臭氧氧化法处理废水实验

臭氧氧化法处理废水实验
臭氧氧化法处理废水实验

实验报告

课程名称: 水处理工程实验 指导老师: 胡宏

成绩:实验名称: 臭氧氧化法处理废水实验 类型:________________同组学生姓名:

徐亮、林蓓 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤

五、实验数据记录和处理

六、实验结果与分析(必填)

七、讨论、心得

一、实验目的和要求

自臭氧应用于水处理以来,在实际应用中取得了明显的成效。但臭氧氧化反应具有一定的选择性,氧化产物常常为小分子羧酸,酮和醛类物质,难以将有机物彻底降解为CO 2、H 2O 或其它无机物,因此TOC 和COD cr 去除率不是很高。

为了强化臭氧处理效果,人们开发出O 3/UV 、O 3/H 2O 2/UV 、O 3/固体催化剂(如活性炭,金属及其氧

化物)等高级氧化技术,其共同特征是产生高活性羟基自由基(·OH ),从而达到彻底降解有机污染物的目的。影响臭氧氧化的因素有污染物成分、含量,臭氧投加量,废水pH ,水气接触时间,紫外波长,照射强度,气体分布状况,水温等。

本实验希望达到下述目的:①加深对臭氧紫外法处理废水机理的理解;

②掌握臭氧紫外法处理废水的最佳条件试验方法。

二、实验内容和原理

臭氧氧化能力很强,O 3+2H ++2e →O 2+H 2O 反应体系的标准电极电位E=2.07V 。臭氧在水中分解产生原子氧和氧气还可以产生一系列自由基,其反应式如下:

2

2222

22232322222O O H O H O H HO HO O H O O O O O O O +→→??→+→++→

特别是在碱性介质中,O 3分解产生自由基的速度很快,其反应式为:

-

-

-

--

-

?+→?+?+?→?++?→?+?+?→+H

O HO O O HO HO O O O O O O HO

OH O 222232

32

32

2

32

新生成的羟基自由基尤其活泼,氧化能力更强,HO ﹒+H t +e →H 2O ,反应体系的标准电极电位Eo=2.80V 。臭氧与水中有机物的反应十分复杂,既有臭氧的直接氧化反应,也有新生自由基的氧化反应。

这与反应条件与有机物的性质密切相关,酸性条件下,臭氧分解慢,O 3的直接氧化反应起主要作用;碱性条件下,臭氧分解快,羟基自由基氧化作用加大,随着溶液pH 提高,COD cr 去除率增加,氧化率提高。另外,温度升高,臭氧分解速度加快,且化学反应速率提高,所以高温有利于有机物氧化。

三、主要仪器设备装置

常用实验室仪器;O 3反应器,剩余O 3消除器;加热-回流装置;25mL 酸式滴定管;防暴沸玻璃珠;pHS 型pH 计1台;50ml 烧杯若干;100ml 量筒各8只,20ml 、10ml 移液管各1支。

蒸馏水;硫酸银,化学纯;硫酸,ρ=1.84g/mL ;硫酸银-硫酸试剂;重铬酸钾标准溶液(c=0.25mol/L );硫酸亚铁铵标准滴定溶液(c=0.1006mol/L );试亚铁灵指示剂溶液。

四、操作方法和实验步骤

不同氧化时间的处理效果的实验步骤

1、 仔细观察O 3装置的内、外结构及部件;

2、 开启泵,将废水打入O 3反应器,调整流量为0.3g/L ,同时测定原废水的pH 、COD cr 值;

3、 打开氧气瓶和减压阀,调整臭氧发生器的进气流量为0.1m 3/h ;

4、 打开电源开关,设置放电功率为80%,使其产生稳定的臭氧浓度;

5、 经氧化反应10min 、20min 、30min 、40min 、50min 后分别取一定的水样,分别测定不同氧化时间

后出水的pH 、COD cr 值。

6、 实验完成后,关闭电源开关、臭氧发生器及泵,整理实验。 水质化学需氧量测定的实验步骤

1) 移液管取20.0mL 待测试料于洁净的250ml 锥形瓶中。

2) 于试料中加入10.0mL 重铬酸钾标准溶液和几颗防爆沸玻璃珠,摇匀。将锥形瓶接到回流装置冷

凝管下端,接通冷凝水。从冷凝管上端缓慢加入30ml 硫酸银—硫酸试剂,以防止低沸点有机物的逸出,混合均匀后开始加热,自溶液开始沸腾起回流1小时。

3) 充分冷却后,用20—30mL 水自冷凝管上端冲洗冷凝管2-3次,取下锥形瓶。

4) 待溶液冷却至室温后,加入3滴试亚铁灵指示剂溶液,用硫酸亚铁铵标准滴定溶液滴定,溶液的

颜色由黄色经蓝绿色变为红褐色即为终点。记下硫酸亚铁铵标准滴定溶液的消耗毫升数V 2。 空白试验:

按相同步骤以20.0ml 蒸馏水代替试料进行空白试验,记录下空白滴定时消耗硫酸亚铁铵标准溶液的毫升数V 1。

Fig.1 臭氧降解印染废水研究实验装置

五、实验数据记录和处理

表1 (NH 4)2Fe(SO 4)2浓度标定及空白试验数据表

(NH 4)2Fe(SO4)2浓度标定实验

(NH 4)2Fe(SO 4)2用量/ml

(NH 4)Fe(SO 4)2浓度

25.42

0.098mol/L

25.50 全程空白实验 24.61 24.65

24.90 24.45

水质COD 测定:

重铬酸钾标准溶液浓度c (1/6 K 2Cr 2O 7)=0.2500mol/L ,标定得(NH 4)2Fe(SO 4)2的浓度C =0.098mol/L ;空白试验所消耗的硫酸亚铁铵标准滴定溶液的体积V1=24.65mL ;试料测定所消耗的硫酸亚铁铵标准滴定溶液的体积V2;试料的体积V0=20.00mL ,则: 计算公式:

表2 直接桃红染料废水COD 测定数据表

表3 酸性嫩黄染料废水COD 测定数据表

8000

)21()/(V V V C L mg COD ?-=

表4 分散蓝染料废水COD 测定数据表

图2 废水COD 随氧化时间变化曲线氧化时间/min

C O

D (m g /L )

图3 废水COD 去除率随氧化时间变化曲线

氧化时间/min

p H

氧化时间/min

图4 废水pH 随氧化时间变化曲线

六、实验结果与分析

【废水COD及其去除率随氧化时间变化曲线图分析】

从图2、图3不难发现,染料废水的COD均随O3氧化时间的增长而降低,COD去除率则随之逐渐增大;且臭氧对三种染料废水的COD Cr去除率有异,自图3可发现实验中任一氧化时间时三种染料的COD Cr 去除率大小为:直接桃红>分散蓝>酸性嫩黄。

COD Cr的去除主要取决于有机物被氧化的程度,主要原因是染料分子结构的差异。分子反应活性越强,就越容易降解;分子结构越稳定,就越难降解。三种染料的分子结构式如图5所示:

