设备的结构和工作原理 了解了高频焊接原理,还得要有必要的技术手段来实现它。高频焊接设备就是用于实现高频焊接的电气—机械系统,高频焊接设备是由高频焊接机和焊管成型机组成的。其中高频焊接机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它;成型机由挤压辊架组成,它的作用是将被高频电流熔融的部分加以挤压,

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

点焊基本原理

点焊基本原理 1.1 点焊接头的形成 电阻点焊原理和接头形成如图1所示。可简述为:将焊件3压紧在两电极2之间,施加电极压力后,阻焊变压器1向焊接区通过强大的焊接电流,在焊件接触面上形成真实的物理接触点,并随着通电加热的进行而不断扩大。塑变能与热能使接触点的原子不断激活,消失了接触面,继续加热形成熔化核心4,简称熔核。熔核中的液态金属在电动力作用下发生强烈搅拌,熔核内的金属成分均匀化,结合界面迅速消失。加热停止后,核心液态金属以自由能最低的熔核边界半熔化晶粒表面为晶核开始结晶,然后沿与散热相反方向不断以枝晶形式向中间延伸。通常熔核以柱状晶形式生长,将合金浓度较高的成分排至晶叉及枝晶前端,直至生长的枝晶相互抵住,获得牢固的金属键合,接合面消失了,得到了柱状晶生长较充分的焊点,如图2所示。或因合金过冷条件不同,核心中心区同时形成等轴晶粒,得到柱状晶与等轴晶两种凝固组织并存的焊点,如图3所示。同时,液态熔核周围的高温固态金属,在电极压力作用下产生塑性变形和强烈再结晶而形成塑性环①〔注:塑性环(corona bond)熔核周围具有一定厚度的塑性金属区域称为塑性环,它也有助于点焊接头承受载荷〕,该环先于熔核形成且始终伴随着熔核一起长大,如图4所示。它的存在可防止周围气体侵入和保证熔核液态

金属不至于沿板缝向外喷溅。 熔核凝固组织为全部柱状晶者,以65Mn熔核为例,其形成过程模型如图5所示。图中: 图5a 凝固前,在熔合线上(固-液相界面)有许多晶粒处于半熔化状态,显然熔核的液态金属能很好的润湿取向不同的半熔化晶粒表面,为异质成核进行结晶提供了有利条件。 图5b 液态熔核的温度降低时,由于成分过冷较大,以半熔化晶粒作底面沿<100>向长出枝晶束。 在电极与母材的急冷作用下,凝固界面前形成较大的温度梯度,因而使枝晶主干伸入液体中较远,枝晶生长很快,枝晶臂间距H与冷却速度V间存在以下关系。 一次枝晶臂间距H1∝V-? 二次枝晶臂间距H2∝V-(?~?) 由于薄件脉冲点焊熔核尺寸小,电极与母材的急冷作用强,液体金属的冷却速度极快,因此枝晶臂的间距甚小。 图5c 枝晶继续生产、凝固层向前推进,液体向枝晶间充填。 枝晶间的液体逐渐向枝晶上凝固,使枝晶变长变粗,靠近母材处由于温度低,液体向枝晶上凝固快,以至形成连续的凝固层。由于65Mn合金具有较宽的凝固温度范围,故凝固层呈锯齿形起状,由于晶界在凝固层内形成,这就造成柱状

