浅析功能基因组学和蛋白质组学的概念及应用

浅析功能基因组学和蛋白质组学的概念及应用
浅析功能基因组学和蛋白质组学的概念及应用

【摘要】基因组相对较稳定,而且各种细胞或生物体的基因组结构有许多基本相似的特征;蛋白质组是动态的,随内外界刺激而变化。对蛋白质组的研究可以使我们更容易接近对生命过程的认识。蛋白质组学是在细胞的整体蛋白质水平上进行研究、从蛋白质整体活动的角度来认识生命活动规律的一门新学科,简要介绍功能基因组学和蛋白质组学的科学背景、概念及其应用。

【关键词】基因组;功能基因组学;蛋白质组学;

一、基因组及基因组学的概念

基因组(genome)一词系由德国汉堡大学H.威克勒教授于1920年首创,用以表示真核生物从其亲代所继承的单套染色体,或称染色体组。更准确地说,基因组是指生物的整套染色体所含有的全部DNA序列。由于在真核细胞的线粒体和植物的叶绿体中也发现存在遗传物质,因此又将线粒体或叶绿体所携带的遗传物质称为线粒体基因组或叶绿体基因组。原核生物基因组则包括细胞内的染色体和质粒DNA。此外非独立生命形态的病毒颗粒也携带遗传物质,称为病毒基因组。所有生命都具有指令其生长与发育,维持其结构与功能所必需的遗传信息,本书中将生物所具有的携带遗传信息的遗传物质总和称为基因组。[1]

基因组学(genomic)一词系由T.罗德里克(T.Roderick)于1986年首创,用于概括涉及基因组作图、测序和整个基因组功能分析的遗传学学科分支,并已用来命名一个学术刊物Genomics。基因组学是伴随人类基因组计划的实施而形成的一个全新的生命科学领域。[1]

基因组学与传统遗传学其他学科的差别在于,基因组学是在全基因组范围研究基因的结构、组成、功能及其进化,因而涉及大范围高通量收集和分析有关基因组DNA的序列组成,染色体分子水平的结构特征,全基因组的基因数目、功能和分类,基因组水平的基因表达与调控以及不同物种之间基因组的进化关系。基因组学的研究方法、技术和路线有许多不同于传统遗传学的特点,各相关领域的研究仍处于迅速发展和不断完善的过程中。

基因组学的主要工具和方法包括:生物信息学,遗传分析,基因表达测量和基因功能鉴定。

二、功能基因组学的概念及应用

2001年,人类基因组计划公布了人类基因组草图,为基因组学研究揭开新的一页。基因组学是研究生物基因组的组成,组内各基因的精确结构、相互关系及表达调控的科学。基因组学、转录组学、蛋白质组学与代谢组学等一同构成系统生物学的组学(omics)生物技术基础。基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics),又被称为后基因组(postg enome)研究,成为系统生物学的重要方法。

(一)功能基因组学的概念

功能基因组学是指在全基因组序列测定的基础上,从整体水平研究基因及其产物在不同时间、空间、条件的结构与功能关系及活动规律。新药开发的关键是药物发现。目前多数以药物作用靶点为基础的药物发现流程是:基因组-作用新靶点-筛选-先导物-药物。[2]

结构基因组学是继人类基因组之后又一个国际性大科学热点,主要目的是试图在生物体的整体水平上(如全基因组、全细胞或完整的生物体)测定出(以实验为主、包括理论预测)全部蛋白质分子、蛋白质-蛋白质、蛋白质-核酸、蛋白质-多糖、蛋白质-蛋白质-核酸-多糖、蛋白质与其他生物分子复合体的精细三维结构,以获得一幅完整的、能够在细胞中定位以及在各种生物学代谢途径、生理途径、信号传导途径中全部蛋白质在原子水平的三维结构全息图。在此基础上,使人们有可能在基因组学、蛋白质组学、分子细胞生物学以致生物体整体水平上理解生命的原理。对疾病机理的阐明、对疾病的防治有重要应用意义。

(二)功能基因组学的应用

基因组DNA测序是人类对自身基因组认识的第一步。随着测序的完成,功能基因组学研究成为研究的主流,它从基因组信息与外界环境相互作用的高度,阐明基因组的功能。功能基因组学的研究内容:人类基因组 DNA 序列变异性研究、基因组表达调控的研究、模式生物体的研究和生物信息学的研究等。

(1)基因组表达及调控的研究。在全细胞的水平,识别所有基因组表达产物mRNA和蛋白质,以及两者的相互作用,阐明基因组表达在发育过程和不同环境压力下的时、空的整体调控网络。

(2)人类基因信息的识别和鉴定。要提取基因组功能信息,识别和鉴定基因序列是必不可少的基础工作。基因识别需采用生物信息学、计算生物学技术和生物学实验手段,并将理论方法和实验结合起来。基于理论的方法主要从已经掌握的大量核酸序列数据入手,发展序列比较、基因组比较及基因预测理论方法。识别基因的生物学手段主要基于以下的原理和思路:根据可表达序列标签(STS);对染色体特异性Cosmid进行直接的cDNA选择;根据CpG岛;差异显示及相关原理;外显子捕获及相关原理;基因芯片技术;基因组扫描;突变检测体系等。

(3)基因功能信息的提取和鉴定。包括:人类基因突变体的系统鉴定;基因表达谱的绘制;“基因改变-功能改变”的鉴定;蛋白质水平、修饰状态和相互作用的检测。

(4)在测序和基因多样性分析。人类基因组计划得到的基因组序列虽然具有代表性,但是每个人的基因组并非完全一样,基因组序列存在着差异。基因组的差异反映在表型上就形成个体的差异,如黑人与白人的差异,高个与矮个的差异,健康人与遗传病人的差异,等等。出现最多基因多态性就是单核苷酸多态性(SN Ps)。

(5)比较基因组学。将人类基因组与模式生物基因组进行比较,这一方面有助于根据同源性方法分析人类基因的功能,另一方面有助于发现人类和其他生物的本质差异,探索遗传语言的奥秘。

三、蛋白质组及蛋白质组学

(一)蛋白质组及蛋白质组学的概念

蛋白质是生命功能的主要体现者,多数疾病体现在蛋白质水平,基因表达和蛋白表达之间并不总是呈现良好的相关性[3]。蛋白质组是从整体水平研究胞内蛋白质组成及其活动规律。蛋白质组学以蛋白质组为研究对象,从蛋白质整体水平上认识生命活动的规律。同基因组比,蛋白质组在时间、空间上具有多样性,变化性大,研究的切入点多。蛋白质组学(基于2DE,灵敏、多功能地研究蛋白水平的变化)可以分析非转录水平控制的细胞过程,寻找靶点和优化化合物(抗菌活性、抗菌谱、生物利用度、药代动力学等指标),补充DNA芯片等技术的不足。

蛋白质组(Proteome)这一概念是由澳大利亚学者Wilkins和Williams等人[4]于1994年提出,并首次公开发表在1995年7月的Electrophoresis杂志上,指的是

由一个细胞或一个组织的基因组所表达的全部相应的蛋白质。蛋白质组与基因组相对应,也是一个整体的概念,是基因组表达的全部蛋白。但两者又有根本的不同之处。基因组是静态的,一个有机体从它的发生、发展到衰老、死亡,不同细胞、组织和器官的基因组是基本稳定不变的。但基因组内各个基因表达的条件和表达的程度则随时间、地点和环境条件而不同,因而它们表达的模式,即表达产物的种类和数量随时间、地点和环境条件也是不同的。所以,蛋白质组是一个动态的概念。它不仅在同一个有机体的不同组织和不同细胞中不同;在同一机体的不同发育阶段,直至最后消亡的全过程中也在不断变化;机体处于不同生理状态下不同;在不同外界环境下也不同。实际研究中能够取得的蛋白质组分子实体通常只是总蛋白质组的一部分。可见既是整体又是动态的蛋白质组的研究任务有多么繁重了。