图5 染料结构图(从左到右分别为直接桃红、分散蓝、酸性嫩黄)蒽醌结构的染料(如分散蓝),一旦羰基被氧化打开后,整个蒽醌结构就被破坏,羰基相邻的两个苯环就比较容易被氧化;单偶氮结构染料(如酸性嫩黄),偶氮基(-N=N-)被氧化打开后,其相邻的苯环及芳香环并没有被破坏,结构相对比较稳定而不容易被氧化;双偶氮结构的染料,有两个偶氮基,更为稳定,被氧化的难度也就更大,所以在芳香环个数相差不大的前提下,COD cr降解效率的大小为:蒽醌结构染料>单偶氮结构染料>双偶氮结构染料。

偏酸性和中性条件下,臭氧的氧化作用以直接氧化为主,其氧化能力较弱,选择性较强,从各染料的分子结构中,不难发现各染料的共轭双键的比重排序为:直接桃红>分散蓝>酸性嫩黄。虽然分散蓝结构中氨基和羟基都是供电子基团,能够促进染料的降解,但是羟基和氨基都可以和羰基形成分子内氢键,再加上吸电子基团—Br的抑制作用,染料的分子结构十分稳定而相对直接桃红难以降解;酸性嫩黄为单偶氮结构染料,且—Cl等吸电子基团更抑制其氧化降解,故酸性嫩黄COD Cr去除率最低。

最经济反应时间点:

根据图2、图3,从经济性的角度来考虑,20min、30min、40min分别是直接桃红、分散蓝和酸性嫩黄的最佳反应时间点,因为所投加的臭氧已得到最充分的利用,在各自的最佳反应时间点以后,虽然COD cr 去除效率依然在不断增加,但其增加的速度已经十分缓慢,而在臭氧的投加量不变的情况下,臭氧的利用率大大地下降,加大了经济成本。

【废水pH值随氧化时间变化曲线图分析】

由图4可发现,酸性嫩黄、分散蓝废水经臭氧处理后水中的pH下降,而直接桃红除最初10min氧化处理水样的pH相对原水样大大降低外,之后的处理水样随氧化时间的增长pH稍有上升。

废水经臭氧氧化过程中有机物不断被氧化为小分子有机酸,酸电离产生氢离子,使水中pH下降,特别是分散蓝染料废水,有机物被臭氧氧化分解后,氢溴酸从分子结构中解离出来,经氧化后产生溴酸等强酸

性的酸,所以其pH下降最为明显。而直接桃红的臭氧化过程是:臭氧首先攻击与偶氮键相连的C—N键,使偶氮键以氮气排出,同时分子中苯环和萘环被氧原子取代,开环后被逐步氧化成酚、醇、醛和酰胺等,然后进一步被氧化成有机酸,最后部分有机物被彻底氧化为CO2和H2O,因而在氧化得到的有机酸使水样pH下降后,其继续被氧化得到CO2并逸出使水样pH又小幅度上升。

【实验误差来源分析】

本实验的误差主要来源于水质COD测定,实验测得各水质的COD结果有部分小于50mg/L,根据环境监测原理,此部分水质的COD测定本应采用低浓度的重铬酸钾标准溶液(c=0.025mol/L)氧化,加热回流足够时间以后,采用低浓度的硫酸亚铁铵标准溶液回滴;而本次实验中水质COD测定统一用的重铬酸钾标准溶液c=0.25mol/L,浓度偏高,滴定的准确率势必有所下降。

测定的水质COD结果误差(如测得直接桃红50min氧化水样的COD<0等)来源主要有偏小的原因可能是以下几方面:

(1)实验中所使用的移液管等各类仪器设备本身带入的移取试料、试剂体积的误差;

(2)回流过程加入硫酸的速度没有控制好,致使有少量低沸点有机物溢出(加硫酸时锥形瓶中有少量烟冒出,说明低沸点有机物的损失不可忽略);

(3)考虑到试验时间限制,回流加热时间只有1h(本应为2小时),有机物的氧化可能不够充分;

(4)滴定终点的判断误差,依赖于实验者观察颜色变化的敏锐度,直接影响硫酸亚铁标准液的浓度标定及水样COD测定结果等;

(5)本实验COD测定方法的适用范围是COD为30—700mg/L,实验结果中直接桃红部分水样的COD 小于30 mg/L,此部分数据存在不可忽略的实验误差。

七、讨论、心得

本实验的关键是水质COD的测定;为减少操作带入的实验误差,水质COD测定应注意如下事项:

1)本实验测量使用原水样,不需过滤;取样时应先放掉一部分染料水样,排除留在取样口处的水样,

因为这部分水样时没有被处理的,否则将造成实验误差;

2)为保证实验数据的精密度,废水取样、各试剂的加入及滴定等同类操作应尽量由同一人完成;

3)本方法的适用范围是COD大于30 mg/L 小于700mg/L,计算结果COD值小于10mg/L时,应表

示为“COD<10mg/L”;若测出的值超出700mg/L,水样必须经稀释后再测定;

4)滴定实验中,滴定终点的判断非常重要;滴定时要不断旋动锥形瓶,时刻注意瓶中溶液颜色的转

变;在酸性重铬酸钾条件下,芳烃及吡啶难以被氧化,其氧化率较低。在硫酸银催化作用下,直链脂肪族化合物可有效地被氧化,所以此方法的准确度不是100%;

5)硫酸要在装好冷凝管,通好冷凝水之后再缓缓由冷凝管上部加入,要控制加入速度,不宜过快,

目的是为了防止低沸点有机物的溢出;

6)无机还原性物质如亚硝酸盐、硫化物及二价铁盐将使结果增加,将其需氧量作为水样COD值的一

部分是可以接受的。该实验的主要干扰物为氯化物,可加入硫酸汞部分地消除干扰,经回流后,氯离子可与硫酸汞结合成可溶性的氯汞络合物。

7)对于污染严重的水样,可选取所需体积1/10的试料和1/10的试剂,放入10×150mm硬质玻璃

管中,摇匀后,用酒精灯加热至沸数分钟,观察溶液是否变成蓝绿色。如呈蓝绿色,应再适当少取试料,重复以上试验,直至溶液不变蓝绿色为止。从而确定待测水样适当的稀释倍数。

臭氧浓度过高会对人体造成不利的影响:臭氧浓度高于0.3mg/L时对人的五官有刺激作用;浓度高于3-15mg/L时,人会感到头疼,所以一般臭氧的浓度允许值为0.2mg/L,正常可与人体接触8小时;采用臭氧氧化技术也应该注意剩余臭氧的去除,主要方法有:

i.预臭氧化:将剩余臭氧重新通入待处理的废水中,可达到循环使用的目的。

ii.稀释:对排出的臭氧进行一定的稀释,使得臭氧对人体的危害减小。

iii.热分解:臭氧在100℃时分解反应很剧烈,在270℃时基本没有臭氧的存在。

iv.吸附:可以采用碘酸钾等物质对臭氧进行吸附去除。

八、思考题:

图6 臭氧降解印染废水实验装置简图

1、为什么臭氧氧化对TOC的去除效率不是很高?