螺柱焊机的工作及原理

螺柱焊(stud welding)是将螺柱一端与板件(或管件)表面接触,通电引弧,待接触面熔化后,给螺柱一定压力完成焊接的方法。电弧螺柱焊用圆柱头焊钉适用高层钢骨结构建筑、工业厂房建筑、公路、铁路、桥梁、塔架、汽车、能源、交通设施建筑、机场、车站、电站、管道支架、起重机械及其它钢结构等。 主要由螺柱焊电源和焊枪组成. 电弧螺柱焊的基本原理是在待焊螺柱与 工件间引燃电弧,当螺柱与工件被加热到合适温度时,在外力作用下,螺柱送入工件上的焊接熔池形成焊接接头。根据焊接过程中所用焊接电源的不同,传统电弧螺柱焊可以分为普通电弧螺柱焊和电容储能电弧螺柱焊两种基本方法 编辑本段螺柱焊原理分析 螺柱焊是将金属螺柱或其他紧固件焊接在工件上的方法。实现螺柱焊接的方法有多种,如:拉弧式螺柱焊、储能式螺柱焊、电阻焊、凸焊等。与之相对应的焊机也有所不同,分别为拉弧式螺柱焊机、储能式螺柱焊机、电阻焊机、凸焊机等。[1]螺柱焊机在国内有多种非正规称法,如种焊机,植焊机,种钉机,植钉机,植焊机,螺钉焊机,螺丝焊机等等,均是指螺柱焊机。储能式螺柱焊机储能式螺柱焊机采用大容量电容作为焊接能量的来源,通过可控硅精确控制放电时间,以瞬间低电压-强电流的方式将螺柱尖端迅速熔化,使螺柱和工作面间隙快速合并,将螺柱牢固的焊接在工作面上,整个过程持续约1-3ms。储能式螺柱焊机的工作原理简图如下:螺柱焊原理图 储能式螺柱焊机采用220V交流电,通过变压器1降压,再通过整流桥2将交流电变为直流电,经过双向整流管3和充电电阻向电容6充电。由智能芯片精确控制可控硅5,使储能电容6瞬间释放全部电量完成整个焊接过程。储能式螺柱焊机广泛运用于钣金工程、电子业开关柜、试验和医疗设备、食品工业、家电工业、通讯工程、工业全套炊具、办公室和银行设备、投币式督货机、玻璃幕墙结构和绝缘技术等。 编辑本段螺柱焊的特点 1.非常节省时间和成本 所有螺柱焊的结构不用钻孔,冲孔,车螺纹,铆接,拧螺纹和精整等步骤。 2.不断扩展结构设计的应用潜力 在螺柱焊时起焊接过程是短时间,大电流和较小的熔深。因此,可以焊接到很薄的板材上。对于使用陶瓷环拉弧螺柱焊和短周期拉弧螺柱焊的板厚可以到 1mm。电容放电拉弧螺柱焊可以到0.6mm,而储能式螺柱可以到0.5mm。螺柱焊的工件必须是从一侧焊接。能在全位置焊接,借助于扩展器可以焊接到受限制的垂直隔板上。由于是短时间焊接且焊后很少变形,故不需要修整。因为焊接的结构不需要钻孔,故不会造成泄漏。螺柱焊的接头可以达到很高的强度,即螺柱焊的接头强度大于螺柱本身强度。在镀层或高合金板材焊接后,背面没有印痕。 3.良好的经济性 螺柱焊相对于其他焊接方法的优点,在于焊接功率上。对于批量生产的工件,在很短的焊接时间(3-980ms)内可打到8-40个/min(根据不同直径螺柱和不同焊接功率)。而自动送料螺柱焊机可以达到60个/min的超高效率。标准的螺柱是低成本的。螺柱焊设备和焊枪具有多种类型,设备的购置费用相对较低。根据产品,可以制成多工位自动焊机,或高精度龙门式数控自动焊机。螺柱焊具有较高的质量再现率和较小的废品率。

摩擦焊

摩擦焊 1摩擦焊接概述: 摩擦焊接是在轴向压力与扭矩作用下,利用焊接接触端面之间的相对运动及塑性流动所产生的摩擦热及塑性变形热使接触面及其近区达到粘塑性状态并产生适当的宏观塑性变形,然后迅速顶锻而完成焊接的一种压焊方法。 摩擦焊的分类 2摩擦焊原理简介: 摩擦焊是利用金属焊接表面摩擦生热的一种热压焊接法。摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。

摩擦焊接是一种优质、高效、节能的固态连接技术,被广泛应用于航空、航天、石油、汽车等领域中。在摩擦焊接过程中,主轴转速、焊接压力、焊接时间以及焊接变形量是影响焊接质量的重要工艺参数。对这些参数实现精确的检测和控制,是获得优质焊接接头的保障。因此,研制一套控制精度高、响应速度快、具有丰富的数据处理能力且易于升一级和扩充的开放式控制系统具有重要意义。 摩擦焊流程示意图 摩擦焊具有下列优点: (1)焊接质量好而稳定。由于摩擦焊是一种热压焊接法,摩擦不仅能消除焊接表面的氧化膜, 同时在较大的顶锻压力作用下, 还能挤碎和挤出由于高速摩擦而产生的塑性变形层中氧化了的部分和其它杂质, 并使焊缝金属得到锻造组织。(2)摩擦焊不仅能焊接黑色金属、有色金属、同种异种金属, 而且还能焊接非金属材料, 如塑料、陶瓷等。 (3)对具有紧凑的回转断面的工件的焊接,都可用摩擦焊代替闪光焊、电阻焊及电弧焊。并可简化和减少锻件和铸件, 充分利用轧制的棒材和管材。 (4)焊件尺寸精度高。采用摩擦焊工艺生产的柴油发动机预燃烧室, 全长最大误差为士0.1毫米。专用的摩擦焊机可以保证焊件的长度公差为士0.2 毫米, 偏心度小于0.2毫米 (5)焊接生产率高, 易实现机械化、自动化, 操作技术简单。 (7)焊接费用低。由于摩擦焊节省电能、金属变形量小(焊接缩短量少)、接头焊前不需要清理、焊接时不需要填料和保护气体、接头上的飞边有时可以不必去除, 所以焊接费用显著降低。 (8)工作场地卫生, 无火花、弧光及有害气休。适于和其它先进的金属加工方法一起列入自动生产线。

