热泵技术与应用

热泵技术与应用
热泵技术与应用

热泵技术方案

摘要:介绍了蒸汽压缩式热泵和吸收式热泵的原理、基本构成、工作过程及计算方法,结合工程应用进行了经济效益分析。通过热泵回收低温余热是一项重要的节能措施,技术上可行,经济上合理。

1、背景

在石油、化工、电力、冶金、纺织、制药等行业的工艺生产过程中,往往会产生大量30~60℃的废热水,这些的低品位热源若不加以利用,不仅造成环境污染,而且还会浪费大量能源。如果这些行业有工艺或采暖用热需求,可以配备热泵,回收利用工艺产生的废热,达到节能、减排、降耗的目的。

2、热泵原理

热泵技术是根据逆卡诺循环原理,将低温热源(如城市污水、各种废水、地下水等)中的低品位热能进行回收,转换为高品位热能的一种节能与环保性技术,利用这项技术的逆过程同时还可以达到制冷的目的。目前使用的热泵主要有蒸汽压缩式热泵和吸收式热泵两种。

2.1蒸汽压缩式热泵

(1)基本构成

蒸汽压缩式热泵主机主要有以下四大部分:压缩机、膨胀阀、蒸发器、冷凝器,同时还有过滤器、储水箱等辅助部件。

压缩式热泵采用电能驱动,通过制冷剂经压缩后状态的变化,把自然界的空气热能吸收,对冷水进行加热。

(2)工作过程

蒸汽压缩式热泵机组系统工作过程如下:

●处于低压液态循环工质(如氟利昂R22及R134a)经过蒸发器,在蒸发器中工质从低温热源吸收热量变成低温、低压蒸汽进入压缩机。

●蒸汽工质经过压缩机压缩、升温后,变成高温、高压的蒸汽排出压缩机。

●蒸汽进入冷凝器,在冷凝器中将从蒸发器中吸取的热量及压缩机做工所产生的那部分热量传递给冷水,使其温度提高。工质经过冷凝器放热后变成液态。

●高压液体经过膨胀阀节流降压后,变成低压液体,低压液态工质再次进入蒸发器,由此不断循环工作。

整个过程就象是热量搬运一样将低温热源中的热量连续不断的搬运至高温热源(水)中去。

低温热源热量

Q3(热水获得能量)=Q1(压缩机做功热能)+Q2(从低温热源吸收热量)

图1 蒸汽压缩式热泵原理示意图

2.2吸收式热泵

吸收式热泵是用热能驱动工质循环,实现对热能的“泵送”功能,较适于有废热或可通过煤、气、油及其他燃料获得低成本热能的场合。

(1)基本构成

吸收式热泵由发生器、吸收器、冷凝器、蒸发器、节流阀、溶液泵、溶液阀、溶液热交换器等组成封闭环路,并内充以工质对(吸收剂和循环工质)溶液组成。以

H2O(水,循环工质)-LiBr(溴化锂,吸收剂)为工质对的吸收式热泵原理如图2所示。

图2 吸收式热泵原理示意图

(2)工作过程

吸收式热泵的基本工作过程如下:

利用高温热能加热发生器中的工质对浓溶液,产生高温高压的水蒸汽,进入冷凝器;在冷凝器中水蒸气凝结放热变为高温高压的循环工质液体,进入节流阀;经节流阀后变为低温低压的循环工质饱和汽与饱和液的混合物,进入蒸发器;在蒸发器中吸收低温热源的热量变为蒸汽,进入吸收器;在吸收器中蒸汽被溴化锂溶液吸收,吸收了蒸汽后的溴化锂稀溶液经热交换器升温后泵送到发生器,如此循环进行,实现吸收式热泵的连续制热。

3、 工程应用方案简介

某工厂有3台75t/h 燃煤锅炉,2用1备,2台背压发电机组,供应工厂的全部蒸汽和部分用电。锅炉产生的高温高压蒸汽先进入背压发电机组进行发电,背压机组排出的蒸汽作为工艺蒸汽供全厂使用,工艺蒸汽系统设计压力为0.7MPa 。现有锅炉给水温度为42℃,在除氧器内由蒸汽加热至104℃。2台锅炉约90%负荷时,补水流量约130t/h ,。

厂区吸收式制冷站有制冷机5台,冷却塔9台,冷却水流量1488t/h ,冷却水温32℃/38℃。

图3 工艺流程简图

考虑利用厂区内吸收式制冷站的余热,经两级热泵预热锅炉补水:第一级用电热泵将除锅炉补水由42℃加热到60℃,第二级用吸收式热泵(以厂区现有的0.7MPa 动

热用户

二次网供水80℃

二次网回水55℃

力蒸汽为驱动热源)将锅炉补水由60℃加热到85℃~90℃。预热后的补水再在除氧器内由蒸汽加热至104℃。预热后的补水也可就近为工艺供热。

4、 效益分析

4.1 蒸汽压缩式热泵计算

(1)用户所需热量

()

o i Q cm t t =-

其中Q :用户所需热量,kJ ;

c :锅炉补水的比热容,为34.18410/()kJ kg -??℃; m :锅炉补水质量流量,3/m h ;

i t :锅炉补水的进水温度,℃; o t :锅炉补水的出口温度,℃。

(2)热泵所需电量

锅炉补水加热的热量与热泵所需电能的关系如下:

Q kP COP =?

可得:

Q

P k COP

=

?

其中k :转换系数3600;即1kW?h=3600kJ ; P :热泵所需的电功,kW?h ;

C O P :供热系数,蒸汽压缩式热泵取3。

年锅炉补水流量为981288 m 3,补水由42℃加热到60℃,计算得热泵所耗电量为6842849 kW?h 。 4.2 吸收式热泵计算 (1) 用户需热量同上

()o i Q cm t t =-

(2) 驱动蒸汽消耗量

Q mH COP =?

Q

m H COP

=

?