答:处理液的pH为酸性的情况下,臭氧氧化的选择性较高且反应较慢;处理液pH为碱性的条件下,臭氧氧化分解产生的CO2又被碱性溶液吸收,故臭氧氧化对TOC的去除率不高。

2、为什么废水在强碱性时其TOC的去除效率反而下降?

答:随着废水pH的增大,有机物被臭氧氧化产生的CO2极易被碱性溶液吸收,产生CO32-及HCO3-,而这两种离子的存在会抑制羟基自由基的产生,进而抑制有机物氧化作用,所以随着废水pH的升高(强碱性),其TOC的去除率反而变小。

3、化学氧化技术还有哪些方法?

答:目前常用的化学氧化法根据氧化剂的种类分为有臭氧氧化、Fenton氧化、氯氧化、光催化氧化、湿气氧化法等;根据技术发展的进展可以分为传统氧化法和高新技术氧化法。

臭氧氧化法:臭氧是良好的强氧化脱色剂,对于大多数染料能获得良好的脱色效果,但对于其他以细分散SS状态存在于废水中的还原、硫化和涂料等不溶水染料脱色效果差。实际中常和其他方法联合使用,与紫外光辐射或活性炭吸附联合处理,可提高脱色效果;臭氧-电解处理可提高酸性染料、碱性和活性染料的脱色率。从国内外运行经验和结果来看,由于臭氧氧化不产生污泥和二次污染,有一定的工业应用前景;但处理成本高,不适合大流量废水的处理。

氯氧化法:常用的氯氧化剂有液氯、漂白粉、次氯酸钠和二氧化氯等,氯氧化剂对于易氧化的水溶性染料,如阳离子染料和硫化染料有较好的脱色效果;对于不易氧化的水不溶性染料,如还原、分散染料等脱色效果较差;当废水中含有较多SS和浆料时,氯氧化法去除效果不理想。

Fenton法:Fenton试剂对含染料废水进行混凝前的预处理,脱色率可达96.77%。近年来人们把UV、草酸盐引入Fenton工艺中,使其氧化能力大大增强,但处理毒性大。一般处理氧化物或生物难降解的有机废水时,与混凝沉降、活性炭、生物法等连用,可降低处理成本。

光催化氧化法:常用的催化剂有TiO2、H2O2、草酸铁等无机试剂,TiO2由于无毒、有较高的催化能力和较好的化学稳定性,成为应用最广泛的光催化剂;利用太阳能进行光催化氧化有机染料技术,在节约能源、维持生态平衡、实现可持续发展等方面具有突出的优点。光催化氧化技术的一个新的发展方向——电化学催化氧化降解技术即光电催化,利用光透电极和结构TiO2作为工作电极和光催化剂,对水中染料进行电解,发现光电催化剂对3种染料——品红、铬蓝K、铬黑T溶液的降解效果最佳。

超临界氧化法(SCWO):超临界氧化法(SCWO)指当温度、压力高于水的临界温度374℃和临界压力22.05MPa条件下的水中有机物的氧化。Model等对有机碳含量27.33g/L的有机废水,在550℃、60s内,有机碳和有机氯的去除率分别为99.99%和99.97%。SCWO具有效率高、应速度快、适用范围广特点,除有机污染物的同时,可提高生化降解性。

高级氧化法:如UV+H2O2、UV+O3,在氧化过程中产生羟基自由基(·OH),其强氧化性使染料废水脱色。经研究发现它对偶氮染料的脱色很有效,高级氧化反应随O3和H2O2加入量的增加,其反应速率也随之增加。在实际生产中加入某些化学辅助剂会提高脱色效果,最近的研究发现二氯三嗪基型偶氮类活性染料使用UV+H2O2方法脱色也有很好的效果。

九、参考文献

[1] 胡宏;水处理工程实验[M],浙江大学环境与资源实验教学中心;2008年9月;

[2] 胡俊生,任雪冬,张喆,刘军;酸性嫩黄染料废水臭氧氧化处理的试验研究;《辽宁化工》2101年2月;

[3] 龚宜,罗汉金,韦朝海;直接红燃料的臭氧脱色与中间产物研究;《环境工程学报》2009年3月;

[4] 高廷耀、顾国维、周琪;水污染控制工程[M];高等教育出版社;2007年7月;

[5] 曹慧云;臭氧联用技术预处理染料废水的研究;硕士学位论文,2009年5月。

实验 臭氧氧化法处理有机废水

实验一臭氧氧化法处理有机废水 一实验目的 1、了解臭氧发生器的基本结构、原理、操作方法、观察电压和空气流量对臭氧产率的影响。 2、通过臭氧氧化法处理:印染废水、有机含酚废水、生活污水的脱色、除臭、消毒、降解COD、降酚等实验,掌握臭氧氧化法处理工业废水的基本过程、方法和特点。 二实验理论基础与方法要点 臭氧是一种强氧化剂,它的氧化能力在天然元素中仅次于氟。臭氧在污水处理中可用于除臭、脱色、杀菌、消毒、降酚、降解COD、BOD等有机物。 臭氧在水溶液中的强烈氧化作用,不是O 本身引起的,而主要是由臭氧在 3 基引起的。很多有机物都容易与臭氧发生反应。水中分解的中间产物OH基及HO 2 例如臭氧对水溶性染料、蛋白质、氨基酸、有机氨及不饱和化合物、酚和芳香族衍生物以及杂环化合物、木质素、腐殖质等有机物有强烈的氧化降解作用;还有强烈的杀菌、消毒作用。 臭氧氧化的优点:(1)臭氧能氧化其它化学氧化,生物氧化不易处理的污染物,对除臭、脱色、杀菌、降解有机物和无机物都有显著效果(2)污水经处理后污水中剩余的臭氧易分解,不产生二次污染,且能增加水中的溶解氧(3)制备臭氧利用空气作原料,操作简便。 工业上采用高压(1.5—3万伏)高频放电制取臭氧,通常制得的是含1—4%臭氧的混合气体,称为臭氧化气。 三实验装置器材与药品 设备与器材: (1)臭氧发生器 1台 (2)臭氧氧化反应器 1套,如无现成的需自行安装代替500mL锥形瓶3个,与锥形瓶配套的橡皮塞3个 (3)医用乳胶管,与乳胶管配套的玻璃管 (4)气体转子流量计 1个 (5)酸滴管(50mL) 1个 (6)气体吸收瓶(如无现成的,可用锥形瓶代替) 500mL锥形瓶2个 (7)量筒100mL 1个 (8)洗气瓶1000mL 2个 材料药品: (1)配制含酚废水,含酚浓度50—100mg/L,供除酚实验用。