随着蛋白质组的提出,蛋白质组学(Proteomics)[5]也自然而然地孕育产生。但目前,蛋白质组学仍无明确的定义。一般认为它是研究蛋白质组或应用大规模蛋白质分离和识别技术研究蛋白质组的一门学科,是对基因组所表达的整套蛋白质的分析。现阶段,蛋白质组学研究的内容不仅包括对各种蛋白质的识别和定量化,还包括确定它们的细胞内外的定位、修饰、相互反应、活性,和最终确定它们的功能。并对由此获取的数据进行数据库构建,以及不可或缺的推动这一学科进步的蛋白质组分析技术研究。由于对全部蛋白质的研究是非常困难的,所以中国的科学工作者提出了一种全新的研究策略:功能蛋白质组学[6]。它是位于对个别蛋白质的传统蛋白质研究和以全部蛋白质为研究对象的蛋白质组研究之间的层次,研究特定时间、特定环境和试验条件下基因组所表达的蛋白质。

蛋白质组信息可以从生物信息学途径获得。一半是基因重复或功能结构域混合,尤其是参与脂肪酸代谢、基因表达调控、特殊富甘氨酸的PPE、PE。1/6与发表的其他生物蛋白无相似性。MTB基因组中有4个大的MCE操纵子mce,编码巨噬细胞集落因子有4个拷贝,均位于同一个operon(编码8个组织方式完全一致的基因,mce之前的两个编码膜整合蛋白,之后的5个编码带疏水信号肽的蛋白,说明该蛋白可能是分泌或者是定位在细胞的表面),其蛋白可能介导宿主与致病菌的初始相互作用;有一簇基因可能编码与ESAT-6样蛋白分泌有关的结构成分;与脂肪酸代谢所需基因紧密连锁的MMPL编码大的膜蛋白,可能参与脂类运输;与游离

生存的细菌比,MTB的运输蛋白库明显较少,与其胞内生活方式一致。[7] (二)蛋白质组学在其他研究方面的应用

1、蛋白质组学在细菌研究中的应用

蛋白质组学方法已广泛用于研究细菌在外界环境变化时其表达蛋白的变化情况。如对霍乱弧菌以及大肠杆菌在不同酸碱条件下蛋白表达的变化的研究,表明这些病原菌会随环境的改变而调节蛋白表达以使其达到最大的致病能力。蛋白质组学可以与基因组学互补,它能识别某些基因的预测产物,尤其是膜蛋白,这些膜蛋白往往是疫苗的有效成分,如Deb N.Chakravarti 等研究了Hp疫苗的相关组分,加速了疫苗的开发。

蛋白组学研究也应用在细胞周期研究中,细菌在繁殖周期的每个阶段合成大量蛋白,表明周期性的蛋白表达有助于细菌充分利用能源,保持合适的细菌数量,对机体产生一定的作用。这种对细菌细胞周期调控蛋白表达和降解的研究有助于抗感染措施的制定。对细菌某些特异抗原的识别可以为一些疾病提供诊断标记。

2、蛋白质组学在真核生物研究中的应用

蛋白质组学研究已广泛应用于真核生物的研究中。Michel Perrot等用2DE 及质谱、免疫杂交、微量测序等方法分离和鉴定了酿酒酵母的401种蛋白,309种以前曾报道过,剩余的92种是新发现的,从而拓展了酵母参考图谱,为研究细胞功能、酵母翻译因子靶点提供了条件[8]。

3、蛋白质组学在植物研究中的应用

植物蛋白质组学虽然刚刚起步,但它的发展将对植物界有很大的冲击。H型硫氧还蛋白能减少靶蛋白的二硫键,促使种子发芽。为了更好地了解硫氧还蛋白在种子中的作用,应先了解其作用的靶蛋白。Hiroyuki Yano等运用蛋白组学方法分离了20多种靶蛋白,并鉴定了其中的5种,其中3种是变态反应原,2种与落叶及种子成熟有关

4、蛋白质组学与肿瘤研究

肿瘤涉及到控制正常细胞增殖机制的破坏。对原癌基因的鉴定和描述已通过分子生物学方法完成。然而有些基因并不是自己单独作用,也不是典型地破坏正常细胞增殖机制。用传统的生物化学方法、基因、药物学方法都不能分析。蛋白组学技术可以比较正常组织与癌组织的变化,这种肿瘤相关的变化可以为医疗干预提供新的标记和位点。Mrtin.J.Page等用蛋白组学技术分离和研究了乳腺癌

相关蛋白。对肿瘤抗原或与其相关抗体的分离和鉴定给肿瘤的早期诊断和治疗提供了一种新的方案。Franck M.Brichery等运用蛋白组学方法研究了肺癌组织中引起体液免疫应答的蛋白及自身抗体。他们所研究的肺癌病人中多于一半的人血清中有针对AnnexinI或/和II的IgG1和IgM自身抗体,AnnexinII自身抗体仅在肺癌病人血清中出现,而AnnexinI自身抗体也在其他类型病人血清中出现。这些研究有助于推动针对肿瘤中某种蛋白的自身抗体的发展[9]。Shugo Nawata 等用2DE及免疫杂交法研究了鳞状细胞癌肿瘤组织抗原-1、抗原-2,发现了鳞状细胞癌抗原新的酸性蛋白,有助于开发一种检测此蛋白的系统,为鉴别诊断提供依据。

蛋白质组和功能基因组均主要用于识别被调控的基因群和在不同条件下差示表达的可能作为药物作用靶点的基因,不能检测到基因组调控网络中表达丰度较少和分散的信息。因此,有待建立对基因表达进行综合诠释的理论框架,从而更快、更准确地发现药物作用靶点和优化化合物的治疗效果。目前有约60种微生物的全基因组序列已经测出, DNA序列信息仅提供了细胞运用其基因的所有可能方式的一种静态瞬间快照, 蛋白质组学则研究基因编码的活动怎样发生和什么时候发生(如蛋白翻译), 以及非基因编码的活动之间的关系(如蛋白质翻译后的修饰或蛋白质、核酸、脂类、糖类之的相互作用)[10]。因为实际蛋白数量反映了翻译的能力和效率、翻译后的修饰和每个蛋白的转化比率,蛋白质组学分析给基因表达最终产物的研究提供了信息。因此它是对翻译水平等研究的一种补充,是全面了解基因组表达必不可少的一种手段,它的发展将给分子生物学领域带来革命性变化。

参考文献:

[1] 杨金水:《基因组学》(第二版)[M].高等教育出版社,2007年7月版,第1页。

[2] 谢建平:《利用功能基因组学蛋白质组学等筛选抗结核新药》[J].医药导报,2001年3月第21卷第3期。

[3]Wang J H,Hewich R M.Proteomics in discovery [J].Drug Discov Today,1999,4(3):129-133.

[4]Wasinger VC,Cordwell SJ,C -Vajak A et a1.Progress with geneproduct

mapping af the Mollicutes : Myeoplasrr~ genltalium.Elearophoresis,1995.16:1090— 1094.

