氯气泄漏及三氯化氮爆炸事故

氯气泄漏及三氯化氮爆炸事故
氯气泄漏及三氯化氮爆炸事故

氯气泄漏及三氯化氮爆炸事故

2004年4月15日19时左右,位于重庆市江北区的重庆天源化工总厂氯冷凝器发生局部的三氯化氮爆炸后,16日凌晨及下午液氯储罐接连发生爆炸,氯气泄漏。整个事故造成9人死亡、失踪和3人受伤,15万人大转移。

该公司是西北地区第一家大型氯碱企业,对照重庆天源化工厂的事故,结合本公司的生产实际,总结一下我们公司在氯气泄漏与三氯化氮预防及处理上的经验,以供同行业参考。

1.三氯化氮的特性

三氯化氮分子量为120.5,常温下为黄色粘稠的油状液体,密度为1.653,-27℃以下固化,沸点7l℃,自燃爆炸点95℃。纯的三氯化氮和橡胶、油类等有机物相遇,可发生强烈反应。如果在日光照射或碰撞“能”的影响下,更易爆炸。当体积比含量为5%~4%时,在90℃时能自然爆炸,60℃时受震动或在超声波条件下,可分解爆炸。在容积不变的情况下,爆炸时温度可达2128℃,压力高达531.6Mpa。空气中爆炸温度可达1698℃。爆炸方程式为:

NCl3→N2+3Cl2+459.8kJ

2.三氯化氮的存积

在公司的工艺流程中,三氯化氮产生的惟一途径就是盐水中铵盐、氨及含铵化合物在电解中与电解槽阳极室的氯气、次氯酸钠在PH5的条件下反应的结果,在液化过程中沉积于液氯底层。

在液氯蒸发器操作中,三氯化氮大部分存留于未蒸发的残液中。随着每次倒料→蒸发→排气→倒料的循环过程,蒸发器底部残液中的三氯化氮浓度不断升高,当质量分数超过5%时就有爆炸的危险。

3.三氯化氮的预防及处理

1.阻止铵离子进入电解槽是防止三氯化氮危害的治本之法

(1)我公司所用原盐以湖盐为主,主要有新疆盐、青海盐。质量比较稳定,铵总量均符合标准。

(2)盐水采用先进的预处理器—戈尔过滤技术。在此技术中,化盐后直接加入次氯酸钠。其最初目的是消除盐水中的天然有机物,但是在达到这一目的的同时,盐水中的铵也被清除并生成三氯化氮。为了彻底地清除,要求游离氯为1~2mg/l。其后经过加压容器罐,在预处理器中将生成的三氯化氮排出。这样就大大减少了电解中三氯化氮的产生。2.液氯工段三氧化氮的预防

(1)液氯蒸发器每周三排污一次,排入地池碱液中。排污槽每周一、五做三氯化氮含量分析。在排污时必须带液氯排放,禁止敲击,同时取样测三氯化氮含量,严格控制在60g/l。下表是我公司近几年的取样数据。这个数据远远低于控制指标。如高于此指标,从蒸发器开始增加排污次数,加大液氯携带量,确保三氯化氮含量低于指标。

2002年6月份三氯化氮含量偏高,是因为原盐用的是山东盐,含有机铵比较高所致。发现此问题后,我们通过调用盐种,三氯化氮含量就降了下来。往年三氯化氮是每周往地池碱液排放一次,做一次三氯化氮含量分析。自从重庆天源化工厂发生事故以后,我公司决定每周三排三氯化氮,每周一、周五做两次分析予以检测。

(2)同时,我公司现正在安装液氯液下泵,利用液下泵直接包装液氮,不再使用蒸发器,从而杜绝了三氯化氮在此处的存积。

(3)对液氮贮槽每年都要清洗,同时逐台进行设备探伤。杜绝三氯化氮在槽底部的存积与设备老化引起爆炸及氯气的泄漏。

(4)液氯钢瓶实行我公司托管,微机化管理,严格实行验瓶、洗瓶及复磅工作。严格按照《西化公司液氯钢瓶管理规定》执行。

4.氯气泄漏的预防与处理

1.公司在每次大检修时,在资金紧张的情况下,都要对陈旧、老化的设备按重要程度、安全等级进行更换。2003年和2004年利用两次大检修时间,把氯干燥前的所有氯气管道全部换成了钛管,从而杜绝了原来钢衬胶管由于衬胶脱落导致氯气泄漏事故甚至造成全面停产的发生。

2.公前现已设计了一套喷淋装置,在发现有氯气泄露时,用稀碱液进行喷淋吸收泄漏的氯气,从而杜绝了更大范围的扩散。此方法比一般用消防水稀释具有更大的优越性。

3.从建厂至今,公司没有发生过危及到厂外的氯气泄漏事故。但是,公司历年来向周边群众累计发放了上万份关于氯气泄露救护的宣传资料,让群众了解救护方法,提高群众的防护能力。

4.1998年公司编写了《液氯泄漏应急救援预案》,至今已修订了4次。针对重庆天源化工厂的事故,最近,我公司组织了液氯泄漏综合演练,分小、中、大3个预案,大预案还在市政府、区政府的协调下,动用了市消防队、市救护队等。同时制作教学光盘,并对职工进行泄漏演练,确保在出现氯气泄漏时把损失减少到最小程度。

三氯化氮的性质、危害及预防标准范本

解决方案编号:LX-FS-A94757 三氯化氮的性质、危害及预防标准 范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

三氯化氮的性质、危害及预防标准 范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 在氯碱生产过程中,三氯化氮爆炸事故曾多次发生,爆炸不仅会造成氯气泄漏事故,而且爆炸本身可能造成人身伤害,因此做好三氯化氮爆炸的预防工作显得尤为重要。 1 三氯化氮的性质及危险性 三氯化氮(NCl3)分子为三角锥形,由于分子内3个氯原子聚集在同一侧,相互间有较大的排斥力和阻碍,同时氮氯元素电负性接近(氮稍大于氯),在外界较小能力的激发下,就可能引起氮氯键(N-Cl)断裂而造成三氯化氮发生分解。自燃爆炸点95℃。