臭氧处理染料废水

1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 1 前言 印染废水一直是工业废水的主要来源之一,具有水量大、组分复杂、有机污染物含量高、水质变化大、pH值变化大、可生化性差等特点[1]。近年来,随着纺织印染行业的发展、仿真丝的兴起和印染后整理技术的进步,PV A 浆料、人造丝碱解物(主要是邻苯二甲酸类物质)、新型助剂等难生化降解有机物大量进入印染废水。印染废水中不但COD的质量分数由原来的每升数百毫克左右上升了10倍左右,而且BOD5与COD 的质量比也由原来的0.4~0.5下降到0.3,甚至是0.2以下[2]。由于染料的稳定性越来越大,废水的色度值也越来越高而且不容易去除。如果不能去除这些偶氮化合物,也会污染自然水域的颜色和其他方面。这就使得原有的二级处理工艺效果大大降低,不能满足现在的排放标准。 2 印染废水的特点 印染废水的成分主要与加工纤维的种类、所用染料助剂、机器设备及操作方法的不同而有所差异[3]。废水的种类大体可以分为以下几类:退浆废水、煮练废水、漂白废水、丝光废水、染色废水、印花废水、整理工艺废水等。而其中较难处理的就是退浆废水,煮练废水和染色废水。其中都含有大量的难以处理的有机物,如纤维屑、酸、淀粉碱,酶类污染物,含氮化合物和使用染料时的有毒物质(硫化碱、吐酒石、苯胺、硫酸铜、酚等),其COD和BOD较高,且可生化性较差。 印染废水成分复杂,主要是以芳烃和杂环化合物为母体,并带有显色基团(如—N═N—、—N═O)及极性基团(如—SO3Na、—OH、—NH2)。染料分子中含较多能与水分子形成氢键的—SO3H、—COOH、—OH基团如活性染料和中性染料等,染料分子就能全溶于废水中;不含或少含—SO3H、—COOH、—OH等亲水基团的染料分子以疏水性悬浮微粒形式存在于废水中;含少量亲水基团但分子量很大或完全不含亲水基团的染料分子,在水中常以胶体形式存在。 错误!未指定书签。- 0 -

臭氧高级氧化废水处理实验

臭氧高级氧化废水处理实验 实验目的 掌握臭氧氧化处理废水的原理和方法 熟悉臭氧氧化处理废水技术的应用 实验原理 利用臭氧的强氧化性将废水中的有机物降解或部分降解 1. 臭氧的基本性质 臭氧(O3)由三个氧原子构成的,是氧气O2的同素异构体,常温常压下是具有鱼腥味的淡紫色气体。臭氧很不稳定,在常温下即可分解为氧气。 臭氧共振杂化分子的四种典形型式 2.臭氧对有机物的氧化机理 ν夺取氢原子,并使链烃羰基化,生成醛、酮、醇或酸;芳香化合物先被氧化成酚,再氧化为酸。ν打开双键,发生加成反应。 ν氧原子进入芳香环发生取代反应。 臭氧的应用 ν臭氧氧化反应之后的生成物是氧气,所以臭氧是高效的无二次污染的氧化剂。 ν去除水中的锰、铁、芳香族化合物、酚和胺类等。 ν灭活病毒 ν杀菌 实验主要装置

制氧机 臭氧发生器 电控箱 可见紫外分光光度计 COD快速消解测定仪 酸度计 影响反应系统的主要参数(臭氧在水中的利用率大概有多少?) ν温度 ν压力 ν反应器的体积 ν反应器中臭氧在气相、液相中的浓度 ν液相中的pH值 ν气液流速 ν污染物的种类、浓度、以及液相的组成 实验步骤 ν依次打开进水阀门,水泵,流量计,调节进水流量(可考虑连续和间歇操作两种情况); ν打开制氧机,臭氧发生器,调节氧气和臭氧流量; ν测定进水浓度,COD。 根据进水水质,每隔一段时间从取样口取样一次,测定pH值,COD,至浓度和COD值基本稳定为止;ν结束实验,关闭气体流量计,制氧机和臭氧发生器; ν关闭液体流量计,水泵,进水水阀; ν排出反应器中的水。 实验结果与整理 ν绘制出水水质随时间变化曲线:浓度—时间曲线;COD—时间曲线;pH值—时间曲线; ν计算浓度、COD去除率。

臭氧氧化法处理印染废水

臭氧氧化法处理印染废水 在我国工业废水中,印染废水占的比例较高,因其有机物含量高、碱性大、水质变化大、废水量大,而成为极难处理的工业废水之因具有很强的氧化能力(酸性溶液中氧化还原电位高达2.07V),一。O 3 成为诸多难降解工业废水处理工艺的首选氧化剂。Khadhraoui等在利用臭氧处理刚果红的研究中发现,在氧化初期,臭氧本身可以将刚果红完全氧化脱色,且该实验结果符合假一级反应动力学模型。臭氧对直接、酸性、碱性、活性等亲水性染料脱色速度快,效果好;对于还原、纳夫妥、氧化、硫化、分散性染料等疏水性染料脱色效果较差,臭氧用量大;对于含铬染料废水,反而会生成六价铬离子,毒性更强。通过高级氧化和活性炭负载催化剂来提高臭氧催化氧化性能。 1.臭氧氧化机理 臭氧氧化有机物的途径有两种:直接反应和间接反应。直接反应是臭氧通过环加成、亲电或亲核作用直接与污染物反应;间接反应是臭氧在碱、光照或其它因素作用下,生成氧化性更强(氧化还原电位为2.8eV)的羟基自由基(·OH),·OH可以通过不同的反应使溶解态无机物和有机物氧化,主要包括:电子转移反应、抽氢反应和·OH 加成反应。臭氧直接作用于有机物时反应具有选择性,速度慢。而臭氧溶于水后形成的·OH,可以无选择性地将水中的有机物矿化,或使结构复杂、有毒的大分子有机物发生断链、开环等反应,生成结构简单、无毒或低毒的小分子化合物,且速度较快。 臭氧的强氧化性能破坏染料分子中的—N==N—、C==C、C

==O、—N==O等发色基团,使印染废水脱色。费庆志等采用臭氧氧化法降解酸性嫩黄染料,发现在酸性条件下(pH=4)臭氧对该染料的脱色效果较好。Zhang Hui等采用臭氧氧化法降解酸性橙7模拟染料废水时,加入氯化物屏蔽·OH,并未对染料的脱色率造成影响,从而得出了臭氧对该染料的脱色以直接氧化为主的结论。而章飞芳等用臭氧氧化活性艳红KE-3B模拟染料废水,发现在碱性条件下(pH=10)脱色效果好,且脱色速度较快。这可能是因为不同种类的染料,其分子结构有很大差异,有些染料与臭氧的反应活性较强,直接反应就能使其脱色。在碱性条件下虽然产生氧化性更强的·OH,但·OH可以无选择性地与染料发色基团之外的其它结构反应,导致在相同臭氧投加量下染料的脱色率降低。对于一些不易被直接氧化的染料,则需要依靠·OH来破坏其发色基团,以达到脱色的效果。 2.臭氧高级氧化处理印染废水 用复合氧化剂分解水中的有机污染物比单一氧化剂O3或H2O2 的处理速率显著加快,其原因是复合氧化剂产生的氧化作用不同于单一O3或H2O2自身的氧化作用。在O3水溶液中添加H2O可提高O3进入水中的质量迁移(提高因子为1.7),增强了O3分解产生·OH的能力,提高氧化效率。由于·OH的发生量取决于O3和H2O2的用量,因而直接影响到CODCr的脱除效果。 Glaze等的研究表明,增加O3水溶液的pH值或向其中添加H2O2能极大提高·OH的产生量和速率,并能将水溶液中的·OH物质的量浓度维持在较高的水平。随pH值增加,氧化速率增大,在pH<7时,反应