式中:m :蒸汽所需质量,t ; Q :用户所需热量,kJ ; H :蒸汽焓值,2100000kJ/t ; C O P :供热系数,吸收式热泵取1.7。

年锅炉补水流量为981288 m 3,补水由60℃加热到85℃,计算得热泵所耗蒸汽量为28751t 。

5、 经济评价

原锅炉补水115吨/小时由42℃至85℃需要0.7MPa 的饱和蒸汽约84069吨/年,现使用压缩式热泵增加电耗6842849 kW?h/年,吸收式热泵蒸汽消耗量约28751吨/年,年节约蒸汽55318吨。

电费平均为0.51元/kW?h ,蒸汽价格为150元/t ,可得: 改造前蒸汽所需费用为:84069×150=12610350元/年; 改造后所需费用为:

6842849×0.51+28751×150=7802503元/年 节省费用为:

12610350-7802503=4807847元/年

6、 结束语

循环冷却水是热泵机组非常理想的低温热源,将热泵用于锅炉补水预热在火电厂中已有一些成功的工程案例,热泵还可应用于居民采暖及中央空调系统等。

通过热泵回收低温余热是一项重要的节能措施,技术上可行,经济上合理,有十分广阔的推广应用前景。

热泵在我国应用与发展

热泵在我国应用与发展 1、早期热泵的应用与发展阶段(1949年~1966年) 相对世界热泵的发展,我国热泵的研究工作起步约晚20~30年左右。但从中国情况来看,众所周知,旧中国的工业十分落后,根本谈不上热泵技术的应用与发展。新中国成立后,随着工业建设新高潮的到来,热泵技术也开始引入中国。早在20世纪50年代初,天津大学的一些学者已经开始从事热泵的研究工作,1956年吕灿仁教授的“热泵及其在我国应用的前途”一文是我国热泵研究现存的最早文献,为我国热泵研究开了个好头。20世纪60年代,我国开始在暖通空调中应用热泵。1960年同济大学吴沈钇教授发表了“简介热泵供暖并建议济南市试用热泵供暖”;1963年原华东建筑设计院与上海冷气机厂开始研制热泵式空调器;1965年上海冰箱厂研制成功了我国第一台制热量为3720W的CKT—3A热泵型窗式空调器;1965年天津大学与天津冷气机厂研制成国内第一台水源热泵空调机组;1966年又与铁道部四方车辆研究所共同合作,进行干线客车的空气/空气热泵试验;1965年,由原哈尔滨建筑工程学院徐邦裕教授、吴元炜教授领导的科研小组,根据热泵理论首次提出应用辅助冷凝器作为恒温恒湿空调机组的二次加热器的新流程,这是世界首创的新流程;1966年与哈尔滨空调机厂共同开始研制利用制冷系统的冷凝废热作为空调二次加热的新型立柜式恒温恒湿热泵式空调机。 我国早期热泵经历了17年的发展历程,渡过一段漫长的起步发展阶段。其特点可归纳为:第一,对新中国而言,起步较早,起点高,某些研究具有世界先进水平。第二,由于受当时工业基础薄弱,能源结构与价格的特殊性等因素的影响,热泵空调在我国的应用与发展始终很缓慢。第三,在学习外国基础上走创新之路,为我国今后的热泵研究工作的开展指明了方向。 2、热泵应用与发展的断裂期(1966年~1977年) 1966年,随着史无前例的“文化大革命”的爆发,科技工作同全国各个领域一样遭受了空前的灾难。在此期间热泵的应用与发展基本处于停滞状态。如: 1966年~1977年间没有一篇有关热泵方面的学术论文报导与正式出版过有关热泵的译作、著作等。 1966年~1977年间国内没有举办过一次有关热泵的学术研讨会,也没有参加过任何一次国际热泵学术会议,与世隔绝十余年。 1966年~1977年间,全国高校一律停课闹“革命”,根本谈不上搞热泵科研。但是原哈尔滨建筑工程学院徐邦裕、吴元炜领导科研小组在1966~1969年期间在“抓革命、促生产”的指示下,坚持了LHR20热泵机组的研制收尾工作,于1969年通过技术鉴定,这是在“文化大革命”时期全国唯一的一项热泵科研工作。而后,哈尔滨空调机厂开始小批量生产,首台机组安装在黑龙江省安达市总机修厂精加工车间,现场实测的运行效果完全达到20±1℃,60±10%的恒温恒湿的要求,这是我国第一例以热泵机组实现的恒温恒湿工程。 鉴于上述事实,将热泵在这个时期的应用与发展的整个过程,定为热泵应用与发展的断裂期,是名副其实的,完全符合历史事实。 3、热泵应用与发展的全面复苏期(1978年~1988年) 改革开放政策使中国的国民经济重新走向发展之路,经济的发展为暖通空调提供了广阔的市场,也为热泵在中国的发展提供了很好的契机。因此,热泵的发展在经历了断裂期之后于1978年开始进入一个新的发展阶段。从文献统计看,1988年又出现一个文献数量变化的转折点,故将1978年~1988年间定为我国热泵应用与发展的全面复苏期。 3.1 中国暖通空调制冷界开始了解国外热泵发展动态 与世隔绝十余年后,中国的热泵发展又迎来了新时期,遇到的第一个问题就是要了解世界各国热泵

我国热泵发展当今的状况以及未来的展望

我国热泵发展当今的状况以及未来的展望 来源:中国建筑科学研究院空调所作者:李先瑞郎四维 1 热泵发展的现状 近几年来,我国热泵发展很快,主要表现在如下几个方面: (1)据统计,1996年我国空调设备(指电动冷热水机组、吸收式冷热水机组、房间空调器以及单元空调机组,但不包括进口机组)的总制冷能力约为2000万kW,其中热泵型机组的制冷能力约占60%。在全部热泵型机组中,电驱动热泵容量约为1070kW,占90%;吸收式热泵容量约为130万kW,占10%。 (2)近几年来,我国的吸收式制冷装置发展迅速。据统计,1996年销售的溴化锂吸收式制冷机约3000多台,其中直燃机1115台。 (3)热泵在工业中的应用已见端倪,木材、食品(茶和水果)、陶瓷、造纸、印刷、石油和化工等工业生产过程已采用了蒸汽喷射式热泵、吸收式热泵和电驱动热泵。例如,目前大约有400台热泵式木材干燥机正在运行,年处理能力约为200千立方米。 2 热泵发展的背景 2.1 能源政策 我国一次能源年保有总量(不包括生物质能和新能源)为14亿吨标准煤,其中原煤14.6亿吨,原油1.7亿吨,天然气300亿立方米,水电2400亿kWh,核电250kWh,进口石油4~6 亿吨,火电电力装机容量2.9~3亿kW(平均每年增加装机容量1500kW)。据1997年统计,我国电厂热效率为32.95%,电厂供热效率为83.68%,能源转换总效率为38.07%。采用热电冷三联供系统或称总能系统(TES——Total Energy System),燃气热泵(GEHP)后,通过热力学第一定律的热效率分析和热力学第二定律的效用率分析说明:由于利用废热,GEHP的综合利用可达到80%~85%;若通过轴动力传动热泵,利用了低位热能,故综合热效率可达到150%~170%。对于TES方式,实现热电冷三联供后,其综合利用率可达到65%~80%。《中华人民共和国节约能源法》第三十九条将热电冷联产技术列入国家鼓励发展的通用技术,促进了热泵事业的发展。 2.2 环境保护政策 采用热驱动热泵,CO2 排放量亦明显降低。通过改善热泵性能,降低工质泄漏与使用新工质,热泵将在环境保护上发挥更大的作用。 2.3 建筑节能法 实施《民用建筑节能设计标准》后,提高了建筑隔热保温性能,降低了建筑采暖能耗,结果是大幅度地降低了热泵采暖方式的年运行费用,增加了热泵与集中供热采暖方式的竞争能力。