[5]Dove A.Proteomies:translation genomics into products?Nature Biot~hnol,1999 Mar,17(3):233—236.

[6]李佰良.功能蛋白质组学[J].生命的化学.1998,18(6):1-3.

[7]Teckaia F,Cordon S V,Gamier T,et al.Analysis of the proteome of MTP in silicon[J].Tuber Lung Dis,1999,79(6):329-342.

[8]Perrot M, Saglicocco F, Mini T, et al. Two-dimensional gel protein database of Saccharomyces cerevisiae(update 1999). Electrophoresis,A ugust;1999 ,20(11):2280-98.

[9] Brichory FM,. MisekDE, Yim AM, et al. An immune response manifest ed by the common occurrence of annexins I and II autoantibodies and h igh circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci U S

A. 2001 Aug 14;98 (17):9824-9829.

[10] 中国疾病预防控制中心传染病预防控制所诊断室,蛋白质组学的相关技术及应用。

课程代码B7700005

浅析功能基因组学和蛋白质组学的概念及应用

姓名孙华磊

学号: 20124739

专业班级:生技1201

指导教师:朱新产

日期: 2014.11.16

功能基因组学在益生菌的应用

对于乳酸菌的研究已经从最初的形态学研究,发展为细胞水平和分子水平的研究。自2001年完成第一株乳酸菌即乳酸乳球菌IL1403的全基因组测序以来,目前已经公布的测序完成的乳酸菌包括: 嗜酸乳杆菌NCFM /ATCC 700396; 乳酸乳球菌IL1403、长双歧杆菌NCC 2705、植物乳杆菌WCSF1、约氏乳杆菌NCC533以及等。许多与工业生产相关的性状都是由质粒编码的,比如说: 乳糖代谢酶类、蛋白水解酶类、摄取柠檬酸盐的酶、噬菌体抗性、细菌素的生成、多糖的合成、金属离子抗性以及抗生素抗性。 乳酸菌基因组学(比较基因组学和功能基因组学) 在乳品发酵菌种及益生菌方面的应用: (1) 筛选具有特定胞外多糖特性(如短结构,拉丝状) 及数量的嗜热链球菌; (2) 对于益生菌来说,其基因组的分析可以将它们的基因特点和益生功能联系起来在分子水平上筛选具特定功效的益生菌菌株; (3) 进一步探索噬菌体的分子进化规律,阐明乳酸菌抗噬菌体的机制。例如嗜热链球菌对CR ISPR ( clustered regularly interspaced short palin2dromic repeats 呈一定顺序反复规律性出现的基因丛簇) 编码的获得与其抗噬菌体的关系的发现。 基因研究与筛选不同特性的“胞外多糖EPS”相关的嗜热链球菌 研究发现,在酸奶菌种中的嗜热链球菌中都含有一个基因簇: EPS基因簇,它与一种胞外多糖(EPS) 的合成相关,因此被称为EPS基因簇。而对于35株嗜热链球菌的EPS基因簇分析发现:在低“拉丝”结构和短EPS基因之间似乎存在某种特定的联系; 这将为酸奶产黏菌种的筛选和开发提供了理论依据及从分子水平上大规模筛选提供了简单快捷和直观的方法。 乳酸菌的功能基因组学与益生菌菌种特定功效的筛选 功能基因组学Functional genomics的研究又被称为后基因组学,是利用结构

支气管哮喘蛋白质组学研究的现状和前景

!综述! !!作者单位" !"##!$南京医科大学第一附属医院呼吸科支气管哮喘蛋白质组学研究的现状和前景 刘!华!殷凯生 !!! 摘!要"!蛋白质组学是后基因组时代一项重要的生命科学的研究手段’近年在支气管哮喘的发生)发展方面的研究方兴未艾(它主要依托质谱和二维电泳技术比较正常和病理状态下组织或细胞的差异蛋白质的表达’结合生物信息学的方法’从而研究疾病的发病机制及为临床提供诊断和治疗靶点(在哮喘的研究中目前主要是比较蛋白质组学的研究’发现新的靶标为临床服务同时探讨其发病机制( !关键词"!支气管哮喘- 质谱-二维电泳!!人类基因组测序的完成’ 基因组)后基因组及蛋白质组学的研究已引起人们的极大关注’尤其是高通量分析蛋白质组的变化是生命科学的一项里程碑式的发展/"0 (在肿瘤的研究中’包括肺癌的研究蛋白质组学已经取得了令人瞩目的成绩’而令人遗憾的是发病率和患病率都居高不下的支气管哮喘蛋白质组学的原创 性研究很少/ !0 (尽管蛋白质组学在哮喘的研究中有它的局限性和方法学上的困难’但相信对生命科学研究有如此重要地位的蛋白质组学一定会给哮喘的研究带来一线曙光( !!蛋白质组学研究的基本方法 !&!!二维凝胶电泳和质谱!现在进行蛋白质分离仍然采用三十多年前应用并发展起来的二维聚丙烯酰胺 凝胶电泳法/30’第一维是等电聚焦%7:B ?>?@;A 7@\B @C :78G &’也就是根据蛋白质的等电点设定一个O M 值梯度来分离蛋白质(第二维就是通过0J 0E .)&,胶根据它们的相对分子质量来分离//’20’ 最后进行质谱鉴定/% 0(然而需要说明的是蛋白质分离过程受到很多外来因素的干扰’以至于最后发现的靶点蛋白质不能很好分析(首先’高丰度蛋白质比如血清蛋白可能掩盖低丰度蛋白质’以至于含量和浓度较少的差异蛋白质难以 被发现-同时蛋白质提取过程中的降解和修饰化作用都可能直接影响实验结果/4’*0 ’这个问题最近可能被一些新技术的发展所改进’包括修饰蛋白质的浓缩)强化/$’"# 0’柱色谱对体液的预分离’以及选择性剔除高丰度蛋白质等/""’"! 0(液相色谱,基质辅助激光解析离子化,质谱,质谱%F 5,P)F J ’,P 0,P 0& 和液相色谱,电喷雾离子化,质谱,质谱%F 5,,0’,P 0,P 0 &是目前蛋白质组学分离蛋白质技术的新进展(其次’在蛋白质分离过程中要注意相对分子质量的大小和物质的酸碱度’一般要求相对分子质量在"####*!#####’O M 值在/*" #实验结果较好/"0 (再次’重复性的问题也是蛋白质组学所面临的一个重要的挑战’目前已基本解决并可以获得高分辨率和高通量的靶蛋白/"3E "2 0(总之’以二维凝胶电泳为基础的蛋白质分离技术已经显示了其对新的生物学标记和治疗靶点发现的良好应用前景’对于研究不同疾病在生理状态和病理状态下的差异蛋 白质的表达具有神奇的功效/ "%’"4 0(在二十世纪九十年代’P 0仪器及技术的改进使蛋白质化学发生了革命性的变化’并整个变更了蛋白质分析技术(在八十年代’,0’和P)F J ’技术上的突破促进了这些改变的发生(这两种技术的出现解决了 从大的)非挥发性物质如蛋白质和多肽中产生离子且没有明显的分析物碎片的难题’从而使P 0技术在蛋白质组学的研究中占据了一个非常重要的地位(,0’和一些高性能的分离技术如毛细管电泳%5,&和高效液相色谱%M .F 5&联在一起应用时’对蛋白质和多肽结构的检测灵敏度和速度有令人惊奇的提高(分离技术的进步’特别是微分离技术和高性能的质谱仪的联用’还有微型喷雾器和,0’离子源的发明使得对多肽进行完全分析或序列测定所需的样品量减少’由二十世纪八十年代中期的几个O 减至九十年代中期所需的几个\甚至更少(更高效率和灵敏度的质谱技术的发展是正在萌芽的蛋白质组学的一个极其重要的因素’在今天它仍在不断地得到更新(P 0分析方法应用于在生物机体中鉴别蛋白质)计算机途径搜索序列数据)蛋白质表达水平的确定及磷酸化蛋白质或肽的检测等方面(目前最有前途和最流行的P 0技术主要 !/%!中华哮喘杂志%电子版&!! ##4年!第"卷!第!期!试刊!56789):;6<=%,>?@;A B 87@-?A :7B 8&’9C 8?!##4’-B >D "D (B D !