臭氧氧化法处理印染废水

臭氧氧化法处理印染废水 实验指导书 所属课程名称: 环境工程综合实验 实验属性: 综合实验 实验学时: 4 一实验目的 1、了解臭氧发生器的基本结构、原理、操作方法、观察电压和空气流量对臭氧产率的影响。 2、通过臭氧氧化法处理:印染废水、有机含酚废水、生活污水的脱色、除臭、消毒、降解COD、降酚等实验,掌握臭氧氧化法处理工业废水的基本过程、方法和特点。 二实验理论基础与方法要点 臭氧是一种强氧化剂,它的氧化能力在天然元素中仅次于氟。臭氧在污水处理中可用于除臭、脱色、杀菌、消毒、降酚、降解COD、BOD等有机物。 臭氧在水溶液中的强烈氧化作用,不是O3本身引起的,而主要是由臭氧在水中分解的中间产物·OH基及HO2基引起的。很多有机物都容易与臭氧发生反应。例如臭氧对水溶性染料、蛋白质、氨基酸、有机氨及不饱和化合物、酚和芳香族衍生物以及杂环化合物、木质素、腐殖质等有机物有强烈的氧化降解作用;还有强烈的杀菌、消毒作用。 臭氧氧化的优点:(1)臭氧能氧化其它化学氧化,生物氧化不易处理的污染物,对除臭、脱色、杀菌、降解有机物和无机物都有显著效果(2)污水经处理后污水中剩余的臭氧易分解,不产生二次污染,且能增加水中的溶解氧(3)制备臭氧利用空气作原料,操作简便。 工业上采用高压(1.5—3万伏)高频放电制取臭氧,通常制得的是含1—4%臭氧的混合气体,称为臭氧化气体。 三实验装置器材与药品 设备与器材: (1)臭氧发生器 1台 (2)臭氧氧化反应器 1套,如无现成的需自行安装代替 500mL锥形瓶3个,与锥形瓶配套的橡皮塞3个 (3)医用乳胶管,与乳胶管配套的玻璃管

(4)气体转子流量计 1个 (5)酸滴管(50mL ) 1个 (6)气体吸收瓶(如无现成的,可用锥形瓶代替) 500mL 锥形瓶2个 (7)量筒100mL 1个 (8)洗气瓶1000mL 2个 材料药品: (1)配制含酚废水,含酚浓度50—100mg/L ,供除酚实验用。 (2)配制印染废水,含染料10—20mg/L ,供脱色用(亚甲蓝) (3)2% KI 溶液:称取20克分析纯碘化钾溶于1升新煮沸并冷却的蒸馏水中,贮于棕色瓶中。 (4)硫代硫酸钠标准贮备液:称取24.8克Na 2S 2O 3·5H 2O ,溶于煮沸并放冷的蒸馏水中,用水稀释至1000mL ,并贮于棕色瓶中备用,其浓度应为0.100mol/L ,必须标定。 标定:在碘量瓶中(250mL)加入1克碘化钾及50mL 纯水,用移液管移取20.00mL 重铬酸钾标准溶液(0.100mol/L 6 1K 2Cr 2O 7)加入碘量瓶中,并加入5 mL 硫酸(6mol/L 2 1 H 2SO 4),暗处静置5min 后,用硫代硫酸钠溶液滴定至淡黄色,加入1mL 淀粉溶液,继续滴定至蓝色刚好消失为止。记录用量 227223223 20.00 K Cr O Na S O Na S O C C V ?= (5)硫代硫酸钠标准使用液:将上述标准贮备液稀释为0.005mol/L 的标准使用液。此溶液1mL 相当于120μg 臭氧,临前用配制。 (6)1%淀粉指示剂 (7)碘标准贮备液:称取13.0克碘及40克碘化钾溶于纯水中,稀释至1000mL ,用砂芯漏斗过滤,贮于棕色瓶中。 标定:准确移取该溶液25.00mL 于碘量瓶中加水至150mL ,用0.100mol/L 硫代硫酸钠标准溶液滴定至淡黄色,加入1mL 淀粉溶液,继续滴定至蓝色刚好消失为终点。同时作空白试验:取150mL 纯水,加0.05mL 浓度为0.100mol/L 碘标准溶液、1mL 1%淀粉溶液,用0.100mol/L 硫代硫酸钠标准溶液滴定至蓝色消失为终点。 按下式计算碘标准溶液的浓度: 01()25.000.05 V V C C -?= - C 1——碘标准溶液的浓度,mol/L V O ——空白试验Na 2S 2O 3用量,mL

臭氧氧化法对废水处理可达到回用水标准

臭氧氧化法对废水处理可达到回用水标准 臭氧是一种优良的强氧化剂,高级氧化技术电位高,能够氧化许多有机物,如蛋白质、氨基酸、有机胺、链型不饱和化合物、芳香族、木质素和腐殖质等。目前在水处理中,臭氧氧化设备主要用于废水的三级处理以及受有机物污染水源的给水处理。 采用臭氧氧化设备不仅可以有效地去除水中的有机物,而且反应速度快,设备体积小。尤其是水中含有酚类化合物时,臭氧处理可以去除酚所产生的恶臭。其次,废水中所含的某些有机物,如表面活性剂(ABS)等,微生物无法将其分解,而臭氧却很容易氧化分解这些物质。此外,臭氧还是一种有效的消毒剂,杀菌效果好、速度快,而且对消灭病毒也很有效。臭氧消毒的效果主要决定于接触设备出口处的剩余量和接触时间,其受pH 值、水温及水中氨量的影响较小。 臭氧氧化设备降解石油类污染物反应过程中,pH 值、反应接触时间、臭氧浓度等因素对反应历程的影响,研究结果表明:经臭氧氧化设备深度处理后的含油废水,水质可以达到回用水标准。含油废水浓度在12 mg/L 以下时,臭氧浓度为2.88 mg/L,接触时间10 min 后,去除率可达到95%以上。臭氧氧化设备处理含油废水,在碱性条件下,废水的处理效果好于酸性条件。臭氧对废水中油类污染物的去除作用受流速的影响,流速较大时,臭氧与污染物的接触时间相对较短,去除效果变差,因此利用臭氧进行含油废水深度处理时,一定要严格控制废水流速。 同时臭氧杀灭油田污水中硫酸盐还原菌(SRB)的实验研究,结果表明:臭氧投量的适宜范围为0.4~0.66 mg/L,接触反应时间t>2.5 min。在此条件下,能满足回注水质标准中的细菌学指标。