液氯汽化器及防止三氯化氮积聚问题.doc

液氯汽化器及防止三氯化氮积聚问题 农药、医药、化工等工业上使用液氯十分普遍。在食盐电解制氯气时,由于盐水中含有氨和铵类物质,氯气中就伴有三氯化氮生成。在正常情况下,商品液氯含三氯化氮是微量的[如英、前苏联标准规定,液氯含三氯化氮≤0.005%(w/w)],但使用液氯时,当三氯化氮被积聚时,就产生潜在的爆炸危险。 近年来,我国在生产和使用液氯过程中,因氯中含三氯化氮超标而引起爆炸,已有多次发生,这不仅危害安全生产,而且造成设备的严重破坏和人员伤亡。液氯系统中,液氯汽化器是三氯化氮积累的主要部位之一,为了避免和减少三氯化氮的积累,使用液氯时,如何合理选择液氯汽化器结构类型和防止三氯化氮积聚是十分重要的。 一、三氯化氮性质 三氯化氮分子式为NCl3,呈黄色粘稠性液体或斜方晶体,有强烈刺激性气味,相对密度为1.653,熔点<-40℃,沸点<71℃,自然爆炸点95℃,溶于氯,也溶于苯、四氯化碳、氯仿等有机溶剂,在碱、酸中易分解。 据资料报道,三氯化氮在气相中的爆炸体积极限≥5%,液体在加热到60℃~95℃会发生爆炸;在震动或超声波条件下可分解爆炸;在光的

照射下,瞬间爆炸;与油脂、橡皮等有机物接触,易促使爆炸发生。在液氯残液中含三氯化氮<18%(w/w)不发生爆炸,氯仿中含三氯化氮18%(w/w)也是稳定的。 2mol三氯化氮爆炸时,分解成1mol氮气和3mol氯气,同时放出4.6×105J热量,在容积不变的情况下爆炸时,温度高达2128℃,压力高达5.4×102MPa,爆炸威力是相当大的。 二、液氯汽化器结构形式及工艺技术操作特性 通常用于氯气输送、提压的液氯汽化器,其结构形式主要有3种:夹套式、蛇管式、套管式。它们的工艺技术操作特性见下表。 汽化器类型 夹套式 蛇管式 套管式 供热介质侧 介质名称

氯气泄漏事故案例

致9人死亡的重庆4-16氯气泄漏事故责任人受查处https://www.360docs.net/doc/555152267.html, 2004年10月23日15:29 中国新闻网 中新网10月23日电经重庆天原化工总厂“4·16”事故调查组调查确认,造成死亡失踪9人,15万人撤离的重庆“4·16”氯气泄漏事故是一起责任事故。 重庆晨报消息,按照有关规定,经重庆市委、市政府批准,市纪委、监察局决定对事故有关责任人给予以下处分: 给予对事故发生负有重要领导责任的化医控股集团公司董事长、党委书记缪光奎党内警告处分; 给予对事故发生负有重要领导责任的化医控股集团公司经济运行部部长李华夏行政记过处分; 给予对事故发生负有主要领导责任的重庆天原化工总厂厂长张定禄撤消重庆天原化工总厂厂长、党委委员职务处分; 给予对事故发生负有重要领导责任的重庆天原化工总厂党委书记兼副厂长陈德国党内警告处分; 给予对事故发生负有主要领导责任的重庆天原化工总厂副厂长吴照华行政记大过处分; 给予对事故发生负有直接责任的重庆天原化工总厂动力分厂代理副主任王为民撤消重庆天原化工总厂动力分厂代理副主任职务处分; 给予对事故发生负有直接责任的重庆化工节能计量压力容器监测所所长助理兼压力容器监测科科长、技术负责人、检验师周军撤消重庆化工节能计量压力容器检测所所长助理和压力容器检测科科长职务处分;

给予对事故发生负有重要领导责任的重庆化工节能计量压力容器检测所副所长吴明中(主持工作)行政记大过处分。 重庆天原化工总厂氯气泄漏事故责任人受查处 https://www.360docs.net/doc/555152267.html, 2004年10月24日11:53 新华网 新华网重庆10月24日电(记者李永文)经重庆天原化工总厂“4·16”事故调查组调查确认,“4·16”事故是一起责任事故。按照有关规定,经重庆市委、市政府批准,重庆市纪委、监察局日前决定对事故有关责任人分别给予处分。 给予对事故发生负有重要领导责任的化医控股集团公司董事长、党委书记缪光奎党内警告处分,化医控股集团公司经济运行部部长李华夏行政记过处分;给予对事故发生负有 主要领导责任的重庆天原化工总厂厂长张定禄撤销重庆天原化工总厂厂长、党委委员职务处分;给予对事故发生负有重要领导责任的重庆天原化工总厂党委书记兼副厂长陈德国党内警告处分;给予对事故发生负有主要领导责任的重庆天原化工总厂副厂长吴照华行政记大过处分;给予对事故发生负有直接责任的重庆天原化工总厂动力分厂代理副主任王为民撤销重庆天原化工总厂动力分厂代理副主任职务处分;给予对事故发生负有直接责任的重庆化工节能计量压力容器检测所所长助理兼压力容器检测科科长、技术负责人、检验师周军撤销重庆化工节能计量压力容器检测所所长助理和压力容器检测科科长职务处分;给予对事故发生负有重要领导责任的重庆化工节能计量压力容器检测所副所长吴明中(主持工作)行政记大过处分。 今年4月15日下午,处于重庆主城区的重庆天原化工总厂氯氢分厂2号氯冷凝器出现穿孔,有氯气泄漏,厂方随即进行处置。16日1时左右,列管发生爆炸;凌晨4时左右,再次发生局部爆炸,大量氯气向周围弥漫。由于附近民居和单位较多,重庆市连夜组织人员疏散居民。16日17时57分,5个装有液氯的氯罐在抢险处置过程中突然发生爆炸,当场造成9人死亡。事故发生后,重庆市消防特勤队员昼夜用高压水网(碱液)进行高空稀释,在较短