基因组学与蛋白质组学

《基因组学与蛋白质组学》课程教学大纲 学时: 40 学分:2.5 理论学时: 40 实验学时:0 面向专业:生物科学、生物技 术课程代码:B7700005先开课程:生物化学、分子生物 学课程性质:必修/选修执笔人:朱新 产审定人: 第一部分:理论教学部分 一、课程的性质、目的和任务 《基因组学与蛋白质组学》是随着生物化学、分子生物学、结构生物学、晶体学和计算机技术等的迅猛发展而诞生的,是融合了生物信息学、计算机辅助设计等多学科而发展起来的新兴研究领域。是当今生命科学研究的热点与前沿领域。由于基因组学与蛋白质组学学科的边缘性,所以本课程在介绍基因组学与蛋白质组学基本基本技术和原理的同时,兼顾学科发展动向,讲授基因组与蛋白组学中的热点和最新进展,旨在使学生了解现代基因组学与蛋白质组学理论的新进展并为相关学科提供知识和技术。 二、课程的目的与教学要求 通过本课程的学习,使学生掌握基因组学与蛋白质组学的基本理论、基础知识、主要研究方法和技术以及生物信息学和现代生物技术在基因组学与蛋白质组学上的应用及典型研究实例,熟悉从事基因组学与蛋白质组学的重要方法和途

径。努力培养学生具有科学思维方式、启发学生科学思维能力和勇于探索,善于思考、分析问题的能力,激发学生的学习热情,并通过学习提高自学能力、独立思考能力以及科研实践能力,为将来从事蛋白质的研究奠定坚实的理论和实践基础。 三、教学内容与课时分配 第一篇基因组学

第一章绪论(1学时) 第一节基因组学的研究对象与任务; 第二节基因组学发展的历程; 第三节基因组学的分子基础; 第四节基因组学的应用前景。 本章重点: 1. 基因组学的概念及主要任务; 2. 基因组学的研究对象。 本章难点: 1.基因组学的应用及发展趋势; 2.基因组学与生物的遗传改良、人类健康及生物进化。建议教学方法:课堂讲授和讨论 思考题: 查阅有关资料,了解基因组学的应用发展。 第二章人类基因组计划(1学时) 第一节人类基因组计划的诞生; 第二节人类基因组研究的竞赛; 第三节人类基因组测序存在的缺口; 第四节人类基因组中的非编码成分; 第五节人类基因组的概观; 第六节人类基因组多样性计划。 本章重点: 1. 人类基因组的研究; 2. 人类基因组多样性。 本章难点: 人类基因组序列的诠释。 建议教学方法:课堂讲授和讨论 思考题:

蛋白质组学及其在疾病研究中的应用

综述摘要 创新中药及其在我国的发展 邓文龙(四川省中药研究所,成都610041)本文就创新中药的定义、标准及创新中药在我国的发展进行了讨论。作者认为一流的临床疗效或独特的作用机理是创新中药的首要条件,按药物有效成分的有效剂量进行质量控制是创新中药的基础。 蛋白质组学及其在疾病研究中的应用 段春燕综述,何涛审校 (泸州医学院生物化学教研室,四川泸州646000) 目前人类基因组计划已进入后基因组时代,1994年Mac Wilkins与Keith Williams首先提出了蛋白质组学(prot eomics)的概念。依赖于二向电泳、质谱技术及生物信息学等多种手段的蛋白质组学分析在肿瘤、心血管系统、内分泌系统、神经系统及感染性疾病等的研究中得到了充分的应用,从整体的蛋白质水平上,在一个更深入、更贴切生命本质的层次上来探讨和发现生命活动的规律和重要生理、病理现象的本质。 蜂毒的现代药理研究及临床应用概况 夏隆江 (成都中医药大学药理教研室2004级博士生,成都610075)蜂毒是蜜蜂科昆虫中华蜜蜂Apis cerana F abricus等之工蜂尾部蛰刺毒腺和副腺分泌出的具有芳香气味的淡黄色透明毒液,是具有多种药理学和生物学活性的复杂混合物,主要由多种肽和酶类活性物质组成。它具有较广泛的药理作用:1、对心血管的作用:蜂毒有明显的降血压作用,其作用类似于组胺,是通过扩血管实现的;同时,蜂毒对心肌具有正性频率和负性肌力作用。2、对神经系统的作用:蜂毒有明显的镇痛作用和调节神经系统紧张度的作用。3、对血液的作用:蜂毒具有溶血、抗凝血和降低血栓素的作用。4、对呼吸系统的作用:蜂毒可使呼吸加快,大量的蜂毒可导致呼吸肌麻痹。5、对消化系统的作用:蜂毒有抗肝纤维化和吸收肝纤维化作用。6、对内分泌系统的作用:蜂毒对垂体、肾上腺皮质系统有明显的兴奋作用。7、对免疫系统的作用:蜂毒具有免疫抑制作用。8、抗炎镇痛作用:蜂毒肽对前列腺素合成酶的抑制作用是吲哚美辛的70倍,具有极强的抗炎镇痛效果。另外,蜂毒还具有抗肿瘤、抗辐射、抗菌等作用。在临床运用方面,临床上蜂毒被广泛地用于治疗风湿性、类风湿性疾病、多发性硬化病、艾滋病、高血压、哮喘、白塞病、寻常型银屑病等,具有较大的研究前景和临床运用价值。 瘦素的研究现状 龙中奇(四川省达州中医学校,达州635000)本文对瘦素的生物学性质及生理生化功能作一综述。 帕金森病的研究进展 唐宗琼(四川省达州中医学校,达州635000)多种因素导致帕金森病(PD)发病,归纳起来有以下几种学说:1遗传因素学说;环境因素学说;氧化应激学说;免疫学说;细胞凋亡学说;o对PD治疗的探索:细胞替代疗法(CRT)治疗PD是目前研究PD的热点,CRT治疗PD的目的是重建纹状体受损的多巴胺(D A)能神经支配,重建脑功能。根据供体的不同,PD的CRT治疗可分为:自体肾上腺髓质移植、同种异体胎脑移植、异种胎脑移植和干细胞移植。其中,自体肾上腺髓质移植经临床研究证实嗜铬细胞植入脑内后存活率极低,无肯定的治疗作用而已被淘汰。 胃肠肽类激素对摄食活动的调节 孙玉锦(雅安职业技术学院,雅安625000)摄食是复杂的行为,是一种精神活动,它包括觅食、食物的摄取、消化、吸收和利用,摄食是人类以及所有动物维持生命活动的最基本最重要的功能之一,摄入的食物经过消化和吸收过程为机体提供必须的能量和营养物质。虽然摄食作用作为一种本能生来即有,但实际上摄食活动是受体内复杂的神经和体液因素调节的,涉及到神经中枢、传入传出神经以及许多神经递质和激素。本文仅讨论胃肠肽类激素对摄食活动的调节。 将饱食大鼠的血液注入饿鼠血管内,可抑制饿鼠的摄食活动,这个事实提示血液中含有控制摄食的信息。这种信息是什么?推想饥饿使人或动物在短时间内大量进食,在食物未完全消化吸收之前,就因产生饱感而停止继续进食,究其原因很可能是食物与胃肠粘膜接触后,引起胃肠肽类激素释放,胃肠肽类激素通过血液循环,作用于下丘脑,兴奋饱中枢)下丘脑腹内侧核(VMH),抑制摄食中枢)下丘脑的外侧区(LHA),从而停止摄食。影响摄食活动的胃肠肽类激素较多,但其中只有少数胃肠肽类激素对摄食调节有生理意义,大多数胃肠肽类激素需要给予药理剂量才对摄食活动发生影响。本文介绍了体内多种胃肠肽类激素:胆囊收缩素、阿片肽、铃蟾肽、胰高糖素、胰岛素、酪神经肽、胃动素、甘丙素、生长抑素、雨蛙肽等对摄食有促进或抑制作用,目前对它们作用的许多环节还不完全清楚,但随着研究的不断深入,其与摄食有关的许多问题将会逐渐得到阐明。 实验研究摘要 松龄血脉康胶囊对自发性高血压 大鼠的降压作用及机制初探(摘要) 万莉红,熊文碧,朱玲,刘蓉,谢芬,刘嘉琴,周黎明*,李崇前1,张顺华1 (四川大学华西基础与法医学院药理教研室,四川成都610041;1成都康弘集团#博士后工作站,四川成都610036)目的:探讨中药松龄血脉康胶囊胶囊对自发性高血压大鼠是否具有降压作用,并初步探讨起作用的机制。方法:雄性自发性高血压大鼠(SHR)60只,随机分为高血压模型组、卡托普利组、Vc 组、松龄血脉康胶囊组四组,并设立正常血压大鼠(WKY)15只作为对照组,用BP26动物无创血压测试仪试验前测定各组动物的基础血压。(1)各组分别给予生理盐水、卡托普利12.5mg#kg-1、Vc50mg#kg-1、松龄血脉康胶囊胶囊750mg#kg-1灌胃,每日一 133 四川生理科学杂志2005;27(3)