目前最先进的焊接工艺——搅拌摩擦焊

目前最先进的焊接工艺,搅拌摩擦 焊,你知道原理吗 搅拌摩擦焊是由英国焊接技术研究所于1991年发明的新型焊接技术,其原理如下图所示。 一根安装在主轴上的形状为蜗杆形式的搅拌针在一定压力下被插入焊缝位置,搅拌针的长度一般要比焊缝深度略浅,以此来保证主轴的轴肩能紧贴被焊接的工件表面。当工件与搅拌针和轴肩摩擦生热,焊缝附近的材

料会因受热产生严重的塑性变形,但是,并不是熔化,只是成为一种“半流体”的状态,随着主轴带动搅拌针沿着焊缝的走向进给,搅拌针不断把已经处于“半流体”状态的材料搅拌到身后,当主轴离开后,这些材料将冷却固化,从而形成一条稳定的焊缝。 大家都知道,以铝合金和镁合金为代表的轻质合金是航空航天器的主要结构材料之一。然而这些轻质合金的可焊性都非常差,传统的各种熔焊工艺都无法从根本上杜绝热裂纹、气孔和夹渣等这些焊接缺陷的产生,需要靠操作者具有非常高超的技术和工艺才能保证焊接质量。并且,熔焊的高温会产生大量热量和有毒的烟气,这对操作者的身体健康也造成了很大的威胁。而搅拌摩擦焊的出现从根本上解决了这一系列问题。 其次,相较于传统熔焊工艺在焊缝附近形成重新铸造形态,搅拌摩擦焊由于主轴会给被焊接的工件部位施加一个很大的压力,所以在焊缝附近得到的是锻造形态,这种锻造形态组织比铸造形态组织致密得多,因而焊接后零件的机械性能也比传统熔焊工艺做出来的好得多。 而搅拌摩擦焊最大的优势体现在其本质是把机械能转化成焊接所需要的热能,所以可以用特定的公式相当准确的计算出焊接热及其引发的工件热变形的量,从而为事前的补偿和事后的纠正提供了几乎不依赖操作者经验的定量的依据,这是任何一种传统焊接工艺都望尘莫及的。

焊接基本原理要点

焊接:被焊工件的材质(同种或异种),通过加热或加压或两者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺。 比热流:单位时间内通过单位面积传入焊件的热能。 焊接温度场:焊件上包括内部某瞬时的温度分布称为温度场。 稳定温度场:焊接温度场各点的温度不随时间而变动时,称为稳定温度场;随时间而变动时,称为非稳定温度场。 准稳定温度场:经过一段时间后达到饱和状态,形成暂时稳定的温度场。 焊接线能量:电弧在单位焊缝长度上所释放的能量。 熔滴比表面积:熔滴的表面积与其质量之比 . R V A ρρ / 3/ S = = 短渣:随温度升高粘度急剧下降,随温度下降粘度急剧上升。(适 用所有焊) 长渣:随温度升高粘度下降缓慢的熔渣。 联生结晶:焊接过程中,焊缝区在冷却过程中以熔合线上局部半融 化的晶粒为核心 向 内生长,生长方向为散热最快方向,最终长成柱状晶粒。晶粒前沿伸展到焊缝中心,呈柱状铸态组织,此种结晶方式为联生结晶。 竞争生长:晶粒长大具有一定结晶位向,当晶粒最大结晶位向与散热最快方向一致,最有利于晶粒长大,晶粒优先得到生长,当这两个