三氯化氮安全技术说明书

三氯化氮 第一部分化学品及企业标识 危化品中文 名称 氯化氮;三氯化氮 危化品英文名称Nitrogen chloride;Trichlorine nitride;分子式:NCl3;分子量:120.38 第二部分成分/组成信息第三部分危险性概述 危险性类别 侵入途径吸入食入 健康危害本品对呼吸道、眼和皮肤有强烈刺激性。人接触本品较高浓度,可发生粘膜充血、声哑、呼吸道刺激甚至窒息,恢复过程较慢。经口食入有高度毒性。 第四部分急救措施 皮肤接触脱去污染的衣着,立即用大量流动清水彻底冲洗至少15分钟。就医。 眼睛接触立即翻开上下眼睑,用流动清水或生理盐水冲洗至少15分钟。就医。 吸入迅速脱离现场至空气新鲜处。保持呼吸道通畅。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。 食入给饮牛奶或蛋清。就医。 第五部分消防措施 危险特性受热、震动、撞击、摩擦,相当敏感,极易分解发生爆炸。燃烧性助燃

自燃温度引燃温度(℃):无意义 建规火险分 级 甲 灭火方法及 灭火剂 干粉、砂土。 第六部分泄漏应急处理 应急处理:疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,应急处理人员戴正压自给式呼吸器,穿厂商特别推荐的防护服<完全隔离)。切断火源。不要直接接触泄漏物,在确保安全情况下堵漏。喷雾状水,减少蒸发。用砂土、蛭石或其它惰性材料吸收,然后收集运至废物处理场所。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。 第七部分操作处置与储存 第八部分接触控制/个体防护 最高容许浓度中国 MAC:未制订标准前苏联 MAC:未制订标准美国TLV-TWA:未制订标准美国TLV-STEL:未制订标准 工程控制严加密闭,提供充分的局部排风和全面排风。 呼吸系统防护空气中浓度超标时,必须佩戴防毒面具。紧急事态抢救或撤离时,建议佩戴正压自给式呼吸器。 眼睛防护戴化学安全防护眼镜。身体防护穿胶布防毒服。 手防护戴防化学品手套。 第九部分理化特性

三氯化氮的危害

三氯化氮的危害 公司R22生产用的的液氯(存放在R22氯气房)中含有少量的三氯化氮,存在中毒和爆炸的风险。 一、外观与性状 三氯化氮在常温下为黄色粘稠的油状液体,结晶为斜方形晶体,高毒,有类似氯气的强烈刺激气味。 二、理化特性 三氯化氮分子式NCl3,相对分子质量为120.5,相对密度(水=1): 1.65 相对蒸气密度(空气=1): 4.2,熔点<-40℃,沸点≤71℃。-27℃以下固化。三氯化氮不燃。 三氯化氮是一种危险且不稳定的和物质,在60℃以下逐渐分解成氮和氯,在一定条件下与反应生成物达成可逆平衡。 三氯化氮在液体中易挥发,在热水中易分解,不溶于水,可溶于二硫化碳、三氯化磷、四氯化碳、氯仿、氯化苯、液氯、乙醚等。 在弱酸性溶液中稳定性较好。但在强酸中则生成铵盐和氯,在中性水中很容易分解:与HCl(气)的作用: NCl3+4HCl(气)→NH4C1+3C12 与水的作用: NCl3+3H2O→NH3+3C12 遇碱迅速分解: NCl3+3NaOH→NH3+3NaClO 与Na2SO 的作用: 3 3Na2SO3+NCl3+3H2O→3Na2SO4+2HCl+NH4C1 与光或催化剂的作用 2NCl3→(光或催化剂)3Cl2+N2+460kJ/mol

三、对人体的危害 三氯化氮烟雾能催泪,对皮肤、眼睛、黏膜、呼吸系统有强烈的刺激作用,人接触本品较高浓度,可发生粘膜充血、声哑、呼吸道刺激甚至窒息,恢复过程较慢。 四、爆炸危险 三氯化氮对热、震动、撞击和摩擦相当敏感, 极易分解发生爆炸, 三氯化氮爆炸事前没有任何迹象,都是突然间发生。爆炸时发出巨响,有时伴有闪光,破坏性很大。爆炸部位可以发生在任何三氯化氮聚积的部位,如管道、排污罐、气化器、钢瓶等处。 1、在气相中的体积浓度为5%-6%时有爆炸危险,在液氯中浓度超过0.2%时有爆炸危险。 2、60℃时有振动或超声波的条件下可分解爆炸,95℃时自燃爆炸, 3、在阳光、镁光直接照射下瞬间爆炸, 4、三氯化氮和橡胶、油类等有机物相遇,可发生强烈的反应,易诱发爆炸。 5、遇静电火花易诱发爆炸。 五、三氯化氮的预防的去除 使用完毕后,需对缓冲罐进行卸 1、排空法:在R22生产过程中缓冲罐内Cl 2 压,用引风机把残留的气体抽入碱洗塔内进行处理。 2、排污法:打开液氯缓冲罐的底阀排污,排污管出口接入碱性液体。排污时应注意以下事项: (1)液氯缓冲罐内的液氯任何时候严禁完全气化,必须保持一定的压力。 (2)排污时一定要带着液氯排,绝对禁止“干排”; (3)加强氯气,液氯中的NCl3监测,发现含量偏高时,增加排污次数,实行勤排。 (4)排污时间选择在避开阳光直射的时段进行,排污管线要设静电接地装置,不要使用胶管胶垫。 (5)排污管禁止采用会产生静电的塑料管,以防静电积累引发爆炸事故。 (6)排污时要控制排污速度,排污速度过快对缓冲罐会产生负面影响,同时

三氯化氮产生的条件、途径和紧急处理(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 三氯化氮产生的条件、途径和紧 急处理(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

三氯化氮产生的条件、途径和紧急处理(标 准版) 引言(1) 在液氯生产中,因三氯化氮曾引起多起爆炸事故,所以各液氯生产企业都十分重视控制三氯化氮。特别是今年4月16日,重庆天原化工总厂液氯工段发生三氯化氮爆炸事故后,更引起各氯碱企业的高度重视,一些企业采取了对原料盐、液氯排污物等增加分析次数,严格控制指标,增加液氯排污的次数等措施,这些传统的控制办法对液氯的安全生产起到了重要的作用。 产生的条件(2) 控制三氯化氮的产生,仅靠传统的控制办法是否全面,是否有其他产生三氯化氮的途径?要弄清这个问题,就必须弄清三氯化氮产生的条件。