蛋白质组学蛋白质组学相关技术及发展文献综述

蛋白质组学蛋白质组学相关技术及发展文献综述 蛋白质组学相关技术及发展文献综述张粒植物学211070161概念及相关内容1994年澳大利亚Macquaie大学的Wilkins和Williams等在意大利的一次科学会议上首次提出了蛋白质组proteome这个概念该英文词汇由蛋白质的“prote”和基因组的“ome”拼接而成并且最初定义为“一个基因组所表达的蛋白质”1。然而这个定义并没有考虑到蛋白质组是动态的而且产生蛋白的细胞、组织或生物体容易受它们所处环境的影响。目前认为蛋白质组是一个已知的细胞在某一特定时刻的包括所有亚型和修饰的全部蛋白质2。蛋白质组学就是从整体角度分析细胞内动态变化的蛋白质组成、表达水平与修饰状态了解蛋白质之间的相互作用与联系提示蛋白质的功能与细胞的活动规律。2蛋白质组学的分类蛋白质组学从其研究目标方面可分为表达蛋白质组学和结构蛋白质组学。前者主要研究细胞或组织在不同条件或状态下蛋白质的表达和功能这将有助于识别各种特异蛋白3目前蛋白质组学的研究在这方面开展的最为广泛其运用技术主要是双相凝胶电泳Two-dimensional gel electrophoresis2DE技术以及图像分析系统当对感兴趣的蛋白质进行分析时可能用到质谱。由于蛋白质发生修饰后其电泳特性将发生改变这些技术可以直接测定蛋白质的含量并有助于发现蛋白质翻译后的修饰如糖基化和磷酸化等4。结构蛋白质组学的目标是识别蛋白质的结构并研究蛋白质间的相互作用。近年来酵母双杂交系统是研究蛋白质相互作用时常用的方法同时研究者也将此方法不断改进5。有研究者最近发现在研究蛋白质相互作用时通过纯化蛋白复合物并用质谱进行识别是很有价值的4。3蛋白质组学相关技术目前蛋白质组学研究在表达蛋白质组学方面的研究最为广泛其分析通常有三个步骤第一步运用蛋白质分离技术分离样品中的蛋白质第二步应用质谱技术或N末端测序鉴定分离到的蛋白质第三步应用生物信息学技术存储、处理、比较获得的数据。3.1蛋白质分离技术这类技术主要是电泳其中应用最多的是双向电泳技术其他还有SDS-PAGE、毛细吸管电泳等。除了电泳外还有液相色谱通常使用高效液相色谱HPLC和二维液相色谱2D-LC。另外还有用于蛋白纯化、除杂的层析技术、超离技术等。 3.1.1双相凝胶电泳双相凝胶电泳two-dimensional gel elec—trophoresis2DE这是最经典、最成熟的蛋白质组分离技术产生于20世纪70年代中叶但主要的技术进步如实验的重复性、可操作性蛋白质的溶解性、特异性等是在近lO年取得的。它根据蛋白质不同的特点分两相分离蛋白质。第一相是等电聚焦IEF电泳根据蛋白质等电点的不同进行分离。蛋白质是两性分子根据其周围环境pH可以带正电荷、负电荷或静电荷为零。等电点pI是蛋白质所带静电荷为零时的pH周围pH小于其pI时蛋白质带正电荷大于其pI时蛋白质带负电荷。IEF时蛋白质处于一个pH梯度中在电场的作用下蛋白质将移向其静电荷为零的点静电荷为正的蛋白将移向负极静电荷为负的将移向正极直到到达其等电点如果蛋白质在其等电点附近扩散那么它将带上电荷重新移回等电点。这就是IEF的聚焦效应它可以在等电点附近浓集蛋白从而分离电荷差别极微的蛋白。pH梯度的形成最初是在一个细的包含两性电解质的聚丙烯酰胺凝胶管中进行。在电流的作用下两性电解质可形成一个pH梯度。但由于两性电解质形成的pH梯度不稳定、易漂移、重复性差80年代以后研究人员研制了固定pH梯度的胶条IPG。此种胶条的形成需要一些能与丙烯酰胺单体结合的分子每个含有一种酸性或碱性缓冲基团。制作时将一种含有不同酸性基团的此分子溶液和一种含有不同碱性基团的此分子溶液混合两种溶液中均含有丙烯酰胺单体和催化剂不同分子的浓度决定pH的范围。聚合时丙烯酰胺成分与双丙烯酰胺聚合形成聚丙烯酰胺凝胶。第二相是SDS聚丙烯酰胺凝胶电泳SDS-PAGE根据蛋白质的分子量不同进行分离。此相是在包含SDS的聚丙烯酰胺凝胶中进行。SDS是一种阴离子去污剂它能缠绕在多肽骨架上使蛋白质带负电所带电荷与蛋白质的分子量成正比在SDS聚丙烯酰胺凝胶中蛋白质分子量的对数与它在胶中移动的距离基本成线性关系。SDS-PAGE装置有水平和垂直两种形式垂直装置可同时跑多块胶如Amersham pharmacia Biotech的Ettan DALT II系统可同时跑12块胶提高了操作的平行性。经过2DE