方向不一致时,晶粒长大停止。 短段多层焊:多层焊时每道焊缝长度在50至400mm,在这种情况下,前层焊缝冷却到较低温度才开始焊接下一道焊缝。 长段多层焊:多层焊时每道焊缝长度在1m以上,在这种情况下,前层焊缝冷却到较低温度才开始焊接下一道焊缝。 焊接热循环:焊接过程中热源沿焊件移动时,焊件上某点温度由低而高,达到最高值后,又由高而低随时间的变化称为焊接热循环。碳当量:把钢中合金元素按其对淬硬的影响程度折合成碳的相当含量。 焊接热影响区:在焊接热循环作用下,焊缝两侧处于固态的母材发生明显的组织和性能变化的区域,称为焊接热影响区。 焊接拘束度:R单位长度焊缝,在根部间隙产生单位长度的弹性位移所需要的力。 焊接拘束应力:热应力、组织应力、结构自身拘束条件所造成的应力,三种应力的综合作用统称为拘束应力。 焊接的优点:成形方便、生产成本低、适应性强 1、节省材料,减轻结构重量,经济效益好; 2、生产周期短、效率高; 3、结构强度高,接头密封性好; 4、易实现机械化和自动化。

焊接原理

焊接原理 一、锡焊、是将表面清洁的焊件与焊料加热到一定温度,焊料熔化并湿润焊件表面,在其界面上发 生金属扩散并形成结合层,从而实现金属的焊接;焊件表面的清洁,焊件的加热是达到其扩散的基本条件。 二、焊接的工具与材料 工具: 1、电烙铁(常用的是直热式) 2、调温及恒温烙铁(不受电源电压、环境温度的影响;升温时间快;烙铁不会过热) 3、吸锡器 工具的选用:烙铁头的温度的高低,可以用热电偶或表面温度计测量,一般可根据助焊剂发烟状态粗略估计,温度低,冒烟小。 焊件及工作性质烙铁头温度(室温220V)选用烙铁 一般印刷电路,安装导线20W内热式,30W外热式, 恒温式 集成电路250℃---400℃20W 内热式,恒温式 焊片,电位器,2-8W电阻,大电解功率管350℃---450℃ 35-50W内热式,调温式 50-75W外热式 8W以上大电阻,φ2以上导线等较大的元器件400℃---550℃ 100W内热式,150-200W外 热式 金属板550℃---630℃300W以上外热式观察法估计烙铁温度 观 察 时 间 烟细长,持续时 间长,>20S 烟稍大,持续时 间10-15S 烟大,持续时间 短,约7-8S 烟很大,持续时 间短,3-5S 估计温度小于200℃230-250℃300-350℃大于350 焊接达不锡焊温度PCB及小型焊点导线焊接、预热 等较大焊点 粗导线、板材及 大焊点 注意:烙铁通电后一定要立刻蘸上松香,否则表面会生成难镀锡的氧化层。

三、焊料 1、一般电子产品装配中主要使用锡铅焊料。成分一般是含锡量为60%-65%锡铅合金。 2、焊剂一般是优质松香添加一定活化剂。 四、手工锡焊基本操作 1、焊接操作姿势 一般烙铁离开鼻子的距离应不小于30CM,通常以40CM时为宜,因为烟气对人体有害。 电烙铁拿法有三种:A,反握法,适于大功率烙铁的操作;B,正握法,适于中等功率的烙铁或带弯头的电烙铁的操作;C,握笔法,焊件时多采用的一种方法。 使用烙铁一定要稳妥放在烙铁架上,并注意导线等物不要碰烙铁头。 2、焊接五步 A、准备施焊:准备好锡丝和烙铁,特别强调烙铁头要保持干净,即可以沾上烛焊锡;(俗 称吃锡) B、加热焊件:将烙铁接触焊点,注意先要保持烙铁加热焊件各部分,例如PCB板上引脚 和焊盘都使之受热,其次要注意让烙铁头的扁平部分(较大部分)接触较大的焊件, 烙铁头的侧面或边缘部分接触较小的焊件,以保持焊件均匀受热; C、熔化焊料:当焊件加热到能熔化焊料的温度后将锡丝置于焊点,焊料开始熔化并湿润 焊点; D、移开焊锡:当熔化一定量的焊锡后交将锡线移开; E、移开烙铁:当焊锡完全湿润焊点后移开烙铁,注意移开烙铁的方向应该是大约45度的 方向; 这一过程,对一般焊点大约2-3秒。 3、手工焊锡要点: A、掌握好加热时间:锡焊时可以采用不同的加热速度,在大多数情况下延长加热时间对 电子产品装配都是有害的,一般为2-3秒;这是因为: 1)焊点的结合层由于长时间加热会超过合适的厚度引起焊点性能劣化; 2)塑料等材料受热过多会变形、老化; 3)元器件受热后性能变化甚至失效; 4)焊点表面由于助焊剂挥发,失去保护而氧化。 B、保持合适的温度:一般经验是烙铁头温度比焊料熔化温度高50℃较为适宜。 C、用烙铁头对焊点施力是有害的:烙铁头把热量传给焊点主要靠增加接触面积,用烙铁 头对焊点加力对加热是无用的,很多情况下会造成焊件的损伤。 4、锡焊操作要领 A、焊件表面处理 手工烙铁焊接中遇到的焊件都要进行表面的清理工作,去除焊接面上的锈迹,油污,