在氨、铵盐或有机胺(如尿素)存在的情况下,遇到氯、次氯酸或次氯酸盐时,都能产生含氮的氯化物。但是,反应生成物是氯的铵盐还是三氯化氮,这要看反应时的条件。 在中、低压生产的条件下,反应生成物主要决定于溶液的pH值。 当pH>9时,反应生成物是一氯铵或二氯铵; NH3 +Cl2 =NH2 Cl+HCl NH3 +2Cl2 =NHCl2 +2HCl 当pH<5时,反应生成物是三氯化氮: NH3 +3Cl2

氯气泄漏及三氯化氮爆炸的预防

氯气泄漏及三氯化氮爆炸的预防 2004年4月15日19时左右,位于重庆市江北区的重庆天源化工总厂氯冷凝器发生局部的三氯化氮爆炸后,16日凌晨及下午液氯储罐接连发生爆炸,氯气泄漏。整个事故造成9人死亡、失踪和3人受伤,15万人大转移。 我公司是西北地区第一家大型氯碱企业,对照重庆天源化工厂的事故,结合本公司的生产实际,总结一下我们公司在氯气泄漏与三氯化氮预防及处理上的经验,以供同行业参考。 一、三氯化氮的特性 三氯化氮分子量为120.5,常温下为黄色粘稠的油状液体,密度为1.653,-27℃以下固化,沸点7l℃,自燃爆炸点95℃。纯的三氯化氮和橡胶、油类等有机物相遇,可发生强烈反应。如果在日光照射或碰撞“能”的影响下,更易爆炸。当体积比含量为5%~4%时,在90℃时能自然爆炸,60℃时受震动或在超声波条件下,可分解爆炸。在容积不变的情况下,爆炸时温度可达2128℃,压力高达531.6Mpa。空气中爆炸温度可达1698℃。爆炸方程式为: NCl3→N2+3Cl2+459.8kJ 二、三氯化氮的存积

在我公司的工艺流程中,三氯化氮产生的惟一途径就是盐水中铵盐、氨及含铵化合物在电解中与电解槽阳极室的氯气、次氯酸钠在 NH4Cl+3Cl2 → NCl3+4HCl 2(NH4)CO3+3C12 →NCl3+3NH4Cl+2CO2+2H2O 在液氯蒸发器操作中,三氯化氮大部分存留于未蒸发的残液中。随着每次倒料→蒸发→排气→倒料的循环过程,蒸发器底部残液中的三氯化氮浓度不断升高,当质量分数超过5%时就有爆炸的危险。 三、三氯化氮的预防及处理 1.阻止铵离子进入电解槽是防止三氯化氮危害的治本之法 (1)我公司所用原盐以湖盐为主,主要有新疆盐、青海盐。质量比较稳定,铵总量均符合标准。 (2)盐水采用先进的预处理器—戈尔过滤技术。在此技术中,化盐后直接加入次氯酸钠。其最初目的是消除盐水中的天然有机物,但是在达到这一目的的同时,盐水中的铵也被清除并生成三氯化氮。为了彻底地清除,要求游离氯为1~2mg/l。其后经过加压容器罐,在预处理器中将生成的三氯化氮排出。这样就大大减少了电解中三氯化氮的产生。 2.液氯工段三氧化氮的预防 (1)液氯蒸发器每周三排污一次,排入地池碱液中。排污槽每

氯气泄漏重大事故后果模拟分汇总

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

Q=WC(t-t0) 设这些热量全部用于液氯蒸发,如汽化热为q(kj/kg),则其蒸发量W为: W=Q/q=WC(t-t0)/q 氯的相对分子质量为M r,则在沸点下蒸发的液氯体积V g(m3)为: V g =22.4W/M r273+t0/273 V g =22.4WC(t-t0)/ M r q273+t0 /273 氯的有关理化数据和有毒气体的危险浓度如下: 相对分子质量:71 沸点: -34℃ 液体平均此热:0.98kj/kg.℃ 汽化热: 2.89×102kj/kg 吸入5-10mim致死浓度:0.09% 吸入0.5-1h致死浓度: 0.0035-0.005% 吸入0.5-1h致重病浓度:0.0014-0.0021% 已知氯的危险浓度,则可求出其危险浓度下的有毒空气体积: 氯在空气中的浓度达到0.09%时,人吸入5~10min即致死。则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V1 = V g×100/0.09 = 1111V g(m3) 氯在空气中的浓度达到0.00425(0.0035~0.005)%时,人吸入0.5~1h,则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V2=V g×100/0.00425=23529V g(m3) 氯在空气中的浓度达到0.00175(0.0014~0.0021)%时,人吸入0.5~1 h,则

氯碱生产副产三氯化氮的危害及预防措施实用版

YF-ED-J4676 可按资料类型定义编号 氯碱生产副产三氯化氮的危害及预防措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

氯碱生产副产三氯化氮的危害及 预防措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 一、三氯化氮的生成 氯碱生产原理是电解食盐水生成烧碱,同 时得到氯气和氢气,食盐水是用水或卤水溶化 原盐精制而成。氯碱生产方法主要有水银电解 法、隔膜电解法和离子膜电解法,其核心设备 是电解槽,电解槽由阴极和阳极组成。精制后 的盐水进入电解槽,通入直流电电解即可生成 烧碱、氯气和氢气,反应方程式如下: 三氯化氮主要是氨或铵进入生产系统,在盐水 电解过程的酸性条件下与氯气或次氯酸反应生

成的,反应方程如下。 二、三氯化氮的性质 三氯化氮是一种黄色黏稠液体或斜方形晶体的含氮化合物,密度为1.653g/L,略大于液氯,有类似氯的刺激性气味,可在酸、碱性介质中分解(在50℃时开始分解,100℃时完全分解)。三氯化氮可溶于四氯化碳、碱液等物质。对人体的皮肤、眼睛黏膜、呼吸道等均具有刺激作用,有较大的毒性。在空气中易挥发,当空气中三氯化氮的体积分数达到5%~6%时,就有爆炸的可能,是一种威胁氯碱生产安全的重要物质之一。特别是三氯化氮在氯气系统中的不断富集积累,给氯碱生产构成重大事