基因组学和蛋白质组学对新药研发的影响

通过校园网进入数据库例如维普期刊数据库、CNKI、超星电子图书等。完成 A、任选一题,检索相关资料,截取检索过程图片,做成一个ppt文件(50分)。 B、写综述形式的学术论文(学术论文格式,字数不限,正文字体小四),做成word文件(50分)。要求:按照自己的思路组织成文件,严禁抄袭。 写明班级学号,打印纸质版交给老师。 1、对检索课题“磷酸对草莓生长和开花的影响”检索中文信息。提示:磷酸的化学物质名称是“Phosphonic acid ”普通商业名称是“ethephon”, 2、基因组学和蛋白质组学对新药研发的影响 3、红霉素衍生物的设计、合成与抗菌活性研究 4、HPLC法测定复方谷氨酰胺肠溶胶囊中L-谷氨酰胺的释放度 姓名:朱艳红 班级: 11生科师范 学号: 11223074 学科教师:张来军

基因组学和蛋白质组学对新药研发的影响琼州学院生物科学与技术学院 11生科师范2班朱艳红 11223074 摘要 20世纪末伴随着人类基因组计划的实施,相继产生了基因组学和蛋白质组学,基因组学和蛋白质组学的迅速发展,对药学科学产生着深远的影响。文章在简介蛋白质组学基本概念、核心技术的基础上,综述了基因组学和蛋白质组学对新药研发带来的影响。 关键词:基因组学;蛋白质组学;药物研发 The impact of genomics and proteomics on the research and development of innovative drug abstract With the implementation of the 20th century,Genomics and proteomics had emerged one after the other. Driven by Soaring development of the omits,pharmaceutical industry presents a new vision,all human life faces a promising future. On the basis of proteomics Introduction to basic concepts, core technology, reviewed the genomics and proteomics research on the impact of new drugs. Keywords:Genomics; proteomics; drug development

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

蛋白质组学及其应用研究

现代商贸工业 2019年第16期 79 一间不了解,往往会错过报名时间而与心仪的证书擦肩 而过.2.4一学生缺乏清晰的职业规划 据调查,大多数的学生对自己的所学专业并不是很了解.并认为自己在大学期间对本专业的学习比较浅显,缺乏实践.对自身未来就业感到十分迷茫,对自己专业的就业前景知之甚少.这种没有结合自身实际的职业规划,就会对学生考取证书的选择有较大的影响.2.5一学生的考证成本较大 大学生目前的考证方式主要有两种:自学和报班.报班的话,费用和时间成本会较高.且社会上的考证机构参差不齐,学生较难判断.自学的话,难度较大.时间成本会更高.学生考取证书所付出的精力会更多.这可能会影响学校的正常学习.可能会出现本末倒置的情况.且社会上考取证书的参考资料品质不一.学生难以判断选择最适合的考证资料. 3一考证问题相应的对策 3.1一学生角度对策 (1)理性考证,切忌盲目跟风,证书并不是越多越好,分析自己所在的专业,了解与自己专业相关的证书,合理的安排考证和学校课程的时间,千万不要忽略学校授予的专业知识.证书或许能为你找工作提供一定的帮助,但真正让你立足于社会的是自身的能力,保持理智,不可本末倒置. (2 )做好自己的职业生涯规划,让自己对未来有一个明确的目标,然后根据这个目标,去选择能帮助到自己的证书,同时观察市场行情和国家形势,选择恰当的目标和时机去考取证书. (3)在考取证书的时候,一定要去了解该证书的详细信息,如考证费用二难易程度等,考取好的二知名度高的证书往往代表着你要投入大量的时间二金钱和精力,结合自身的实际情况来选择证书,适合自己的才是最好的.在选择培训机构的适合,一定要选择权威的二正式的机构,切勿贪小便宜而因小失大.3.2一学校角度对策 (1 )应帮助同学们建立起正确的三观二就业观,如东南大学成贤学院就应设立相应的讲座和课堂,为同学们讲解关于以后踏入社会的相关知识,培养大家独立二理性解决问题的能力. (2 )在校内设立与考证相关的导师机构,为同学们考证排忧解难,给出建议,避免学生盲目跟风,为考证不顾学业.同时要适当的疏导同学,避免对学习和就业产生过多的压力. (3 )学校需要做好一个合理引导的角色,应当不断完善学生的就业指导与服务体系,帮助学生树立正确的就业观念与明确的职业规划,端正考证动机,摒弃不良的考证心态,妥善处理好在校学习与考证学习的关系,让学生明白只有扎实提高自身能力与素质才会使自己终生获益.3.3一社会角度对策 (1 )用人单位应该完善用人的标准和要求,不以证书的数量来衡量学生的能力,用人标准和要求应多注重大学生的综合素质和实践能力. (2 )国家对于各种证书的认证要严格,对于各种培训机构要进行认真清理,不合法的要坚决取缔,考证不能成为不良居心的人利用应试考试赚取钱财的手段.同时加强考场管理,坚决反对作弊等现象的发生,为考证提供一个可信的平台,树立证书的权威性. (3)政府要做好用人单位和学校之间的沟通与交流,建立合作平台,保证人尽其用.优秀的大学生是社会紧缺的人力资源,为了避免这一人力资源的浪费,搭建企业与学校直接对接的桥梁是必不可少的,可以在为企业寻找需求的人才的同时,给予大学生实践和学习的机会. 参考文献 [1 ]关化少.我国本科应用型创新人才培养之特点二价值与理论期待[J ].北京教育,2015,(05).[2]舒程. 考证热 背景下大学生创业与就业能力培养分析[J ]. 赤峰学院学报,2017,(02). [3]费芳.大学生 考证热 亟需正确引导[J ].湘声报,2015,(01). [4]李晓娜.大学生 考证热 现象的经济学分析[J ]. 经济研究导刊,2014,(24). 蛋白质组学及其应用研究 魏东阳 (宝鸡中学,陕西宝鸡721000 )摘一要:蛋白质组学的概念最早是由澳大利亚学者W i l k i n s 和W i l l i a m s 于1994年提出, 细胞二组织或者机体的基因组所表达的全部蛋白就称为蛋白质组学.蛋白质组学是一个研究蛋白质组及大范围蛋白质的分离二分析二应用的学科.它不同于传统的利用生物化学的方法研究单个蛋白质或某一类蛋白,而是在大规模水平上研究体系内全部蛋白质及其动态变化规律.随着学科的发展,蛋白质组学的研究范围也在不断完善和补充,通过查阅大量文献,总结蛋白质组学技术,并研究蛋白组学在生物医学二转基因技术二生物制药技术等领域的. 关键词:蛋白质组;蛋白质组学;蛋白质组学应用 中图分类号:F 24一一一一一文献标识码:A一一一一一一d o i :10.19311/j .c n k i .1672G3198.2019.16.034一一蛋白质组(P r o t e o m e )是由蛋白质(P r o t e i n )和基因组(g e n o m i c )两个词的组合而来,是指生命体(包括细胞二组织等)的一个基因组所表达的所有蛋白质.其主 要研究内容就是能在大规模水平上研究蛋白质的表 达二翻译后的修饰以及蛋白质与蛋白质之间的相互作用,从而来了解蛋白质参与细胞二人体代谢及其他生命

基因组学(结构基因组学和功能基因组学).