海水源热泵空调工程应用实例

1工程概况 该工程位于青岛发电厂内,建筑共2层,一层为职工食 堂,二层为工会办公楼,层高均为4.5m,建筑面积2400m2,空调总面积为1871.5m2(不计算浴室面积)。此热泵空调系 统同时供应洗澡热水,按100m2 /d计。 一层为职工食堂,分就餐区和厨房灶间两部分,24h正常营业。厨房灶间由于有蒸汽锅等散热量较大的设施、设 备,冬季白天温度大约在26! ̄28!,需要制冷运行;晚上需要制热运行。二层为工会办公室、歌舞厅、健身活动室以及会议室,各自冷热温度需求不同,使用时间分散且不固定。 2空调设计参数 2.1室内空气设计参数 室内空气设计参数按照采暖通风与空调设计规范选 取,其参数见表1。 表1室内空气设计参数表 2.2海水设计温度 青岛沿海海水温度水下5m处,冬夏海水温度变化不 大,因此本设计海水温度按照最低水位水下5m计算,其数 值夏季(7月"9月)25.2!;冬季(12月)6.39!,冬季(1月"2月) 3.74!。2.3空调负荷 1)夏季冷负荷:!L=231.5kW;冬季热负荷:!R=187.2kW。2)浴室热负荷: !R=273.5kW。3海水源热泵系统 3.1海水处理 海水中含有一些生物活性和高含量的固体粒子(砂子、 有机物质等),含盐量也很高。这些颗粒可能会在表面形成沉淀物,结果会增加生物活性以及微生物腐蚀的可能性。为了避免这些,在海水引入口安装一个机械过滤器来过滤掉这些颗粒,还要通过杀死细菌的方法减少生物活性。 3.2蒸发器 为了避免海水直接进入热泵机组,而对蒸发器产生腐蚀,该系统设计中我们引入了抗海水腐蚀的二级换热器,换热器采用钛板制作,其示意图如图1所示。 图1二级闭式循环换热器设计 3.3海水管道设计 海水管道采用硬聚氯乙烯给水管材(U—PVC),海面下管道在海底开槽挖沟安装,陆地上管道直埋敷设。 4空调系统设计 为满足不同区域在同一时间对冷热的不同需求,该工程中在室内采用水—空气热泵机组,保证机组可以随时冷热切换,用“二管制”替代了“四管制”,从而节省了水管路的费用,而且方便运行管理。 每台热泵机组根据室内新风需求,在回风管道上引入适量的新风,新风入口装有电动调节阀,风阀的开启与关闭与热泵机组的风机连锁。 每台机组具有制冷、制热与通风功能,并且均配有室内控制器。过度季节,可根据实际需要制冷、制热或通风运行。 水系统为异程设计,每台水—— —空气机组进水管上装有过滤器,回水管上装有自动排气阀。每层水管路连接的第 二次网循环系统 蒸发器 二级闭式循环换热器 海水 ?¢ ?¢ ?¢ ?¢ ?¢ ?¢/? ?¢£¤/(%) ?¢/? ?¢£¤/?%? NC ?¢ 23~26 55~60 21~23 20~30 ? ?¢ 26~28 ? 21~23 ? ? ?¢£ 24~26 40~50 20~22 20~30 33~35 ?¢£ 25~27 40~50 18~20 20~30 34~36 工程建设与设计#$$%年第&期地源热泵专题 [作者简介]祁俊山(1972"),男,山东陵县人,助理工程师,从事海水源热泵的研究与推广应用. 海水源热泵空调工程应用实例 祁俊山1,薛越霞2 (1.青岛新天地环境保护有限公司,山东青岛266003; 2.青岛市环境监察支队,山东青岛266003) [摘要]通过目前国内建成的海水源热泵空调系统示范工程的实施,介绍海水源热泵空调系统工作原理、工程设计、运行参数、节能效益分析,为实施大型海水源热泵区域供热供冷提供理论和实践样板。 [关键词]海水源热泵;示范工程;系统设计;节能环保 [中图分类号]TU833.+3[文献标识码]A[文章编号]1007-9467(2005) 09-0012-02’#

(新)高温多功能热泵技术的意义

高温多功能热泵冷暖新技术的创新发展和意义 人工冷暖技术(制冷与制热)已成为人类文明不可缺少的重要组成部分,自世界上第一台制冷机问世至今已据有百余年的历史,制冷技术的发展推动了人类文明的发展,制冷与制热技术为人类生活创造了更舒适的环境,制冷与制热技术的应用已成为当今文明社会发展不可缺少的重要条件。 制冷和制热(热泵)是人为实现降温或加温的过程和措施,也就是利用一定的装置系统人为地将某一空间(或某些物质)内的(固有的或现有的)热量迅速的吸收后转移释放到另一空间(或另一部分),被吸收了热量的空间内(或物体)温度降低(相对),得到了更多热量的空间(或物质)内温度升高。 长期以来,由于种种原因和惰性的传统研发模式,制冷与制热技术的开发和应用至今仍未达到应有的发展水平,特别是大型中央空调设备(制冷机组)只能用于制冷降温,只有部分功率较小的风冷空调具有双温(热泵)功能,但是制热供暖效果较差,特别是寒冬用以制热供暖时效果更差,大都需要附加电加热用以补充供热;就近几年发展兴起的所谓水源热泵和地源热泵空调装置,有两种不同配置模式,一种是较大型的冷暖型机组利用了简单的外置流程转换,使传统制冷机组(冷水机组)在冷凝器中而产生的热水和蒸发器产生的低温冷水,通过流程转换阀的转换分别输出;另一种是小型机组,采用四通换向阀的转换作用实现热泵机组的冷暖转换达到分别用于供冷或供暖的目的,难以实现理想的多用途兼顾的双温效果和节能效果。