臭氧氧化法对废水处理可达到回用水标准

臭氧是一种优良的强氧化剂,高级氧化技术电位高,能够氧化许多有机物,如蛋白质、氨基酸、有机胺、链型不饱和化合物、芳香族、木质素和腐殖质等。目前在水处理中,臭氧氧化设备主要用于废水的三级处理以及受有机物污染水源的给水处理。 采用臭氧氧化设备不仅可以有效地去除水中的有机物,而且反应速度快,设备体积小。尤其是水中含有酚类化合物时,臭氧处理可以去除酚所产生的恶臭。其次,废水中所含的某些有机物,如表面活性剂(ABS)等,微生物无法将其分解,而臭氧却很容易氧化分解这些物质。此外,臭氧还是一种有效的消毒剂,杀菌效果好、速度快,而且对消灭病毒也很有效。臭氧消毒的效果主要决定于接触设备出口处的剩余量和接触时间,其受pH 值、水温及水中氨量的影响较小。 臭氧氧化设备降解石油类污染物反应过程中,pH 值、反应接触时间、臭氧浓度等因素对反应历程的影响,研究结果表明:经臭氧氧化设备深度处理后的含油废水,水质可以达到回用水标准。含油废水浓度在12 mg/L 以下时,臭氧浓度为2.88 mg/L,接触时间10 min 后,去除率可达到95%以上。臭氧氧化设备处理含油废水,在碱性条件下,废水的处理效果好于酸性条件。臭氧对废水中油类污染物的去除作用受流速的影响,流速较大时,臭氧与污染物的接触时间相对较短,去除效果变差,因此利用臭氧进行含油废水深度处理时,一定要严格控制废水流速。 同时臭氧杀灭油田污水中硫酸盐还原菌(SRB)的实验研究,结果表明:臭氧投量的适宜范围为0.4~0.66 mg/L,接触反应时间t>2.5

min。在此条件下,能满足回注水质标准中的细菌学指标。 飞立电器科技有限公司是一家专业从事臭氧消毒设备研发、制造、销售为一体的现代化高科技企业。公司主要研发生产定制:大中小型空气源臭氧发生器、氧气源臭氧发生器、中央系统循环式臭氧消毒机、多功能臭氧消毒柜等。飞立现有300+个服务网点遍布全国各地,拥有强大的服务体系,为客户提供专业、贴心、快速的服务,是飞立一直以来努力的方向。

臭氧氧化技术在废水处理的运用

臭氧是一种具有强氧化性的化学药剂,可在水中开展如氧化还原等各类化学反应,利用臭氧氧化技术对污水进行二次处理可有效提升水的质量。相较于世界其他国家,我国对于臭氧氧化技术的应用时间较晚,因此,臭氧氧化技术在我国工程中的实际应用效果与其他国家相比也具有一定差距。此种状况下,我们更加致力于研究臭氧氧化技术于工程中的应用,努力拓展臭氧氧化技术的使用范围,使之更加广泛的服务于我国各类工程废水处理工作当中。 1利用臭氧氧化技术处理废水的工作过程 现如今,臭氧氧化技术已然成为废水处理领域的未来趋势,臭氧氧化技术与废水处理领域的运用可有效降低废水处理工艺中所耗费 的各项资金。臭氧氧化技术可有效降解废水中的各类生物,并对其中包含的化合物进行良好处理。在臭氧氧化技术的实际应用过程中需充分考量废水溶剂流量及符合率,并以此两者的实际变化程度作为依据,选取不同的处理方式。若废水具有较高的容积流量且具有较低的符合率,可利用生物处理-臭氧的方法来开展废水处理工作,此种处理方法的操作流程较为简单,具有较强实用性,处理起来也较为方便,臭氧消耗程度较低。若废水处理工作中需用到生物处理-臭氧-生物处理方法,则需在对其的实际应用过程中细致分析臭氧投加量,并对其予以良好管控,通过调节臭氧投加量的方式来提升废水处理过程中生物的可降解程度。在各领域应用臭氧氧化方法行废水处理操作时需充

分考虑所运用处理方法的经济效益,以在使废水处理质量得到保障的同时降低对各项能源与资金的消耗[1]。 2臭氧氧化技术在我国废水处理工作中的实际应用 饮用水处理领域是臭氧氧化技术与我国大规模工业化应用的首要阵地,臭氧氧化技术是近些年来才开始逐步应用于我国废水处理领域中的。臭氧氧化技术在我国废水处理工作中的实际应用案例如下:(1)我国某公司污水处理站以往采用的污水处理工艺为混凝-厌氧-好氧 生物组合工艺,每天可处理废水15000立方米,出于对部分出水进行深度处理并回收利用的目的,其采取了一体化臭氧曝气生物滤池与上流式曝气生物滤池的组合工艺,将此项废水处理工艺作为后续膜分离系统的预处理方法,确保废水处理工序结束后所得的反渗透水可回收并应用于该公司的染整工序,且浓缩液质量达到国家相关排放标准。该公司污水处理站在升级改造后每天可多处理废水5000立方米,在公司生化出水后对废水行砂滤操作,并利用一体化臭氧曝气生物滤池与上流式曝气生物滤池对其进行处理,处理完毕后再对其进行砂滤、超滤操作,得到反渗透水。该公司共投入约800万元用以污水处理站的改造,改造结束后该公司的废水处理运行费用为每立方米废水0.45元[2]。(2)我国中石化某分公司将经过膜生物反应器处理的炼油废水作为原水,利用臭氧氧化-多级过滤-活性炭吸附-臭氧氧化方式对其进行处理,使废水中的污染物含量获得了有效降低,处理后的出水水质与中石化所制定的回用水水质要求相符,成功使处理后的废水成为了补充水与循环水。(3)我国某企业,以生产手机显示屏强化玻