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点? 答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics和以基因功能鉴定为目标的功能基因组学(functional genomics。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。 功能基因组学(functional genomics又往往被称为后基因组学(postgenomics,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。 基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 功能基因组学

第九章基因工程和基因组学

第九章基因工程和基因组学 本章习题 1.什么是遗传工程?它在理论上和实践上有什么意义? 答:遗传工程是将分子遗传学的理论与技术相结合,用来改造、创建动物和植物新品种、工业化生产生物产品、诊断和治疗人类遗传疾病的一个新领域。 广义的遗传工程包括细胞工程、染色体工程、基因工程、细胞器工程等。狭义的遗传工程即是通常讲的基因工程。本章只涉及狭义的遗传工程,即基因工程。 理论意义:遗传工程(基因工程)中的DNA重组主要是创造自然界中没有的DNA分子的新组合,这种重组不同于精典遗传学中经过遗传交换产生的重组。 实践意义:遗传工程(基因工程)技术的建立,使所有实验生物学领域产生巨大的变革。在工厂化生产药品、疫苗和食品;诊断和治疗遗传疾病;培养转基因动植物等方面都有非常重大的意义,即基因工程技术已广泛用于工业、农业、畜牧业、医学、法学等领域,为人类创造了巨大的财富。(详见第10题)。 2.简述基因工程的施工步骤。 答:基因工程的施工由以下这些步骤: ⑴.从细胞和组织中分离DNA; ⑵.利用能识别特异DNA序列的限制性核酸内切酶酶切DNA分子,制备DNA 片段; ⑶.将酶切的DNA片段与载体DNA(载体能在宿主细胞内自我复制连接),构建重组DNA分子; ⑷.将重组DNA分子导入宿主细胞,在细胞内复制,产生多个完全相同的拷贝,即克隆; ⑸.重组DNA随宿主细胞分裂而分配到子细胞,使子代群体细胞均具有重组DNA分子的拷贝; ⑹.从宿主细胞中回收、纯化和分析克隆的重组DNA分子; ⑺.使克隆的DNA进一步转录成mRNA、翻译成蛋白质,分离、鉴定基因产物。

3.说明在DNA克隆中,以下材料起什么作用。 (1)载体;(2)限制性核酸内切酶;(3)连接酶;(4)宿主细胞;(5)氯化钠 答:⑴. 载体:经限制性酶酶切后形成的DNA片段或基因,不能直接进入宿主细胞进行克隆。一个DNA片段只有与适合的载体DNA连接构成重组DNA后,在载体DNA的运载下,才可以高效地进入宿主细胞,并在其中复制、扩增、克隆出多个拷贝。可作为DNA载体的有质粒、噬菌体、病毒、细菌和酵母人工染色体等。 ⑵. 限制性核酸内切酶:限制性核酸内切酶是基因工程的基石。在细菌中这些酶的功能是降解外来DNA分子,以限制或阻止病毒侵染。这种酶能识别双链DNA分子中一段特异的核苷酸序列,在这一序列内将双链DNA分子切断。 ⑶. 连接酶:将外源DNA与载体相连接的一类酶。 ⑷. 宿主细胞:能使重组DNA进行复制的寄主细胞。 ⑸. 氯化钠:主要用于DNA提取。在pH为8左右的DNA溶液中,DNA分子是带负电荷的,加入一定浓度的氯化钠,使钠离子中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐沉淀。另外,氯化钠也是细菌培养基的成分之一。 4.有一个带有氨苄青霉素和四环素抗性的质粒,在其四环素抗性基因内有一个该质粒惟一的EcoRI酶切点,今欲用EcoRI位点克隆果蝇DNA,构建一个基因库,连接的产物转化大肠杆菌菌株DH5 ,试问:⑴. 在培养基中加入哪一种抗生素用于选择阳性克隆?⑵. 对哪一种抗生素有抗性的质粒携带外源果蝇DNA片段?⑶. 如果有的克隆可抗两种抗生素,如何解释? 答:⑴.在培养基中加入四环素结合影印法可用于选择阳性克隆。 ⑵.对氨苄青霉素有抗性的质粒携带外源果蝇DNA片段。 ⑶.这种克隆是没有受到EcoRI酶解的原始质粒或这些克隆都是自连形成的非重组体。 5.在构建一个真核生物核DNA库时,需要考虑哪些因素? 答:核基因库是将某一生物的全部基因组DNA酶切后与载体连接构建而成的。通常方法是,尽量提取大分子量的核DNA,用限制性酶酶切后,分离选择具有一定长度(大于15kb)的DNA片断,与适宜的载体连接构成重组DNA分子,

高级生化-蛋白质综述

摘要:蛋白质组学是后基因组时代的新兴学科,是当今生命科学领域 新的增长点,本文就蛋白质组学中的分离和鉴定技术包括双向凝胶电泳、色谱和质谱等技术近几年的发展状况及最新研究进展进行综述。关键词:蛋白质组学;双向凝胶电泳;色谱;质谱;生物信息学 Abstract:Proteomics which is the new discipline in the time of the post-genomics develops rapidly in the life science.The present paper has documented the current situation and new development of the techniques of separation and identification in this area,including 2·dimensional gel- electro·phoresis,chromatography an d mass spectrometry. Key words:Proteomics;2-Dimensional gel electrophoresis;Chromatography;Mass spectrometry;Bioinformatics 1、概念及相关内容 随着人类基因组测序计划的完成,生命科学的重心开始转移到对基因的功能性产物即蛋白质的研究,并产生了一门新的学科———蛋白质组学(proteomics) 。“蛋白质组(proteome) ”一词是1995 年由澳大利亚科学家Marc Wilkins 和Keith Wil2liams[ 1 ] 最早提出的,是由蛋白质(protein) 和基因组(genome) 派生而来。被定义为“一个细胞或组织所表达的所有蛋白质产物或某一特定时期内所表达的 所有蛋白质产物”。蛋白质组研究与以往的蛋白质化学研究不同,它着重于全面性和整体性,研究的对象不是单一或少数的蛋白质,而是 从细胞整体水平上对蛋白质的结构和功能进行研究,包括蛋白质在细胞内的表达水平、位置、功能和调节以及翻译后的修饰、剪接等加工信息。蛋白质组研究使人们对生命系统与活动分子机制的认识由间接

蛋白质组学与分析技术课复习思1考

蛋白质组学与分析技术课复习思考 一、名词解释 1、蛋白质组学: 蛋白质组学是研究与基因对应的蛋白质组的学科,蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。 2、二维(双向)电泳原理: 根据蛋白质的等电点和相对分子质量的特异性将蛋白质混合物在第一个方向上按照等电点高低进行分离,在第二个方向上按照相对分子质量大小进行分离。二维电泳分离后的蛋白质点经显色,通过图象扫描存档,最后是呈现出来的是二维方向排列的,呈漫天星状的小原点,每个点代表一个蛋白质。 3、三步纯化策略: 第一步:粗提。纯化粗样快速浓缩(减少体积) 和稳定样品(去除蛋白酶) 最适用层析技术: 离子交换/疏水层析 第二步:中度纯化。去除大部分杂质 最适用层析技术: 离子交换/疏水层析 第三步:精细纯化。达到最终纯度(去除聚合物,结构变异物) 最适用层析技术:凝焦过滤/离子交换/疏水层析/反相层析 4、高效纯化策略 在三步纯化蛋白质过程中,同时考虑到纯化的速度、载量、回收率及分辨率的纯化策略。5、离子交换色谱: 离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。固定相基团带正电荷的时候,其可交换离子为阴离子,这种离子交换剂为阴离子交换剂;固定相的带电基团带负电荷,可用来与流动相交换的离子就是阳离子,这种离子交换剂叫做阳离子交换剂。阴离子交换柱的功能团主要是-NH2,及-NH3 :阳离子交换剂的功能团主要是-SO3H及-COOH。其中-NH3 离子交换柱及-SO3H离子交换剂属于强离子交换剂,它们在很广泛的pH范围内都有离子交换能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只有在一定的pH值范围内,才能有离子交换能力。离子交换色谱主要用于可电离化合物的分离,例如,氨基酸自动分析仪中的色谱柱,多肽的分离、蛋白质的分离,核苷酸、核苷和各种碱基的分离等。 6、吸附色谱 吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。洗脱次序∶一般为正相,即:极性低的先被洗脱。 7、PCR扩增 PCR技术(polymerase chain reaction)技术能把单个目的基因大量扩增,这个方法必须在已知基因序列或已知该基因所翻译的氨基酸序列。进而推断出因序列的情况下使用。PCR 的每次扩增循环包括三步:1)变性,在高温下把双链靶DNA拆开;2)在较低的温度下使