目前为止,大型风冷热泵冷暖空调至今仍未实现真正意义上的全热泵式供暖,热泵机组的制热供暖效果较差,大都需要直接采用了电热辅助加温,而且难以实现及时有效化霜,特别是大型的热泵冷暖空调装置更难实现全热泵直接制热供暖,既是有的可以达到了一定的供热采暖效果,但也大都附加了较大负荷的电辅助加热,电辅加热时直接烧电模式,能耗大,费用高。 高温多功能热泵冷暖装置,是利用多项自主知识产权的专利技术开发的新产品,充分利用了人工制冷的普遍原理和综合采用了各种人工制冷系统的不同效果流程,使制冷(热泵)机组实现了高温制热供暖和多用途兼顾的工况运行、可实现自控转换的功能,可使蒸发与冷凝状态(制冷与制热)而实现了不间断供热采暖与多功能利用,可同时应用于制冷降温、制热供暖和提供生活热水。 众所周知,热泵装置是一种转换利用低温热能的装置,输入输出比较大的机电一体化的热能转换装置。传统的制冷(热泵)装置能效比即可达到1:2、8以上,采用新技术合理配置开发的制冷(热泵)装置的能效比可达到1:3—5以上,即热泵装置消耗1KW的电能即可转换得到相当于3—5KW电能的有用热量,这是目前一切其他电器冷暖(或电热)设备所无法可比和无法实现的高能效。而且热泵装置具有结构简单、性能稳定、易操作、安全可靠等特点,采用热泵装置为各类建筑物配套供热采暖或制冷降温,投资少、费用低、无污染、好管理,是实现低成本、高效益、无风险经营理想的集中供冷(暖)装置,也是改变现代化文明都市面貌、创造更舒适的人类生活环境不可

几种热泵的应用发展及技术特点分析

几种热泵的应用发展及技术特点分析 (家电英才网) 热泵作为提供热量的主要设备之一,以其对环境友善及节约能源等特点,在许多领域得到了广泛的应用。在本文中。作用首先回顾了热泵的发展历史,介绍了热泵的种类、特点、使用场合及条件,对几种主要热泵在应用过程中存在的问题进行了讨论,分析了热泵技术的研究进展、应用现状及相关新技术。 1热泵与制冷机 热泵是一种以冷凝器放出的热量对被调节环境进行供热的一种制冷系统。就热泵系统的热物理过程而言,从工作原理或热力学的角度看,它是制冷机的一种特殊使用型式。它与一般制冷机的主要区别在于: ①使用的目的不同。热泵的目的在于制热,研究的着眼点是工质在系统高压侧通过换热器与外界环境之间的热量交换;制冷机的目的在于制冷或低温,研究的着眼点是工质在系统低压侧通过换热器与外界之间的换热; ②系统工作的温度区域不同。热泵是将环境温度作为低温热源,将被调节对象作为高温热源;制冷机则是将环境温度作为高温热源,将被调节对象作为低温热源。因而,当环境条件相当时,热泵系统的工作温度高于制冷系统的工作温度。 2热泵的由来及主要应用型式 2.1热泵的由来 随着工业革命的发展,19世纪初,人们对能否将热量从温度较低的介质“泵”送到温度较高的介质中这一问题发生了浓厚的兴趣。英国物理学家J.P.Joule提出了“通过改变可压缩流体的压力就能够使其温度发生变化”的原理。1854年,W.Thomson教授(即大家熟知的LordKelvin勋爵)发表论文,提出了热量倍增器(Heat Multiplier)的概念,首次描述了热泵的设想。 当时,热泵供暖的对象主要是民用,供暖需求总量小,特别是对由于采暖方式及其对环境的影响尚没有足够的意识。人们采暖的方式主要是燃煤和木材,因而,热泵的发展长期明显滞后于制冷机的发展。 上世纪30年代,随着氟利昂制冷机的发展,热泵有了较快的发展。特别是二战以后,

空气源热泵技术与应用

空气源热泵技术及其应用 建筑工程学院建筑环境与能源应用工程 B132班游诚 目录 摘要 --------------------------------------------2 关键词 --------------------------------------------2 前言 --------------------------------------------3 1.空气源热泵的简介 ----------------------------------4 1)概念 ----------------------------------------4 2)特点 ----------------------------------------4 3)发展历史 ----------------------------------------5 4)优点 ----------------------------------------6 5)工作原理 ----------------------------------------6 2.空气源热泵的应用 -----------------------------------9 1)空气源热泵在我国的应用 ------------------------9 2)空气源热泵的技术性分析 ------------------------9 3)空气源热泵的经济性分析 ------------------------10 4)空气源热泵的能量利用分析 ------------------------10 5)空气源热泵与能源价格的关系 ----------------------10 参考文献 -------------------------------------------11 word完美格式

水冷螺杆机组与水源热泵机组工程应用实例比较.