摩擦焊

摩擦焊原理简介

连续驱动摩擦焊基本原理 1.焊接过程 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。 对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 (1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加

热功率显著增大的b点止。摩擦开始时,由于工件待焊接表面不平,以及存在 氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力 的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~ 300℃左右。 在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高 的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性 变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材 也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心 圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升 高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金 属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化 膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速 度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分 布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。 在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3左右的地方 首先开始。 (2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段, 该阶段从摩擦加热功率显著增大的b点起,越过功率峰值c点,到功率稳定值 的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表 面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所 降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。 这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面 的温度继续增高时,金属的塑性增高,而强度和韧性都显著下降,摩擦加热功 率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点 呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升 高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械 挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑 性状态的局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。 随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气 隔开。 (3)稳定摩擦阶段(t3)稳定摩擦阶段是摩擦加热过程的主要阶段,其范围 从摩擦加热功率稳定值的d点起,到接头形成最佳温度分布的e点为止,这里

几种新型搅拌摩擦焊技术

几种新型搅拌摩擦焊技术 搅拌摩擦焊技术自1991年问世以来就倍受业界瞩目,特别是1996年搅拌摩擦焊被成功应用于宇航结构件的焊接以后,在制造业掀起了技术研究、发展和推广应用的热潮[1-3]。 双轴肩自适应搅拌摩擦焊技术 搅拌摩擦焊作为一种先进的固相连接技术,已经在造船、航空航天、轨道交通等领域获得了广泛的应用。但是在一些特殊的加工过程中需要搅拌摩擦焊设备提供较大的焊接力,同时要求在焊接过程中对待焊零件进行严格装夹(包括背部的刚性支撑),这给某些特殊结构形式下实施FSW造成了困难,如大直径火箭贮箱环缝结构的焊接等。而双轴肩自适应搅拌摩擦焊(Self-ReactingPin Tool,SRPT)技术成功地解决了上述问题。 1 原理 双轴肩自适应搅拌摩擦焊是通过上下轴肩夹持作用加紧工件,下轴肩代替了常规搅拌摩擦焊的垫板装置。搅拌针与驱动装置及下轴肩相连,这样既可调节加载载荷又可调整下轴肩的位置。且上轴肩与单独的驱动轴相连,这种上下轴肩单独控制的方式使得自适应系统得以实现,并且使上下轴肩的顶锻力反向相等,整个工件在垂直板件方向所受合力为零。由于SRPT采用了两个轴肩的模式,提高了焊缝背部的热输入,可以预防和降低焊缝背部缺陷。 与常规 FSW 相比,SRPT有两个独立控制的轴肩;常规FSW焊件背面需要配套的刚性支撑垫板,而SRPT焊件背面则不需要;常规FSW被焊工件需要严格的装夹,焊件需要被垂直及侧向压紧,而 SRPT大大简化了装夹机构;常规FSW焊缝背部常常是整个焊件的薄弱环节,SRPT由于下轴肩的产热减小了从焊缝表面到背部的温度梯度,降低了焊缝的热损耗,提高了热效率,因此可以很好地消除焊缝背部未焊透等缺陷。 2 试验验证与工程应用 Edwards 等[4]成功地应用双轴肩自适应搅拌摩擦焊技术对薄板铝合金进行了焊接,试验表明:在薄板焊接领域此技术可以实现1.8mm及更薄的铝合金型材的焊接;焊接速度可以达到1m/min以上;对2mm厚A l6061铝合金的试验表明,焊缝强度系数可达88%,而且强度系数还可以进一步提高。 TWI的研究表明[5]:双轴肩技术可以在较低的轴向顶锻力下焊接25mm厚的铝板;此项技术可以提供完全焊透的焊缝,不会出现未焊透和其他根部缺陷。 复合热源搅拌摩擦焊技术