臭氧氧化法处理废水实验

实验报告 课程名称: 水处理工程实验 指导老师: 胡宏 成绩:实验名称: 臭氧氧化法处理废水实验 类型:________________同组学生姓名: 徐亮、林蓓 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 自臭氧应用于水处理以来,在实际应用中取得了明显的成效。但臭氧氧化反应具有一定的选择性,氧化产物常常为小分子羧酸,酮和醛类物质,难以将有机物彻底降解为CO 2、H 2O 或其它无机物,因此TOC 和COD cr 去除率不是很高。 为了强化臭氧处理效果,人们开发出O 3/UV 、O 3/H 2O 2/UV 、O 3/固体催化剂(如活性炭,金属及其氧 化物)等高级氧化技术,其共同特征是产生高活性羟基自由基(·OH ),从而达到彻底降解有机污染物的目的。影响臭氧氧化的因素有污染物成分、含量,臭氧投加量,废水pH ,水气接触时间,紫外波长,照射强度,气体分布状况,水温等。 本实验希望达到下述目的:①加深对臭氧紫外法处理废水机理的理解; ②掌握臭氧紫外法处理废水的最佳条件试验方法。 二、实验内容和原理 臭氧氧化能力很强,O 3+2H ++2e →O 2+H 2O 反应体系的标准电极电位E=2.07V 。臭氧在水中分解产生原子氧和氧气还可以产生一系列自由基,其反应式如下: 2 2222 22232322222O O H O H O H HO HO O H O O O O O O O +→→??→+→++→ 特别是在碱性介质中,O 3分解产生自由基的速度很快,其反应式为: - - - -- - ?+→?+?+?→?++?→?+?+?→+H O HO O O HO HO O O O O O O HO OH O 222232 32 32 2 32 新生成的羟基自由基尤其活泼,氧化能力更强,HO ﹒+H t +e →H 2O ,反应体系的标准电极电位Eo=2.80V 。臭氧与水中有机物的反应十分复杂,既有臭氧的直接氧化反应,也有新生自由基的氧化反应。

臭氧在废水处理中的应用

Cu-丝光沸石/臭氧催化—坡缕石联用工艺降解染料污水的初步研究 中国非金属矿工业导刊.2004年第5期 赵波1,尹琳1,卢保奇2,李真1,邹婷婷2,郑意春1 (1.南京大学地球科学系内生金属矿床成矿作用国家重点实验室,南京210093; 2.上海大学材料科学与工程学院,上海201800) [摘要]对于生物难降解性有机染料,利用臭氧化加催化方法进行处理的效果较好。但由于臭氧能与许多有机物或官能团发生反应,生成有机小分子酸,使后处理的水体酸度大大增强,造成二次污染。本文主要针对这一问题将粘土矿物凹凸棒石和Cu-丝光沸石固体催化剂进行矿物复配。一方面提高臭氧化效果;另一方面调节臭氧化过程中的水体pH值。 O3/BAC工艺应用于城市污水深度处理 中国给水排水2004Vol.20 蒋以元1,杨敏1,张昱1,邓荣森2,周军3,淳二4(1.中科院生态环境研究中心环境水质学国家重点实验室,北京100085;2.重庆大学城市建设与环境工程学院,重庆400045;3.北京城市排水集团有限责任公司,北京100061;4.三菱电机株式会社先端技术综合研究所,日本国) 摘要:为使再生水适合不同用途,对经过混凝沉淀和砂滤处理的再生水进行了臭氧—生物活性炭的深度处理。在臭氧消耗量和反应时间分别为5mg/L和10min,BAC空床停留时间(EBCT)为10min的条件下,臭氧—生物活性炭工艺对CODMn、DOC、UV254和色度平均去除率为32.4%、29.2%、48.6%和80.1%,出水CODMn、DOC、UV254和色度的平均值分别为3.3mg/L、4.0mg/L、0.05cm-1和2.0倍;臭氧生物活性炭工艺出水SDI<4,从而满足了反渗透系统的进水要求。

过氧化氢和臭氧氧化处理染料废水

过氧化氢和臭氧氧化处理 染料废水 1综述 1.1染料废水简介 染料废水中的主要污染物: 悬浮物:纤维屑粒、浆料,整理加工药剂等; BOD:有机物,如染料、浆料、表面活性剂醋酚,加工药剂等; COD:染料、还原漂白剂、醛、还原净水剂,淀粉整理剂等; 重金属毒物:铜、铅、锌、铬、汞离子等; 色度:染料、颜料在废水中呈现的颜色。 1.1.1染料废水分类 按染料的应用分类可分为:(1)酸性染料(2)活性染料3)不溶性偶氮染料(4)碱性染料(5)直接染料(6)分散染料(7)还原染料(8)媒介染料(9)硫化染料。 按染料的化学结构特征进行分类,主要类型如下:(1)偶氮类染料分子中含有1个或多个偶氮键Ar-N=N-Ar(2)蒽醌类以蒽醌类及其衍生物为主要发色团的染料或颜料(3)硝基和亚硝基类(4)芳基甲烷类(5)箐类染料(6)靛族染料(7)硫化染料(8)酞箐染料(9)杂环类染料等。 染料废水主要来源于染料及染料中间体生产行业,由各种产品和中间体结晶的母液、生产过程中流失的物料及冲刷地面的污水等组成。染料工业废水主要可分为:

(1)含盐有机物有色废水。其中无机盐浓度在15%~25%,主要是氯化钠,少量硫酸钠、氯化钾及其它金属盐类 (2) 氯化或溴化废水; (3) 含有微酸微碱的有机废水; (4) 含有铜、铅、锰、汞等金属离子的有色废水; (5) 含硫的有机物废水。 1.1.2染料废水的特点 (1)废水有机物成分复杂且浓度高 由于染料生产流程长,从原料到成品往往伴随有硝化、还原、氯化、偶合等单元操作过程。副反应多,产品收率低,所以废水中有机物和含盐量都比较高,成分非常复杂。废水中含有较多的原料和副产品,如染料浆料、助剂、油剂、酸碱,纤维杂质及无机盐。高浓度染料有机废水中,COD值高达数十万。 (2)废水量大,色度高,毒性大 染料工业以水为溶剂,分离、精制、水洗等工序排出大量的废水。染料废水中的有毒物质可以分为无机物和有机物。无机有毒物质主要是铜、铬、锌、镉、汞等重金属,和砷、硒、溴、碘等非金属。有机有毒物主要是酚类化合物、取代苯类化合物等。由于染料中间体生产基本原材料是苯、萘、蒽醌类有机物,芳香族化合物苯环上的氢被卤素、硝基、胺基取代以后生成的芳族卤化物、芳族硝基化合物芳族胺类化合物、联苯等多苯环的取代化合物,毒性都较大。废水中含有许多发色基团,因此色度比较高。 (3)废水排放的间歇、多变性 我国染料工业具有小批量多品种的特点,每年要生产十几种甚至几十种产品,而且产品制造大部分是间歇操作,所以废水间断性排放,水质水量随时间变化较大,变化范围也很大。这就给废水处理工程设计、运行管理增加许多困难。 (4)废水处理难度大 由于染料生产品种多。并朝着抗光解、抗氧化、抗生物氧化方向发展。其中芳香环染料,蒽醌染料、士林染料等还原性染料废水,由于色度大、浓度高及可生化性差,处理难度更大[4]。 1.2染料废水的处理方法