水冷螺杆机组与水源热泵机组工程应用实例比较 以下是某单位发电站办公楼中央空调的冷水螺杆机组与节能水源热泵冷热水机组的设计实例与应用上的理论对比: 广州惠州抽水蓄能电站指挥部大楼总建筑面积11000m2,建筑高度为6层,其功能分别为:宾馆、办公楼、会议中心。发电站稍低于建筑,可以利用自然高差供水或使用水泵直接从发电站中引用水源进能冷热源交换。 该项目设计空调冷负荷1800kW,空调热负荷600kW,同时使用系统数为0.9,选主机制冷量为810kw*2= 1620kw,选用电热锅炉480kw,宾馆部分生活热水负荷400kW。空调冷热负荷采用水冷螺杆机组两台/电热锅炉一台,冷冻水泵三台(两用一备),冷却水泵三台(两用一备),冷却塔一台,风柜21台,风机盘管180台。生活热水采用太阳能热水器一批。供冷运行能耗为:主机179*2kw+冷冻水泵22kw*2+冷却水泵30kw*2+冷却塔4kw+风柜21*2.2+风机盘管180*0.08kw=526.6kw。 供热运行能耗为:电锅炉480kw+冷冻水泵22kw*1+风柜21*2.2+风机盘管约180*0.08kw=562.6kw。 计算结果如下: ① 制冷工况:系统总制冷量:Q0=1620kW;系统总功率:Pi=526.6kW;系统制冷系数:Cop=3.08。 ② 热泵工况:系统总制热量:Qk=480kW;系统总功率:Pi=562.6kW;系统制热系数:Cop=0.85。 如果选用水源热泵机组,则选用水源热泵水机组wps230.1A,制冷量为861.5kw,输入功率116.2 kw, 制热量为880.9 kw,输入功率161.9 kw;冷冻冷却水泵均按螺杆机组方按选型。那么计算结果为供冷运行能耗为:主机116.2*2kw+冷冻水泵22kw*2+冷却水泵30kw*2+风柜21*2.2kw+风机盘管180*0.08kw=397kw。 供热运行能耗为(一台主机就可以提供热源):161.9*1kw+冷冻水泵22kw*2+冷却水泵30kw*2+风柜21*2.2kw+风机盘管180*0.08kw=326.5kw① 制冷工况:系统总制冷量:Q0=861.5*2=1723kW;系统总功率:Pi=397kW;系统制冷系数:Cop=4.34。 ② 热泵工况:系统总制热量:Qk=880.9kW;系统总功率:Pi=326.5kW;系统制热系数:Cop=2.69。 如果冷却水泵直接采用发电站的高位差做动力,那么就省去冷却水泵的输入功率,这时运行能耗比为: ① 制冷工况:系统总制冷量:Q0=861.5*2=1723kW;系统总功率:Pi=397kW-30*2kw=337kw;系统制冷系数:Cop=5.11。 ② 热泵工况:系统总制热量:Qk=880.9kW;系统总功率:Pi=326.5kW-30*2kw=266.5kw;系统制热系数:Cop=3.31。 同时,如果系统采用水源热水机组,还能为生活用热水提供足量的水源。节省了太阳能的初投初,又节省了大量的电能浪费。 水源热泵式中央空调是市场上最节能环保的中央空调系统之一。它具有供热、制冷、生活热水三联供的作用、无视觉污染、减少配电容量,减少资源浪费等特点,适用地区比较广[9]。近几年,水源热泵空调系统已经在我国得到了

热泵技术在中国市场的发展前景分析

热泵技术在中国市场的发展前景分析中国泵业网热泵在我国起步较早。50年代,天津大学的一些学者已开始从事热泵的研究工作。60年代开始在我国暖通空调中应用热泵。 例如,从1963年起原华东建筑设计院与上海冷气机厂就开始研制热泵式空调器;1965年上海冰箱厂研制成我国第一台制热量为3720kw的CKT-3A热泵型窗式空调器。1965年天津大学与天津冷气机厂研制成国内第一台水冷式热泵空调机。1966年又与铁道部四方车辆研究所共同合作进行干线客车的空气-空气式热泵试验。1966年原哈尔滨建筑工程学院与哈尔滨空调机厂研制成功LHR-20恒温恒湿热泵式空调机,首次提出冷凝废热用作恒温恒湿空调机的二次加热的新流程。但是,由于我国能源价格的特殊性,以及一些其他因素的影响,热泵空调在我国的应用与发展始终很缓慢。 直至70年代末期,才又为热泵空调的发展与应用提供了机遇。 80年代初至90年代末在我国暖通空调领域掀起一股热泵热。热泵空调在我国的应用日益广泛,发展速度很快、主要表现在以下几点。

1、热泵空调的学术交流活动十分活跃 1978年至2001年,中国制冷学会第二专业委员会主办过9届“全国余热制冷与热泵技术学术会议”,今年十月将在杭州举办底10届“全国余热制冷与热泵技术学术会议”。1988年中国科学院广州能源研究所主办了“热泵在我国应用与发展问题专家研讨会”。自90年代起,中国建筑学会暖通空调委员会、中国制冷学会第五专业委员会主办的各届“全国暖通空调制冷学术年会”上专门增设“热泵专题”交流。每届热泵学术会上都广泛地交流了大量的学术论文,这充分反映了我国热泵技术的发展和进步。 2、积极开展热泵空调技术的研究工作 (1)热泵空调技术在我国运用的可行性研究 1986年北京公用事业科学研究所开展了“燃气吸收式热泵供热制

热泵技术的发展及存在问题

万方数据

万方数据

万方数据

热泵技术的发展及存在问题 作者:乔凤杰, 徐砚, QIAO Feng-jie, XU Yan 作者单位:哈尔滨电力职业技术学院,哈尔滨,150030 刊名: 信息技术 英文刊名:INFORMATION TECHNOLOGY 年,卷(期):2011(2) 被引用次数:1次 参考文献(8条) 1.徐伟地源热泵技术发展策略和工程应用分析[期刊论文]-工程建设与设计 2008(01) 2.李元哲空气源热泵在建筑节能中的应用[期刊论文]-建设科技 2010(04) 3.李景善空气源热泵蒸发器表面霜层生长特性试验研究[期刊论文]-制冷学报 2010(01) 4.GB 50366-200 5.地源热泵系统工程技术规范 2005 5.温玮地埋管地源热泵系统的设计概述[期刊论文]-福建建筑 2010(02) 6.刘慧海水热泵对海水温度影响分析[期刊论文]-环境科学与管理 2010(01) 7.毛大庆城市循环经济建设中的污水热能资源开发与水资源再生一体化研究[期刊论文]-生态经济 2006(08) 8.郭敬红大庆地区应用污水源热泵的可行性分析[期刊论文]-制冷与空调 2008(06) 本文读者也读过(10条) 1.张原.ZHANG Yuan热泵技术发展趋势探讨[期刊论文]-科技情报开发与经济2009,19(23) 2.胡连营.HU Lian-ying热泵技术与可再生能源的开发利用[期刊论文]-可再生能源2007,25(1) 3.蔡泽宇热泵技术的可持续发展与节能环保道路[期刊论文]-辽宁建材2008(6) 4.刘学飞.LIU Xue-fei热泵技术在火电厂节能中应用的探讨[期刊论文]-冶金动力2010(6) 5.刘恩海.何媛热泵技术及其发展与应用[期刊论文]-内江科技2009,30(2) 6.吕太.刘玲玲.LV Tai.LIU Ling-ling热泵技术回收电厂冷凝热供热方案研究[期刊论文]-东北电力大学学报2011,31(1) 7.杨蕾.汪南.朱冬生热泵技术及其在工农业生产中的应用[会议论文]-2008 8.于海泉热泵技术在萨南油田的应用[期刊论文]-油气田地面工程2006,25(3) 9.范亚云.夏朝凤.李军凯.韦小岿.宋洪川热泵技术在太阳能利用中的实验研究[期刊论文]-太阳能学报 2002,23(5) 10.李彬.张莉.曾立春.LI Bin.ZHANG Li.ZENG Li-chun现代空调中热泵技术的应用与发展[期刊论文]-包钢科技2009,35(2) 引证文献(1条) 1.刘凤丽海水源热泵项目排水对海域生态环境的影响[期刊论文]-现代农业科技 2012(12) 本文链接:https://www.360docs.net/doc/574910723.html,/Periodical_xxjs201102035.aspx