十三起氯气中毒实例及案例分析

十三起氯气中毒实例及案例分析 氯气,Cl2,是一种黄绿色、有强烈刺激性的气体。可溶于水和碱溶液,易溶于二硫化碳和四氯化碳等有机溶剂。氯气遇水后生成次氯酸和盐酸,再分解为新生态氧。在高压下氯气液化成液氯。氯气有强烈腐蚀性,设备及容器极易被腐蚀而泄漏。工业上接触氯的机会有:氯的制造或使用过程中若设备管道密闭不严或检修时均可接触到氯。液氯灌注、运输和贮存时,若钢瓶密封不良或有故障,亦可发生大量氯气逸散。主要见于电解食盐,制造各种含氯化合物、造纸、印染及自来水消毒等工业。 氯气对人体的作用有急性中毒和慢性损害两种。急性中毒临床上又可分为刺激反应、轻度、中度、重度中毒。其表现为: (1)氯气刺激反应:出现一过性的眼及上呼吸道刺激症状; (2)轻度中毒:主要表现为支气管炎和支气管周围炎,有咳嗽,可有少量痰、胸闷等,两肺有干罗音或哮鸣音,可有少量湿罗音; (3)中度中毒:主要表现为支气管肺炎、间质性肺水肿或局限的肺泡性肺水肿。咳嗽、咳痰、气短、胸闷或胸痛,可有轻度发绀,两肺有干性或湿性罗音; (4)重度中毒:临床上表现为①咳嗽、咯大量白色或粉红色泡沫痰,呼吸困难,胸部紧束感,明显发绀,两肺有弥漫性湿罗音;②严重窒息;③中、重度昏迷;④卒死;⑤出现严重并发症,如气胸、纵隔气肿等,只要具有其中一项即为重度氯气中毒。氯气对人体的慢性影响主要表现为上呼吸道、眼结膜、皮肤方面的刺激症状及神经衰弱综合证、氯痤疮,牙齿酸蚀症等 凡有明显的呼吸系统慢性疾病,明显的心血管系统疾病的患者不宜从事氯气作业。 氯气中毒的防治要点有: ①严格遵守安全操作规程,防止跑、冒、滴、漏,保持管道负压; ②含氯废气需经石灰净化处理再排放,也可设氨水储槽和喷雾器,在跑氯时和中和氯气; ③检修时或现场抢救时必须佩戴防毒面具; ④执行预防性体格检查。 实例1 某区镇办水厂,加氯消毒工艺较为原始,即用液氯钢瓶置于水泵吸水口滴加消毒。1984年12月9日下午6时许赵某(男,34岁)当班抄表时,嗅及氯气间有氯气味,查见钢瓶接头处橡胶管破裂,遂戴防毒口罩去关钢瓶,未成,即上门通知有关同事请求帮助时,因胸闷、咳嗽、心悸继而昏倒在同事家里,即由同事送往医院救治。当日下午7时许,同

三氯化氮的性质、危害及预防(一)

三氯化氮的性质、危害及预防(一) 在氯碱生产过程中,三氯化氮爆炸事故曾多次发生,爆炸不仅会造成氯气泄漏事故,而且爆炸本身可能造成人身伤害,因此做好三氯化氮爆炸的预防工作显得尤为重要。 1三氯化氮的性质及危险性 三氯化氮(NCl3)分子为三角锥形,由于分子内3个氯原子聚集在同一侧,相互间有较大的排斥力和阻碍,同时氮氯元素电负性接近(氮稍大于氯),在外界较小能力的激发下,就可能引起氮氯键(N-Cl)断裂而造成三氯化氮发生分解。自燃爆炸点95℃。 三氯化氮是一种危险且不稳定的物质,在60℃以下逐渐分解产生氮和氯,在一定条件下与生成反应达成可逆平衡。 纯的三氯化氮和臭氧、磷化物、氧化氮、橡胶、油类等有机物相遇,可发生强烈反应。 液体加热到60-95℃时会发生爆炸,空气中爆炸温度约为1700℃,密闭容器中爆炸最高温度为2128℃,最大压力为543.2MPa。 气体在气相中体积分数为5.0%-6.0%时存在潜在爆炸危险。在密闭容器中60℃时受震动或在超声波条件下可分解爆炸,在非密闭容器中93-95℃时能自燃爆炸。在日光、镁光照射或碰撞“能”的影响下,更易爆炸,有实验表明三氯化氮体积分数大于1%时有电火花即可引爆。 三氯化氮爆炸前没有任何迹象,都是突然间发生。爆炸产生的能量与NCl3积聚的浓度和数量有关,少量NCl3瞬间分解引起无损害爆鸣。大

量NCl3瞬间分解可引起剧烈爆炸,并发出巨响,有时伴有闪光,破坏性很大。爆炸方程式为: 2NCl3=N2+3Cl2+459.8kJ 三氯化氮液体在空气中易挥发,在热水中易分解,在冷水中不溶,溶于二硫化碳、三氯化磷、氯、苯、乙醚、氯仿等。在(NH4)2SO4溶液中及暗处可以存放数天,在酸碱介质中易分解。NCl3在湿气中易水解生成一种常见的漂白剂,显示酸性,NCl3与水反应的产物为HClO和NH3。水解的化学方程式:NCl3+3H2O=NH3+3HClO;NCl3遇碱迅速分解,反应式为NCl+6NaOH=N2+3NaClO+3NaCl+3H2O NCl3+3NaOH=NH3+3NaClO 2三氯化氮的来源 在氯气生产和使用过程中,所有和氯气接触的物质,当其中含有铵盐、氨及含铵化合物等杂质时,就可能产生三氯化氮。 (1)盐水中含有铵盐、氨及含铵化合物等杂质,其中无机铵,例如NH4Cl、(NH4)2CO3,有机铵,例如胺(RNH2)、酰胺(RCONH2)、氨基酸RCH(NH2)COOH)。盐水在电解中与电解槽阳极室的氯气或次氯酸钠在pHNH4Cl+3Cl2=NCl3+4HCl 2(NH4)2CO3+3Cl2=NCl3+3NH4Cl+2COa+2H2O NH3+3HClO=3H2O+NCl3 盐水中铵盐、氨及含铵化合物的来源有以下几个方面。 a.由原盐带来,一是原盐本身含有,二是在运输和贮存的过程中混入;