螺柱焊的过程及工艺参数

第2章螺柱焊的过程及工艺参数 2.1螺柱焊的过程 螺柱焊的基本过程是引弧→焊接电弧→顶锻→冷却凝固;在这一过程中,焊接电流、焊接时间以及焊接过程中电弧的形态,对焊接结果有很大影响。 螺柱焊的引弧受程序控制,先是螺钉接触到工件,当按住启动按钮后,焊机首先提供一个微小电流,之后螺钉被提升,在螺钉尖端的铝极与工件之间建立电弧。(说明:铝极是襄嵌在螺柱尖端的一部份铝材料,其作用是便于引弧及还原被氧化的铁。) 当建立了电弧之后,焊机自动进入大电流焊接:螺柱端部开始熔化,工件上形成溶池。此时的燃弧过程称焊接电弧阶段。 当到达设定的焊接时间之后,电弧熄灭,螺柱在外力(一般为弹簧力)的作用下,浸入溶池。进入顶锻阶段。 然后,溶池自然冷却凝固,完成焊接过程。 2.2螺柱焊的工艺参数 螺柱焊的工艺参数主要包括极性选取、电流和焊接时间的选择、提升高度、浸入尺寸及速度的调节。首先说明的是,螺柱直径增加时,焊接所需要的能量也增加。 1.极性 极性是指工件到焊接电源的连接方式,以工件为准:工件接正极即为正极性,工件接负即为负极性。一般的钢质螺钉采用正极性接法。而对于铝及其合金,黄铜材料的螺钉,常采用负极性连接方式。 2.焊接电流与焊接时间 一般情况下,焊接电流正比与螺柱的公称直径。当直径小于16mm时,焊接电流一般是公称直径的80倍,即10mm的螺钉,使用的焊接电流为800A。当直径超过16mm时,焊接电流一般取值为公称直径的90倍。当螺钉材料为合金钢时,电流取值减少10%。焊接时间的取值也与直径成比例关系:对于公称直径小于12mm的螺柱,一般取0.02d(d为螺柱的公称直径),对于公称直径大于12mm的螺柱,一般取0.04d。 如果焊接位置不是平焊,而是横焊或仰焊,一般采用增大电流和减少焊接时间进行焊接。当工件为薄板时,为了不致工件烧穿,也采用增大电流和减少焊接时间的方法。 3.提升高度 对于不同直径形状的螺柱,要求的提升高度是不一样的,提升高度是否合适,要看是否在焊接过程中出现磁偏吹或短路。当提升高度过大时,电弧燃烧不稳定,容易产生电弧漂移和电弧偏吹。提升高度过小时,电弧容易产生短路而断弧。提升高度对于同一端部形状的螺柱来说,正比于其公称直径,一般在