热泵技术与热声技术

热泵技术与热声制冷技术 摘要本文主要通过介绍热泵技术与热声制冷技术的概念,原理,主要技术,研究热点及应用,热泵技术还介绍了各个技术的优缺点,应用及应用限制,目前存在的问题及对应的解决方案,并对两种技术的今后发展进行了展望。 1.热泵技术 热泵是一种能从自然界的空气、水或土壤中获取低品位热,经过电力做功,输出能用的高品位热能的设备。现在我国主要利用三种热泵技术,分别是水源泵,地缘热泵,以及空气源热泵。 1.1热泵新技术主要为热泵系统节能新技术,热泵变频节能技术,同时供冷供热的热泵系统,高湿地区空气源热泵除霜技术,污水冷热源热泵技术应用等[1]。 1.2技术上存在方面问题风冷热泵型机组存在体型较大,噪声较高,除霜技术尚不完善等问题。主要应用风冷热泵的地区是长江流域,由于其气候原因,要求热泵必须适应0℃以下低温高湿气候环境;吸收式溴化锂制冷机组效率偏低;房间空调器存在噪声污染、热污染(大量电机功率转化的热量排入住宅)和制冷剂污染,特别是(分体式空调机安装和使用时的泄漏)。 1.3技术发展总趋势主要发展高效率的供热、供冷热泵和超级热泵系统。机械压缩式热泵的发展:(1)制冷剂侧的热泵控制(2)压缩机能量控制(3)压缩机设计(4)新工质技术;吸收式热泵和吸收式热变换器压缩-吸收式热泵;高温热泵[2]。 1.4水源热泵 1.4.1水源热泵技术的工作原理通过输入少量高品位能源(如电能),实现低温位热能向高温位转移。水体分别作为冬季热泵供暖的热源和夏季空调的冷源,即在夏季将建筑物中的热量“取”出来,释放到水体中去,由于水源温度低,所以可以高效地带走热量,以达到夏季给建筑物室内制冷的目的;而冬季,则是通过水源热泵机组,从水源中“提取”热能,送到建筑物中采暖。 1.4.2优点高效节能、属可再生能源利用技术,节水省地,环保效益显著,水源热泵系统可供暖、制冷、还可供生活热水,一机多用,水体波动小、运行稳定可靠,装置结构简单、维护方便等。

江水源热泵的应用及设计研究现状

江水源热泵的应用与研究现状 1前言 江水具有很好的宏观热能特征,将其作为热泵冷热源为建筑物供暖供冷前景巨大,在国内引起了广泛关注,目前也有一些应用案例。相比各类空气源热泵,江水源热泵能够获得更高的能效,并能缓解城市热岛效应。 长江流域处于夏热冬冷地区[1],冬夏季空调负荷较大。随着经济的增长、人民生活水平的提高,空调系统必将普及,空调负荷必将大幅增长。水源热泵机组在冬季采集来自湖水、河水、地下水及地热尾水,甚至工业废水污水中的低品位热能供给室内取暖;在夏季则把室内的热量取山,释放到水中,制取冷水达到夏季空调供冷的目的。江水源热泵利用长江水作为系统的冷热源,效率高,且不需冷却塔和锅炉等设备,机房占用面积小,不向大气排放污染物及热量,改善室内环境及城市环境。充分利用长江水资源不仪能够人幅度降低冬夏季空调能耗,而且降低电网及燃气的供应尖峰,达到高效、节能、环保的目的。本文还综述了该领域目前的应用与研究现状。 2对江水作为冷热源的分析 由于江河水年四季温度变化较小,水量丰富稳定,是水源热泵良好的低位能源。长江、嘉陵江流经整个重庆主城区,常年年均水流量长江为8500m3/s,嘉陵江为2430m3/s,两江合流后为10930m3/s;冬(12-2月)夏(6-9月)季平均江水温度(水下0.5m处),冬季12.8℃,夏季23.5℃;冬夏季平均含砂量,夏季745mg/l,冬季30.6mg/l;嘉陵江夏季504mg/l,冬季5.34mg/l。 以嘉陵江冬季江水温度和大气温度的测量分析结果为例,见表1,得出冬季嘉陵江水温分布稳定,平均在9.2~13.1℃之间,且变化非常平稳,没有大的波动,最冷月平均水温8.8℃;而空气温度则存在较大的波动,月平均气温波动范围虽不大,在8.6~12.8℃,但日平均温度波动频繁,最低只有6.6℃,最高达17.7℃,分布极不稳定。通过测量得知,冬季水温沿深度方向呈递增的趋势,经分析,水面以下2~3m处水温已很接近。因此,江水用作空调冷热源在温度和稳定性方面都较空气有明显的优势。

热泵技术与应用

热泵技术方案 摘要:介绍了蒸汽压缩式热泵和吸收式热泵的原理、基本构成、工作过程及计算方法,结合工程应用进行了经济效益分析。通过热泵回收低温余热是一项重要的节能措施,技术上可行,经济上合理。 1、背景 在石油、化工、电力、冶金、纺织、制药等行业的工艺生产过程中,往往会产生大量30~60℃的废热水,这些的低品位热源若不加以利用,不仅造成环境污染,而且还会浪费大量能源。如果这些行业有工艺或采暖用热需求,可以配备热泵,回收利用工艺产生的废热,达到节能、减排、降耗的目的。 2、热泵原理 热泵技术是根据逆卡诺循环原理,将低温热源(如城市污水、各种废水、地下水等)中的低品位热能进行回收,转换为高品位热能的一种节能与环保性技术,利用这项技术的逆过程同时还可以达到制冷的目的。目前使用的热泵主要有蒸汽压缩式热泵和吸收式热泵两种。 2.1蒸汽压缩式热泵 (1)基本构成 蒸汽压缩式热泵主机主要有以下四大部分:压缩机、膨胀阀、蒸发器、冷凝器,同时还有过滤器、储水箱等辅助部件。 压缩式热泵采用电能驱动,通过制冷剂经压缩后状态的变化,把自然界的空气热能吸收,对冷水进行加热。 (2)工作过程 蒸汽压缩式热泵机组系统工作过程如下: ●处于低压液态循环工质(如氟利昂R22及R134a)经过蒸发器,在蒸发器中工质从低温热源吸收热量变成低温、低压蒸汽进入压缩机。 ●蒸汽工质经过压缩机压缩、升温后,变成高温、高压的蒸汽排出压缩机。 ●蒸汽进入冷凝器,在冷凝器中将从蒸发器中吸取的热量及压缩机做工所产生的那部分热量传递给冷水,使其温度提高。工质经过冷凝器放热后变成液态。 ●高压液体经过膨胀阀节流降压后,变成低压液体,低压液态工质再次进入蒸发器,由此不断循环工作。 整个过程就象是热量搬运一样将低温热源中的热量连续不断的搬运至高温热源(水)中去。