三氯化氮(液氯生产)产生的条件、途径和紧急处理

编号:SM-ZD-69731 三氯化氮(液氯生产)产生的条件、途径和紧急处 理 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

三氯化氮(液氯生产)产生的条 件、途径和紧急处理 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 引言(1) 在液氯生产中,因三氯化氮曾引起多起爆炸事故,所以各液氯生产企业都十分重视控制三氯化氮。特别是今年4月16日,重庆天原化工总厂液氯工段发生三氯化氮爆炸事故后,更引起各氯碱企业的高度重视,一些企业采取了对原料盐、液氯排污物等增加分析次数,严格控制指标,增加液氯排污的次数等措施,这些传统的控制办法对液氯的安全生产起到了重要的作用。 产生的条件(2) 控制三氯化氮的产生,仅靠传统的控制办法是否全面,是否有其他产生三氯化氮的途径?要弄清这个问题,就必须弄清三氯化氮产生的条件。 在氨、铵盐或有机胺(如尿素)存在的情况下,遇到氯、

氯气泄漏中毒事故案例_

氯气泄漏中毒事故案例1)事故经过 2007年11月8日下午5点20分左右,位于石景山苹果园东口处的首钢日电电子有限公司一车间发生氯气泄漏事件,导致15名工作人员中毒。事发车间是生产集成电路的前工序车间,出事时,工人突然听到氯气泄漏的报警声音,一名技术人员和两名工人进入车间查看。在未配备安全装置的情况下,3人对报警的氯气瓶开关进行检验,并未发现异常,但闻到气味。3人出来后,突然感觉不适,后被急救车送到朝阳医院京西院区检查。3人被送走后,该公司又派技术人员进入事发车间用仪器进行检测,仍未发现异常。晚饭后,12名工人进入车间继续工作,不久便出现了头晕等症状,被立即送到医院治疗。就诊的15人均被确诊为氯气中毒,其中3人在心内科治疗,3人在呼吸科,其余患者在耳鼻喉科。因该公司装有泄漏报警装置,报警后自动关闭阀门,所以泄漏的氯气量不大。 2)事故原因 (1)直接原因 供应端气瓶柜发生泄漏,由于气瓶在报警后已经启动关闭功能,所以初步认定原因为气瓶柜阀门或管路出现泄漏。 (2)间接原因 ①首钢NEC氯气供应采用的是单层管,增加了事故发生的概率; ②没有相应的紧急应变程序或该程序没有得到应有的训练和演练,造成发生事故时没有正确的流程予以指挥控制,导致事故扩大; ③员工的安全意识薄弱,未能组织有效的培训,应急救援人员进入处理时竟然没有佩戴必要的防护器具,导致人员受伤;

④公司高层安全意识不足,在事故原因没有查明之前就安排员工进入生产,导致后续大批员工受伤的原因; ⑤应急救援人员没有按照应有的紧急应变流程,穿戴必要的防护设备进入处理紧急应变。训练不到位,安全意识和能力极差。 3)防范措施 (1)提高人员的操作技能和紧急应变技能 ①加强对相关特种岗位员工的操作技能,学习安全操作的标准操作流程,并严格按照标准操作流程的要求操作。操作人员工必须熟悉所使用的化学品的特性及紧急处理方法。定期对重大危险场所进行由针对性的应变演练,提高紧急应变技能。 ②针对特殊成员需加强训练,譬如应急救援人员,使得在灾害发生时能及时有效的处理事故,避免事态扩大。 ③公司高层的安全意识需加强,需熟悉紧急应变流程,系统特点,气体特性等相关安全知识,在事故发生时能准确有效的指挥抢险救灾。 (2)加强对设备、管道及安全系统的日常维护 ①加强对现场的日常巡检,确保设备、管路的安全运行;必须定期对安全系统进行检测,确保安全系统有效的运行。 ②对迎击救援人员使用的侦测仪器需要定期校验,避免事故发生时未能准确测出导致误判,造成不必要的人员二次伤害。 ③在建设时尽量采用符合标准的管材阀件,保证安全系数。

氯中三氯化氮安全规程完整

氯中三氯化氮安全规程 1、主题容与适用围 本规程规定了液氯生产和使用过程中有关三氯化氮的安全要求。 本规程使用与液氯生产企业及有液氯汽化工序的企业。 2、引用文件 化学工业部(81)化化字第655号文 氯碱生产技术(上册)化工部化工司1985 GB 5138-2006 工业用液氯 GB 11984-1989 氯气安全规程 3、三氯化氮的主要理化性质 三氯化氮是一种黄色粘稠液体或斜方形晶体的含氮化合物,有类似氯的刺激性臭味,在酸、碱介质中易分解。 在空气中易挥发;它在气体中体积百分比5%-6%时有爆炸可能。60℃时,在震动或超声波条件下,可分解爆炸;在、镁光直接照射下。瞬间爆炸。与臭氧、氧化物、油脂或有机物直接接触,易诱发爆炸。2摩尔三氯化氮爆炸时,分解为1摩尔氮气和3摩尔氯气,同时放出110千卡热量,在容积不变的条件下爆炸,温度可达2128℃,压力5361大气压,在空气中爆炸温度为1700℃。 4、安全监控比重1.653千克/米3 ,熔点小于-40℃,沸点小于 71℃,自然爆炸温度95℃。 (1)液氯生产企业及有液氯汽化工序的企业必须建立三氯化氮安全监控分析手段。

(2)三氯化氮安全监控分析项目分别为:化盐水、工业盐、工业用卤水和电解盐水中无机铵含量和总铵含量的分析 方法,氯气、液氯和液氯残液(带液氯)中三氯化氮含 量的分析方法。 (3)有液氯汽化工序的企业可选用液氯和液氯残液(带液氯)中三氯化氮含量的分析方法。 (4)无机胺含量和总铵含量的分析方法(详见附录A)(5)三氯化氮含量的分析方法(详见附录B) (6)测定仪的技术要求 用于三氯化氮安全监控分析的测定仪器必须经过中国氯碱工业协会的技术鉴定。 (7)三氯化氮安全监控指标 无机铵和总铵含量见表1. 表1、无机铵和总铵含量