几种新型搅拌摩擦焊技术

48 航空制造技术·2008 年第21 期 搅拌摩擦焊技术自1991年问世 以来就倍受业界瞩目,特别是1996年搅拌摩擦焊被成功应用于宇航结构件的焊接以后,在制造业掀起了技术研究、发展和推广应用的热潮[1-3]。双轴肩自适应搅拌 摩擦焊技术 搅拌摩擦焊作为一种先进的固几种新型搅拌摩擦焊技术 New Types of Friction Stir Welding Technology 大连交通大学 韩文妥 许鸿吉 北京航空制造工程研究所 李 光 董春林 栾国红 经过多年的发展和实践,新型的搅拌摩擦焊技术层出不穷,涉及领域广泛,其中最具代表性和创新性的新型搅拌摩擦焊技术有:双轴肩自适应搅拌摩擦焊技术、复合热源搅拌摩擦焊接技术、动态控制低应力无变形搅拌摩擦焊技术和双头搅拌摩擦焊技术。 韩文妥 大连交通大学与北京航空制造工 程研究所联合培养硕士研究生。从事 搅拌摩擦焊方面的研究。参与项目:“十一五”重点项目“新型精密焊接技术与装备研究”;航空基金重点项目“搅 拌摩擦焊应力与变形规律研究”、“飞机 整体结构件搅拌摩擦焊综合强度性能 基础研究” 等。相连接技术,已经在造船、航空航天、轨道交通等领域获得了广泛的应用。但是在一些特殊的加工过程中需要搅拌摩擦焊设备提供较大的焊接力,同时要求在焊接过程中对待焊 零件进行严格装夹(包括背部的刚性 支撑),这给某些特殊结构形式下实施F S W 造成了困难,如大直径火箭贮箱环缝结构的焊接等。而双轴肩自适应搅拌摩擦焊(Self-Reacting Pin Tool,SRPT)技术成功地解决了上述问题。 1 原理 双轴肩自适应搅拌摩擦焊是通过上下轴肩夹持作用加紧工件, 下轴肩代替了常规搅拌摩擦焊的垫板装置。搅拌针与驱动装置及下轴肩相 连, 这样既可调节加载载荷又可调整下轴肩的位置。且上轴肩与单独的驱动轴相连,这种上下轴肩单独控制的方式使得自适应系统得以实现,并且使上下轴肩的顶锻力反向相等, 整个工件在垂直板件方向所受合力为 零。由于S R P T 采用了两个轴肩的模式,提高了焊缝背部的热输入,可以预防和降低焊缝背部缺陷。 与常规F S W 相比,S R P T 有两个独立控制的轴肩;常规F S W 焊件背面需要配套的刚性支撑垫板,而S R P T 焊件背面则不需要;常规F S W 被焊工件需要严格的装夹,焊件需要被垂直及侧向压紧,而S R P T 大大简化了装夹机构;常规F S W 焊缝背部常常是整个焊件的薄弱环节,S R P T 由于下轴肩的产热减小了从焊缝表面到背部的温度梯度,降低了焊缝的热损耗,提高了热效率,因此可以很好地消除焊缝背部未焊透等缺陷。 2 试验验证与工程应用 Edwards 等[4]成功地应用双轴肩自适应搅拌摩擦焊技术对薄板铝合金进行了焊接,试验表明:在薄板焊接领域此技术可以实现1.8m m 及

螺柱焊接工艺

一螺柱焊的原理与用途 采用螺柱焊的连接方法可将金属螺柱、销钉或类似连接紧固件焊至工件上的焊接方法。 焊接时螺柱被夹持在焊枪的夹持器内,操作者或机器人将焊枪移至焊接位置,螺柱与工件接触。焊枪中的磁力提升机构使螺柱上升与工件脱离接触,控制机构同时在螺柱与工件间施加一引弧电压,在螺柱端面与工件间引出电弧,电弧使螺柱端面与工件熔化。随着螺柱被提升到设定的高度,工件间的电压被加到焊接电压,焊接时间达到预设时间,焊接电压被切断并同时提升机构的电磁铁被断电,螺柱在焊枪的弹簧机构的弹力作用下浸入工件熔化形成的熔池,螺柱将部分液态金属挤出,熔池金属冷却结晶形成螺柱与工件的共同连接接头。 二焊接设备及焊接定位夹具 螺柱焊接系统包括焊接电源、焊接控制器、送料机构、焊枪、手工焊接需采用焊接定位夹具确保螺柱焊接位置的准确。 三焊接工艺参数 根据螺柱的型号、直径,焊接工件的材料、厚度等条件选择下列螺柱焊工艺参数:引弧电压、螺柱提升高度、焊接电压、焊接电流、焊接时间。 四焊接操作 1接通焊机电源,检查焊接电缆是否可靠连接,送料机构里螺柱品种是否正确、数量合适,送钉正常。 2焊接时保证焊枪与工件表面垂直,如不垂直要及时调整焊枪的焊接角度。 3进行焊接。焊接过程中要定期检查螺柱夹持器的烧损情况,及时更换。定期清理防护套内壁上的焊接飞溅。 4焊后清理工件表面上的焊接飞溅。 五. 焊工 焊工必须经过专门的训练并具备下列专业知识和技能: (1)熟悉焊机基本技术性能; (2)熟知焊机维护,使用及调整方法; (3)熟知被焊总成的技术要求,装配要点及使用情况; (4)了解工艺参数的选择原则,协助设备调整人员对工艺参数进行调整。