热泵技术及应用

第8章热泵技术及应用 热泵是以冷凝器放出的热量来供热的制冷系统,是近三十年来迅猛发展的一种高效的节能装置。由于热泵花费少量的驱动能源,就可以从周围环境中提取低品位热量转化为有用的热量,被广泛应用于建筑空气调节、石油化工供能、农副产品加工、化工原料处理、中草药材干燥、轻工产品生产等领域中。热泵还可以采用各种新能源和可再生能源作为驱动能源,合理匹配利用能源,在节约能源的同时实现了社会的可持续发展。正是因为热泵同时兼顾节约能源、环境保护和持续发展而倍受人们关注。 8.1 热泵的基本知识 8.1.1 热泵的发展与现状 热泵的理论最早可追溯到1824年法国物理学家卡诺(S. Carnot)发表的逆卡诺循环。世界上第一个提出热泵装置的人是英国的著名科学家开尔文(L. Kelvin),开尔文早在1852年就描述了他的热量倍增器的设想。如图8—1所示,该装置由两个气缸和一个储气筒组成,气缸活塞由蒸汽机驱动,储气筒起换热器的作用。室外环境的空气被吸入气缸,膨胀降温后排至室外的储气筒,在储气筒中吸收环境热量温度回升,然后进入排出气缸被压缩至大气压力排出。显然排出空气的温度高于环境温度,被送入需要供暖的建筑物。遗憾的是,限于当时的工业技术水平,开尔文没有制造出他的热泵装置。

图8-1 卡尔文的“热泵”设想简图 历史上,同样是制冷系统的制冷机的发展远远领先于热泵,主要的原因是人类获得冷的方式比较少,而获得热的方式有很多。如化石燃料直接取暖、锅炉采暖、电加热取暖等。 世界上第一台热泵装置是1927年在英国安装试验的一台家用热泵,它是用氨作为工质,外界空气作为热源,用来采暖和加热水。当时人们已经认识到在热泵装置中,通过简单的切换循环的方向来实现冬季供热、夏季供冷的可能性,以及合理匹配废热、驱动能源、供热和制冷等综合利用的问题。 随后,美国、瑞士、德国和日本等国家也开始研究和使用热泵装置。1931年,美国洛杉矶一间办公大楼将制冷设备用于供热,供热量达1050 kW,性能系数达2.5,这是世界上最早应用的大容量热泵。1937年,日本在大型办公大楼中安装了两台194 kW的压缩机驱动并带有蓄热箱的热泵系统,以井水作为低温热源,性能系数达4.4。1939年,瑞士苏黎世安装了一台热泵系统,向市政厅冬季供暖夏季制冷,以河水作为热源,R12作为工质,采用离心式压缩机,有蓄热系统和辅助电加热系统,供热量为175 kW,性能系数为2,输出水温为60℃。此后受第二次世界大战的影响,热泵的发展出现第一个停滞期。

热泵技术及其应用的综述

热泵技术及其应用的综述 热泵机组由于其具有节能、环保及冷暖联供等优点,目前在国内广泛应用。本次收集了在全国各类报刊杂志、年会资料集及论文集有关热泵技术及应用这方面的论文共207篇。在此作为一个专题研讨,供在座的各位教员和同学们参考。有关问题综述如下: 一、空气源热泵 空气源(风冷)热泵目前的产品主要是家用热泵空调器、商用单元式热泵空调机组和热泵冷热水机组。热泵空调器已占到家用空调器销量的40~50%,年产量为400余万台。热泵冷热水机组自90年代初开始,在夏热冬冷地区得到了广泛应用,据不完全统计,该地区部分城市中央空调冷热源采用热泵冷热水机组的已占到 20~30%,而且应用范围继续扩大并有向此移动的趋势。 1、关于空气源热泵能耗评价问题 为了评价和比较热泵机组与其它冷暖设备的能耗,大约有30篇论文涉及此问题。介绍了适用于热泵机组能耗分析的理论与软件,根据空调冷负荷、室外干球温度、热泵出水温度等参数,采用温频数法,求解热泵供冷全年能耗。在求解热泵冬季能耗时,除考虑空调

热负荷、热泵出水温度、室外干球温度外,还把室外相对湿度(即温湿频数)考虑到热泵供热性能中,软件经工程实例计算,与实际耗能量有较好的吻合,为能耗评价提供了一种方法。 2、风冷热泵机组的选用 目前设计选用风冷热泵冷热水机组,常根据计算得到的冷热负荷,考虑同时使用系数及冷(热)量损耗系数后,按机组铭牌标定值选择机组台数。由于空气源热泵机组的产冷(热)量随室外参数的改变而变化,这种选择方法可能造成机组选得过大,造成浪费;或者选得过小,使供冷(热)量不足,达不到使用要求。为此建议采用空调的逐时冷热负荷和热泵机组的供热供冷能力的逐时变化曲线对照选择,会得到比较满意的结果。 3、热泵机组冬季除霜 空气源热泵冬季供热运行时,最大的一个问题就是当室外气温较低时,室外侧换热器翅片表面会结霜,(需要采取除霜措施)。根据有关文献摘录,经二年的现场跟踪测试,其结果是除霜损失约占热泵总能耗损失的10.2%,而由于除霜控制方法问题,大约27%的除霜功能是在翅片表面结霜不严重,不需要除霜的情况下进入除霜循环的。目前常用的一些方法,或多或少都存在一些问题,如发生多