氯气泄漏事故的原因分析及防范措施

编号:SM-ZD-44364 氯气泄漏事故的原因分析 及防范措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

氯气泄漏事故的原因分析及防范措 施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 氯气是制造农药、橡胶、塑料和合成纤维的重要原料,在有机、无机化工生产中有着广泛的用途。氯气本身又是一种漂白剂和消毒剂,在日常生活中也被普遍应用。氯气是一种有刺激性的有毒气体,吸入一定量的氯气会引起中毒,引发各类呼吸道疾病,因此,一旦发生泄漏,所造成的后果是十分严重的。近年来,氯气泄漏中毒事故时有发生,不仅给国家财产和人们的生命安全造成巨大的损失和威胁,而且直接影响正常的生产、生活秩序和社会安全。如何在实际工作中采取有效的措施成功处置各类氯气泄漏事故,已成为摆在我们面前的一项重要课题。本文以近年来发生的氯气泄漏事故为例,对如何处置氯气泄漏事故作一探讨,以期起到抛砖引玉的作用。 一、典型氯气泄漏中毒事故介绍

三氯化氮的性质 危害与预防

三氯化氮的性质、危害与预防在氯碱生产过程中,三氯化氮事故曾经多次发生。爆炸不仅造成氯气泄漏,而且爆炸本身可能造成人身伤害。因此做好三氯化氮爆炸预防尤为重要。 一、三氯化氮的性质及危险性 三氯化氮(NCI3),Mr.120.5,-27℃以下固化,沸点71℃。分子为三角形,由于分子内3个氯原子聚集在同一侧,相互间有较大的排斥力和阻碍,同时氮氯元素电负性接近(氮稍大于氯),在外界较小能力的激发下,就可能引起氮氯键断裂而造成三氯化氮分解。自燃爆炸点为95℃。 三氯化氮是一种危险且不稳定的物质。在60℃以下逐渐产生氮和氯,在一定条件下与生成反应可逆平衡。 纯的三氯化氮和臭氧、磷化物、氧化氮、橡胶、油类等有机物相遇可发生强烈反应。 液体加热到60-95℃时会发生爆炸。空气中爆炸温度约为1700℃;密闭容器中爆炸最高温度为2128℃,最大压力为543.2MPa。 气体在气相中体积分数5.0-6.0%时存在潜在爆炸危险。在密闭容器中60℃时受振动或在超声波条件下分解爆炸。在非密闭容器中93-95℃时能自然爆炸。在日光、镁光照射或碰撞能的影响下,更易爆炸。有实验表明,三氯化氮体积分数大于1%时,电火花即可引发爆炸。

三氯化氮爆炸前没有任何迹象,都是突然发生。爆炸产生的能量与三氯化氮集聚的浓度和数量有关。少量三氯化氮瞬间分解可引起无害爆鸣。大量三氯化氮瞬间分解引起剧烈爆炸,并发巨响,有时伴闪光。,破坏性很大。爆炸方程式:2NCI3=3CI2+N2+459.8KJ; 三氯化氮在空气中易挥发,在热水中易分解,在冷水中不溶,溶于二硫化碳、氯、苯、三氯化磷、乙醚、氯仿等。在硫酸铵溶液或暗处可存放数天。在酸碱介质中易分解。三氯化氮在湿气中易水解生成一种常见的漂白剂,显示酸性,三氯化氮与水反应的产物为次氯酸和氨。水解方程式:NCI3+H2O=NH3+3HCIO; 三氯化氮与碱迅速分解: NCI3+6NaOH=N2+3NaCIO+3NaCI+3H2O; 二、三氯化氮的来源 在氯气生产和使用过程中,所有何氯气接触的物质,当其中含有按铵盐、氨及含铵化合物时,就可能产生三氯化氮。1]盐水中含铵盐、氨及含铵化合物等杂质,其中无机铵,例如氯化铵、碳酸铵,有机铵,例如酰胺、氨基酸。盐水在电解中与电解槽阳极室的氯气过次氯酸钠在PH<5的条件下反应,产生三氯化氮,反应方程式如下: NH4CI+3CI2=NCI3+4HCI;

氯气泄漏重大事故后果模拟分析经典

氯气泄漏重大事故后果模拟分析(经典)

————————————————————————————————作者: ————————————————————————————————日期: ?

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

三氯化氮的性质、危害及预防实用版

YF-ED-J2603 可按资料类型定义编号 三氯化氮的性质、危害及 预防实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

三氯化氮的性质、危害及预防实 用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 在氯碱生产过程中,三氯化氮爆炸事故曾 多次发生,爆炸不仅会造成氯气泄漏事故,而 且爆炸本身可能造成人身伤害,因此做好三氯 化氮爆炸的预防工作显得尤为重要。 1 三氯化氮的性质及危险性 三氯化氮(NCl3)分子为三角锥形,由于分 子内3个氯原子聚集在同一侧,相互间有较大 的排斥力和阻碍,同时氮氯元素电负性接近(氮 稍大于氯),在外界较小能力的激发下,就可能 引起氮氯键(N-Cl)断裂而造成三氯化氮发生分

解。自燃爆炸点95℃。 三氯化氮是一种危险且不稳定的物质,在60℃以下逐渐分解产生氮和氯,在一定条件下与生成反应达成可逆平衡。 纯的三氯化氮和臭氧、磷化物、氧化氮、橡胶、油类等有机物相遇,可发生强烈反应。 液体加热到60-95℃时会发生爆炸,空气中爆炸温度约为1700℃,密闭容器中爆炸最高温度为2128℃,最大压力为543.2MPa。 气体在气相中体积分数为5.0%-6.0%时存在潜在爆炸危险。在密闭容器中60℃时受震动或在超声波条件下可分解爆炸,在非密闭容器中93-95℃时能自燃爆炸。在日光、镁光照射或碰撞“能”的影响下,更易爆炸,有实验表明三氯化氮体积分数大于1%时有电火花即可引爆。