臭氧氧化设备可提高废水的可生化性说明

臭氧氧化设备可提高废水的可生化性说明 近年来,由于我国原油劣质化和原油资源全球化步伐加快,石化企业加工重质、劣质原油所占比例不断加大,从而导致企业高浓度有机废水的排放量不断增加:再加上为了提高市场竞争力,企业纷纷进行扩能改造,使废水产量不断加大:此外,国家即将提高外排废水的水质指标,这些都使废水处理装置的压力不断加大。虽然有少数企业对高浓度废水采用如臭氧氧化法等预处理工艺处理后再进人生化系统。 但生化处理后的炼油企业外排废水,出水水质不稳定,外排废水未达标的情况依然存在。这些不达标废水由于经过前期的生化处理,可生化性很差,所以处理起来比较困难。因为这些废水再采用生化法深度处理已无能为力,而臭氧氧化设备采活性炭吸附等深度处理技术成本又过高。膜分离技术由于投资昂贵和膜污染等实际问题,在应用上也存在一定难度。目前。多数企业只能通过混掺清水或其他中水来满足排放要求,造成水资源的巨大浪费。 臭氧氧化设备广泛用于去除水中的难生物降解有机物,能提高废水的BOD5和COD的比值,使其进一步生化处理成为可能。目前的高级氧化技术主要包括化学氧化法、电化学氧化法、湿式氧化法、超临界水氧化法和光催化氧化法等。 本研究探索采用臭氧氧化法处理可生化性很差的炼油废水的生化处理出水,考察了氧化反应的影响因素及氧化方法提高废水可生化性的能力。最后估算出氧化工艺的运行成本,为该类不达标炼油废水的进一步处理提供可以借鉴的思路。 (1)采用臭氧氧化法处理废水。在偏碱性的条件下降低废水COD的效果较好,同时废水COD的去除效果随臭氧浓度的增大而提高。 (2)采用臭氧氧化法处理废水,臭氧氧化设备能显著提高废水的可生化性。在碱性和臭氧浓度较高的条件下,对废水BOD 与COD的比值的提高效果较好。 (3) 过臭氧氧化设备后的废水。其中的难降解的芳烃类的含量也大大降低,废水中芳烃类物质的含量越少,废水的BOD 与COD的比值越高,可生化性越好。 (4)随着废水处理效果的提高,臭氧氧化设备的成本也随之增加,单纯采用臭氧氧化法来降低废水的COD从经济上并不合理,而通过臭氧氧化法适度处理,提高废水的可生化性后,再通过生化的方法降低废水的COD,经济上会更合理。

臭氧在污水处理中的应用

臭氧在污水处理中的应用 摘要:臭氧作为一种强氧化剂,在污水处理中备受关注。本文主要介绍了臭氧在水中的化学特性以及在污水处理中的应用。 关键词:臭氧强氧化性污水处理 Ozone Applications In Wastewater Treatment Abstract:Ozone as a strong oxidant is more and more concerned in wastewater treatment .This article mainly introduced the chemical properties and the application of ozone in the wastewater treatment . Key words: Ozone ; strong oxidizing ; wastewater treatment. 1.概述 臭氧(O 3)是氧气(O 2 )的同素异形体, 由3个氧原子构成,在常温常压下为一 种淡蓝色具有刺激性气味的不稳定性气体,极易分解成氧气。臭氧具有极强的氧化性,且反应速度快,低浓度中可瞬时反应,杀菌能力为氯的数百倍;不产生污泥和酚臭味,无二次污染。因此在各个方面都得到了广泛的应用。由于消毒效率高, 对各种病毒、细菌均有很强的杀灭能力, 还能除味、脱色、改善水质。臭氧处理技术是治理环境和水质污染的关键技术, 是二十一世纪环境科学四大关键技术之一, 普遍应用于空气、水、物体表面的消毒以及油烟净化等方面。而本文主要介绍臭氧在污水处理中的应用。 2.臭氧的基本性质 2.1 臭氧在水中的溶解度 臭氧的相对密度为氧的1.5倍,在水中的溶解度比氧气大10倍,比空气大25倍。臭氧在水中的溶解度一样符合亨利定律,臭氧在水中的溶解度随着温度的升高而降低。 2.2 臭氧的分解 臭氧稳定性极差,在常温下易自行分解为氧气,浓度约为1%的臭氧,在常温常压的空气中分解的半衰期为16h左右。臭氧在水中的分解速度比空气中快得多,水中臭氧浓度为3mg·L-1时,其半衰期仅5~30min。臭氧在水中分解的半衰期与温度及pH值有关。随着温度的升高,分解速度加快,温度超过100℃时,分解非常剧烈,同时pH值越高,分解也越快。

臭氧氧化处理分散染料实际生产废水方法

臭氧氧化处理分散染料实际生产废水方法 分散染料废水具有高复杂成分,色度及处理难度大的特点,是高浓度有机废水较难处理的工业废水之一,而且,我国作为染料加工生产的大国,其产量占据全球的62%-75%,据数据统计,每吨染料的生产均有2%的产物随废水排出,不仅造成染料的大量流失,带来巨大的经济损失,并引致环境污染问题。根据美国C.I的分析,分散染料的种类数以万计,其具有复杂的结构、难降解性及可生化性低的问题,显性或潜在的毒性巨大,一旦未经处理直接排向水体,将对水体微生物环境及土壤造成明显的伤害,进而危害人类生存环境,面对如此紧迫形势,加之节能减排政策的引领,如何高效、清洁的处理分散染料实际生产过程的废水至关重要。而基于臭氧氧化处理方法可高效的处理难降解或降解时间长的有机物,但具有氧化选择性的缺点,研究将其与紫外线、活性炭等技术融合,探究其联合应用的工艺和效果,以期为相关研究提供有效参考。 1、臭氧氧化废水处理方法的基本原理 臭氧氧化废水处理方法是以臭氧氧化剂为基料,对染料废水进行净化、消毒灭菌处理,在处理过程中,臭氧与废水之间产生的反应异常复杂,具体涉及如下反应过程,首先臭氧气体分子从气相中扩散至相间界面处,而后两相中的反应物质浓度在界面达到近似水平时,就会呈现出物理平衡状态;随后,臭氧会从相见界面上扩散至液相之中进行化学反应,最终,基于浓度梯度引发反应产物的扩散。在各类生化、物化的作用下,臭氧可将废水中高分子的有机物转化为低分子,将非极性物质转化为极性物质,为此,臭氧并非显著降低废水的有机物,但可利用其强氧化性改变有机污染物的结构和性质,将难降解或降解时间过长的有机物转变为易于氧化讲解的小分子物质。 结合以往研究,臭氧氧化主要利用臭氧分子及其水相中分解的羟基自由基,而实现对苯酚、甲苯及苯酚等芳香族化合物具有高效的降解作用,可见,其处理工艺存在两种路径,如图1所示,一是直接氧化,因为臭氧分析自身呈现出亲核、亲电性等特质,容易与废水中有机物产生相应反应,进而攻破苯酚、苯胺类污染物官能团的邻位,进而产生可生物降解的酸类物质;二是,O3分子受到催化作用下产生羟基自由基,进而形成链式反应,通过羟基自由基来间接实现氧化作用,达到对各类有机污染物的降解作用,实现废水处理。

相关文档
最新文档