蛋白质组学及其主要技术

蛋白质组学及其主要技术 朱红1 周海涛2 (综述) 何春涤1, (审校) (1.中国医科大学附属第一医院皮肤科,辽宁沈阳110001; 2.北京大学深圳医院核医学 科,广东深圳518036) 【摘要】蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。蛋白质组学是以蛋白质组为研究对象的新兴学科,近年来发展迅速,已成为后基因组时代的研究热点。目前,蛋白质组学研究技术主要包括:样品的制备和蛋白质的分离、蛋白质检测与图像分析、蛋白质鉴定及信息查询。本文就蛋白质组学概念及主要技术进行综述。 【关键词】蛋白质组,蛋白质组学 1蛋白质组学的概念 随着人类基因组测序计划的完成,人们对生命科学的研究重点由结构基因组转向功能基因组,1994年Wilkins和Williams首先提出蛋白质组一词[1],蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。从基因到蛋白质存在转录水平、翻译水平及翻译后水平的调控,组织中mRNA丰度与蛋白质丰度不完全符合[2]。蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等也无法从DNA/mRNA水平来判断。因此,只有将功能基因组学与蛋白质组学相结合,才能精确阐明生命的生理及病理机制。 蛋白质组学是以蛋白质组为研究对象,对组织、细胞的整体蛋白进行检测,包括蛋白质表达水平、氨基酸序列、翻译后加工和蛋白质的相互作用,在蛋白质水平上了解细胞各项功能、各种生理、生化过程及疾病的病理过程等[3,4]。蛋白质组学有两种研究策略。一种是高通量研究技术,把生物体内所有的蛋白质作为对象进行研究,并建立蛋白质数据库,从大规模、系统性的角度来看待蛋白质组学,更符合蛋白质组学的本质。但是,由于剪切变异和翻译后修饰,蛋白质数量极其庞大,且表达随空间和时间不断变化,所以分析生物体内所有的蛋白质是一个耗时费力,难以实现的理想目标。另一种策略是研究不同状态或不同时期细胞或组织蛋白质组成的变化,主要目标是研究有差异蛋白质及其功能,如正常组织与肿瘤组织间的差异蛋白质,寻找肿瘤等疾病标记物并为其诊断治疗提供依据。 2蛋白质组学的常用技术 2.1样品的制备和蛋白质的分离技术 2.1.1样品的制备样品制备包括细胞裂解与蛋白质溶解,以及去除核酸等非蛋白质成分。 激光捕获显微切割(Laser-captured microdissection, LCM)[5]技术可大量获得足够用于蛋白质组学研究的单一细胞成分,避免其他蛋白成分对电泳结果的干扰。尤其是肿瘤的蛋白质组学研究常用LCM技术来获取单一的肿瘤细胞。 2.1.2蛋白质的分离技术 ①双向凝胶电泳(Two-dimensional electrophoresis, 2-DE):双向电泳方法于 l975年由O'Farrell[6]首先提出,根据蛋白质等电点和分子量的差异,连续进行成垂直方向的两次电泳将其分离。 第一向为等电聚焦(Isoelectric focusing,IEF)电泳,其基本原理是利用蛋白质分子的等电点不同进行蛋白质的分离。较早出现的IEF是载体两性电解质pH梯度,即在电场中通过两性缓冲离子建立pH梯度;20世纪80年代初建立起来的固相pH梯度(Immobilized pH gradients,IPG)IEF,是利用一系列具有弱酸或弱碱性质的丙烯酰胺衍生物形成pH梯度并参与丙烯酰胺的共价聚合,形成固定的、不随环境电场条件变化的pH梯度。IPG胶实验的重复

蛋白质组学的研究进展及应用

《蛋白质工程》 (课程论文)题目名称:蛋白质组学技术的研究进展及应用 所在学院:生命科学与技术学院 专业(班级):生技131班 学生姓名:梁健 授课教师:韩晓菲

蛋白质组学技术的研究进展及应用 生技131班梁健13772025 摘要:随着人类基因组计划全部测序的初步完成,研究重点转到对基因功能的研究上。蛋白质作为基因功能的主要体现者,对其表达模式和功能的研究成为热点,出现了蛋白质组学。研究蛋白质组学有助于了解蛋白的结构、细胞的功能、生命的本质及活动规律,为疾病的诊断、治疗、疫苗及新药开发提供科学依据。关键词:蛋白质组学;进展;应用 蛋白质组学(proteomics)是产生于20世纪90年代中期的一门新兴学科,以 细胞内全部蛋白质的存在及其活动方式为研究对象,是后基因组时代生命科学研究的核心内容。蛋白质组学的产生与发展经历了一个漫长的过程,在这个过程中,研究者不断修正蛋白质组学的发展方向和推进蛋白质组学相关支撑技术的快速 发展,进而拓展蛋白质组学在整个生命科学和生物医学研究中的应用,成为后基因组时代重要的研究新领域,并成功地应用到基础研究及医学研究等各个领域,推进其迅速发展。 1 蛋白质组学的概念及研究内容 1.1蛋白质组学的概念 蛋白质组(proteome)源于protein和genome两词的杂合,最早是由澳大利亚 的WILKINS等于1995年提出,其定义为“一种基因组所表达的全部蛋白质”。早期相对狭义的蛋白质组的概念是指在某一特定的时间和空间条件下,1个细胞的基因组所表达的蛋白质数目的总和。随着研究的深入,人们提出了广义的蛋白质组的概念,用来描述1个细胞、组织、器官或1个物种的生命个体,在其不同的生存及发育条件下所表达的各种蛋白数目的总和。所以蛋白质组所含的蛋白数目及其表达量是随着时间和空间的不同而不断发生变化的。蛋白质组学最有价值的优势是它可以观察在特定的时间下一个完整的蛋白质组或蛋白亚型在某种生理 或病理状态中,发生的相应的变化。 1.2 研究内容 根据研究内容的不同,蛋白质组学可分为差异蛋白质组学(或称表达蛋白质 组学)、结构蛋白质组学和功能蛋白质组学,其中差异蛋白质组学在蛋白质组学 研究中十分常用且应用广泛。差异蛋白质组学主要是研究比较在2种或多种不同条件下蛋白质组表达的差异变化。结构蛋白质组学主要是蛋白质表达模式的研究,包括蛋白质氨基酸序列分析及空间结构的解析。蛋白质表达模式的研究是蛋白质组学研究的基础内容,主要研究特定条件下某一细胞或组织的所有蛋白质的表征问题。功能蛋白质组学主要是蛋白质功能模式的研究,包括蛋白质的功能和蛋白

相关文档
最新文档