氯气中毒事故案例

氯气中毒事故案例 氯气,Cl2,是一种黄绿色、有强烈刺激性的气体。可溶于水和碱溶液,易溶于二硫化碳和四氯化碳等有机溶剂。氯气遇水后生成次氯酸和盐酸,再分解为新生态氧。在高压下氯气液化成液氯。氯气有强烈腐蚀性,设备及容器极易被腐蚀而泄漏。工业上接触氯的机会有:氯的制造或使用过程中若设备管道密闭不严或检修时均可接触到氯。液氯灌注、运输和贮存时,若钢瓶密封不良或有故障,亦可发生大量氯气逸散。主要见于电解食盐,制造各种含氯化合物、造纸、印染及自来水消毒等工业。(安全管理交流https://www.360docs.net/doc/555152267.html,) 氯气对人体的作用有急性中毒和慢性损害两种。急性中毒临床上又可分为刺激反应、轻度、中度、重度中毒。其表现为:(1)氯气刺激反应:出现一过性的眼及上呼吸道刺激症状;(2)轻度中毒:主要表现为支气管炎和支气管周围炎,有咳嗽,可有少量痰、胸闷等,两肺有干罗音或哮鸣音,可有少量湿罗音;(3)中度中毒:主要表现为支气管肺炎、间质性肺水肿或局限的肺泡性肺水肿。咳嗽、咳痰、气短、胸闷或胸痛,可有轻度发绀,两肺有干性或湿性罗音;(4)重度中毒:临床上表现为①咳嗽、咯大量白色或粉红色泡沫痰,呼吸困难,胸部紧束感,明显发绀,两肺有弥漫性湿罗音;②严重窒息;③中、重度昏迷;④卒死;⑤出现严重并发症,如气胸、纵隔气肿等,只要具有其中一项即为重度氯气中毒。氯气对人体的慢性影响主要表现为上呼吸道、眼结膜、皮肤方面的刺激症状及神经衰弱综合证、氯痤疮,牙齿酸蚀症等。 凡有明显的呼吸系统慢性疾病,明显的心血管系统疾病的患者不宜从事氯气作业。 氯气中毒的防治要点有: ① 严格遵守安全操作规程,防止跑、冒、滴、漏,保持管道负压; ② 含氯废气需经石灰净化处理再排放,也可设氨水储槽和喷雾器,在跑氯时和中和氯气; ③ 检修时或现场抢救时必须佩戴防毒面具;

氯气泄漏及三氯化氮爆炸事故

氯气泄漏及三氯化氮爆炸事故 2004年4月15日19时左右,位于重庆市江北区的重庆天源化工总厂氯冷凝器发生局部的三氯化氮爆炸后,16日凌晨及下午液氯储罐接连发生爆炸,氯气泄漏。整个事故造成9人死亡、失踪和3人受伤,15万人大转移。 该公司是西北地区第一家大型氯碱企业,对照重庆天源化工厂的事故,结合本公司的生产实际,总结一下我们公司在氯气泄漏与三氯化氮预防及处理上的经验,以供同行业参考。 1.三氯化氮的特性 三氯化氮分子量为120.5,常温下为黄色粘稠的油状液体,密度为1.653,-27℃以下固化,沸点7l℃,自燃爆炸点95℃。纯的三氯化氮和橡胶、油类等有机物相遇,可发生强烈反应。如果在日光照射或碰撞“能”的影响下,更易爆炸。当体积比含量为5%~4%时,在90℃时能自然爆炸,60℃时受震动或在超声波条件下,可分解爆炸。在容积不变的情况下,爆炸时温度可达2128℃,压力高达531.6Mpa。空气中爆炸温度可达1698℃。爆炸方程式为: NCl3→N2+3Cl2+459.8kJ 2.三氯化氮的存积 在公司的工艺流程中,三氯化氮产生的惟一途径就是盐水中铵盐、氨及含铵化合物在电解中与电解槽阳极室的氯气、次氯酸钠在PH5的条件下反应的结果,在液化过程中沉积于液氯底层。 在液氯蒸发器操作中,三氯化氮大部分存留于未蒸发的残液中。随着每次倒料→蒸发→排气→倒料的循环过程,蒸发器底部残液中的三氯化氮浓度不断升高,当质量分数超过5%时就有爆炸的危险。

3.三氯化氮的预防及处理 1.阻止铵离子进入电解槽是防止三氯化氮危害的治本之法 (1)我公司所用原盐以湖盐为主,主要有新疆盐、青海盐。质量比较稳定,铵总量均符合标准。 (2)盐水采用先进的预处理器—戈尔过滤技术。在此技术中,化盐后直接加入次氯酸钠。其最初目的是消除盐水中的天然有机物,但是在达到这一目的的同时,盐水中的铵也被清除并生成三氯化氮。为了彻底地清除,要求游离氯为1~2mg/l。其后经过加压容器罐,在预处理器中将生成的三氯化氮排出。这样就大大减少了电解中三氯化氮的产生。2.液氯工段三氧化氮的预防 (1)液氯蒸发器每周三排污一次,排入地池碱液中。排污槽每周一、五做三氯化氮含量分析。在排污时必须带液氯排放,禁止敲击,同时取样测三氯化氮含量,严格控制在60g/l。下表是我公司近几年的取样数据。这个数据远远低于控制指标。如高于此指标,从蒸发器开始增加排污次数,加大液氯携带量,确保三氯化氮含量低于指标。 2002年6月份三氯化氮含量偏高,是因为原盐用的是山东盐,含有机铵比较高所致。发现此问题后,我们通过调用盐种,三氯化氮含量就降了下来。往年三氯化氮是每周往地池碱液排放一次,做一次三氯化氮含量分析。自从重庆天源化工厂发生事故以后,我公司决定每周三排三氯化氮,每周一、周五做两次分析予以检测。 (2)同时,我公司现正在安装液氯液下泵,利用液下泵直接包装液氮,不再使用蒸发器,从而杜绝了三氯化氮在此处的存积。 (3)对液氮贮槽每年都要清洗,同时逐台进行设备探伤。杜绝三氯化氮在槽底部的存积与设备老化引起爆炸及氯气的泄漏。

相关文档
最新文档