搅拌摩擦焊技术应用现状和发展趋势

万方数据

搅拌摩擦焊接过程中,接头温度峰值始终处于材料熔化点以下(约为材料熔点的0.8),不会出现材料熔化,从而避免了常规熔焊工艺中因熔化一凝固现象的存在所造成的各种焊接缺陷。所以,搅拌摩擦焊是一种固相焊接技术。接头材料在高温软化状态下,由于搅拌 图1 搅拌摩擦焊基本原理及工艺过程 头的挤压而形成牢固的锻造细晶组织(与此不同的是,熔焊接头通常为晶粒粗大的铸造组织)。与其他焊接方法相比,搅拌摩擦焊具有以下特点: (1)搅拌摩擦焊是一种固相连接技术,接头性能优 异。 (2)焊前不需要开坡口,可以节省焊前准备工时。(3)焊接过程中不需要保护气,也不需要填充材料。 (4)焊接过程容易实现自动化,可以实现全位置焊 接,接头质量一致性好。 (5)焊接热输入小,从而导致焊接变形小、接头残 余应力水平低,是一种低应力,小变形焊接技术。 (6)焊接过程中无飞溅、无弧光,无辐射,是一种绿色焊接技术。 (7)焊接效率高、能耗低,是一种高效焊接技术。搅拌摩擦焊技术的这一系列特点使其对于以铝合金为代表的轻金属结构焊接具有非常重要的意义,在航空、航天、船舶、列车、汽车以及电力、电子等领域具有非常广阔的应用前景。 :.搅拌摩擦焊技术应用现状 搅拌摩擦焊作为一种轻合金材料连接的优选焊接 E口!唑堡笙!塑壁董皇塑型 参磊加工热加工 www,machinist.com,cn 技术,已经从技术研究迈向高层次的工程化和工业化应用阶段,如在美国的宇航制造工业、北欧的船舶制造工业和日本的高速列车制造等领域,搅拌摩擦焊技术都得到了广泛应用。搅拌摩擦焊技术1995年(通过申请专 利)进入中国,但是这项技术在中国真正获得发展却是在2002年以后——中心成立以来的这几年时间,它是以 中国自主研制的第一台专机搅拌摩擦焊设备的交付使用为标志的。2002年以来,搅拌摩擦焊技术已被迅速推广到国内的航空、航天、船舶、电力、电子以及汽车等领域,并在几十种产品型号中得到应用。 1.搅拌摩擦焊技术在航天型号产品研制中的应用 由于轻量化的需要,航天领域大量采用了铝合金 结构——最适合采用搅拌摩擦焊技术,从而使搅拌摩擦 焊技术最早在火箭、航天飞机等宇航产品中得到推广。国内则是首先在一些火箭、导弹等新型号武器装备研制中采用了搅拌摩擦焊技术,并配备了中国搅拌摩擦焊中 心自主研制的搅拌摩擦焊专机设备。 出于减重、减少成本和提高性能等方面的考虑, 我国导弹武器舱段的设计拟由原来的防锈铝(女115A06铝合金)改为高强铝合金(女IILYl2),但是这些材料采用熔焊的方法很难实现焊接,整体成形的成本又很 高,因此迫切需要像搅拌摩擦焊这样的新型固相焊接技术。 2004~2005年,中国搅拌摩擦焊中心与某航天制 造基地合作开展了这方面的研究,分别对与导弹武器整体舱段制造的纵缝连接,环缝连接等进行了应用开发,试制了多个型号的产品(图2所示为工艺验证模拟结构 件)并成功试飞。目前,搅拌摩擦焊技术已准备用于相 关军工产品的工业化生产。 万方数据

激光焊接基本原理讲解-共14页

一、激光基本原理 1、 LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅的英语开头字母 2、激光产生的原理 激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕 (ND的 YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种光束在微弱的受激发情况下,也能实现连续发振。 YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a 、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光 (波长、频率 b 、方向性――激光传播时基本不向外扩散。 c 、相干性――激光的位相 (波峰和波谷很有规律,相干性好。 d 、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、 YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 l 、激光焊接加工方法的特征 A 、非接触加工,不需对工件加压和进行表面处理。 B 、焊点小、能量密度高、适合于高速加工。 C 、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、 特种材料。 D 、不需要填充金属、不需要真空环境 (可在空气中直接进行、不会像电子束那样在空气中产生 X 射线的危险。 E 、与接触焊工艺相比 . 无电极、工具等的磨损消耗。 F 、无加工噪音,对环境无污染。 G 、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H 、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。 I 、很容易改变激光输出焦距及焊点位置。 J 、很容易搭载到自动机、机器人装置上。

相关文档
最新文档