海水源热泵工程案例

海水源热泵的现状及工程案例 1、国内外研究现状和发展趋势 国外有很多应用海水做热泵冷热源的实例。如20世纪70年代初建成的悉尼歌剧院,日本20世纪90年代初建成的大阪南港宇宙广场区域供热供冷工程,利用海水为23300kW的热泵提供冷热源。北欧诸国在利用海水热源方面具有丰富的实践经验,其中瑞典就是一个典型应用海水源热泵集中供冷/暖的国家。瑞典首都斯德哥尔摩建设了总能力为180MW的世界上最大的海水热泵站,用于区域供热,占城市中心网输送总量的60%。热泵站由6台供热能力为30MW/台热泵机组组成,1984-1986年调试完成,投入运行。 我国第一个海水源热泵项目于2004年在青岛发电厂建成使用。该厂总面积达1871平方米的职工食堂,成为我国第一个供热不需要煤炭、油料,只使用海水提供采暖的建筑。此外,大连市星海假日酒店海水源热泵中央空调工程也已正式启动,此次海水源热泵中央空调将为4万平方米的建筑提供制冷和采暖。 日前,经过申报和专家评审等程序,大连市被国家选为全国唯一的水源热泵技术规模化应用示范城市,这标志着大连市今后将有望以海水为能源,进行室内空气的冷热调节。 日照港青岛千禧龙花园居民小区7.2万平米,冬夏收费标准22元/平方米,青岛的采暖标准30.4元/平方米;青岛海天大酒店周围海水源热泵区域供热供冷站。和瑞典AF公司合作,承担山东路以西约100万平方米的区域供热供冷站作更深一步的可研。小港湾和记黄埔93万平方米已确定用海水源热泵。 2、政策支持 按照国家《建筑节能实施方案》要求,“十一五”期间,示范城市的水源热泵供热、制冷面积要达到500万平方米以上。示范内容包括水源热泵供热、供冷和相关的技术研发集成及产业化。对示范城市的示范项目,国家将提供专项资金,用于补贴70%的增量成本。目前,大连市正积极推进小平岛新区、星海湾商务区、软件产业带等区域实施海水热泵技术的前期工作。以水源热泵技术供热(制冷)主要是利用大型热泵对事先抽取的海水进行处理,将其中的热量提取出来,用于供热和制冷,并将能量通过城市原有的供热(制冷)系统输送到户,这就完

热泵发展过程

的建筑物内,这是一各开式装置,也可以向建筑物供冷。汤姆森教授预见到了闭式循环的可能性,但当时的技术基础使他没有可能设计出象现代这样的热泵装置。 与制冷机的发展相比,由于取暖的方式多样化,简单而价廉,因此当时在技术上对热泵的近需性就不大,这就是热泵的发展明显地滞后于制冷机的原因。 直至本世纪20-30年代,热泵有了较快的发展,一方面,在这之前工业技术特别是制冷机的发展为热泵的制造奠定了良好的基础,另一方面社会上出现了对热泵的需要。有代表性的上英国霍尔丹(Hajdane)与1930年在他的著作中报道了1927年在苏格兰安装试验的一台热泵。当时霍尔丹已经能认识道通过简单的切换制冷循环来实现冬季供热夏季制冷的可能性。他还研究了利用废水热量廉价的低谷电力,带废热回用的菜油机及在低温热源端制冰等问题。 在这之后,美国开始对热泵进行了不设计和研究,但能进行试验的很少。与1931年间,美国南加利福尼亚安迪生公司的洛衫机办公楼,将制冷设备用于供热,这是大容量热泵的最早利用,供热量达1050KW,制热系数达到2.5。欧洲第一台较大的热泵在1938-1939年间,安装于瑞士苏黎士。以河水做低温热源,采用离心式压缩机,R12做为工质,向市政亭供热175KW,制热系数为2,输出水温60度,有蓄热系统,在高峰负荷时采用电加热做辅助加热做为辅助加热。该装置夏季也能来制冷。 第二次世界大战的爆发,一方面影响与中断了空调用热泵的发展,另一方面战时能源的短缺促进了大型供热和工艺用热泵的发展。对木材及其他生物制品的干燥不仅有明显的节能效果,而且能改善产品质量。而在物料的浓缩工艺中,只需将蒸发装置中产生的废气采用压缩热泵提高一些温度便可重复用于对装置的加热,热泵在这种场合下使用因温升少其制热系数极高。同样在精馏装置中应用热泵的经济性也非常好。热泵在二次世界打战中也直接用于战事装备,如美国制造了一万台蒸馏热泵为上百万的人们提供饮用水。 在美国,各种空调与热泵机组与战后开始发展起来。于1950年,已有20个厂商及十于所大学和研究单位从事热泵的研究。当时拥有的600台热泵中约50%用于房屋供暖,45%为商用建筑空调。仅5%用于工业。通用电器公司生产的以空气为热源,制热和制冷可自切换的机组打开了局面,使空调用热泵作用一种全年云运行的空调机组而进入空调商品市场。1957年美国军事当局决定在建造十批住房项目中用热泵来代替原先设想的燃气供热方案,这又使热泵的发展进入了一个高潮。数十家空调设备制造商匆忙赶制热泵,导致数以万计的压缩机损坏,连维修更换都来不及。至60年初,在美国安装的热泵机组已到近万8万台。然而由于过快的产品增长速度造成制造质量较差,设计安装水平低维修及运行费用高,成了美国热泵发展史上的一个重大挫折,大大影响了热泵的声誉,使热泵进入10年左右的调整期,直至70年代中期才重新有了快速增长,这一方面时由于热泵技术的发展,机组可靠性的提高,另一方面时1973年能源危机的推动。至1978年美国的热泵产量已近60万台,而至1988年,美国包括热泵在内的房间和单元式空调机的产量已分别达到463万和321万台。至1996年单元式空调机产量已达567万台,而空气热源热泵产量已达114万台。 与美国的早期的迅速发展相比,欧洲一些国家热泵的发展较为缓慢。直至1973年能源危机时才又一次推动了世界范围内热泵的发展。瑞士被称为传统的热泵国家。瑞典,挪威等北欧国家取暖的需求明显超过了夏季空调的要求,故在热泵理论及技术上均有许多研究。还有象德国、法国、苏联等国家对热泵的研究也十分重视。在德国最为广泛用的是一种即可减低地窖食物存储室温度又可供应生活热水的一举两得式热泵热水器。而热泵用于区域供暖则以为瑞典为最多。斯德哥尔摩市区域供暖的容量约未50%由大型热泵提供。 一些国际组织如国际制冷学会(IIR),世界能源委员会(WEC),国际能源机构(IEA)等,经常组织有关热泵的国际活动与学术会议,促进热泵技术的发展。1922-1944年,国际能源机构的热泵中心在国际制冷协会合作下进行了国际热泵状况与政策调整调研,于25个

美意水源热泵应用工程实例

美意水源热泵应用工程实例 摘要:水源热泵是利用地下水、地表水作为冷热源的热泵机组,但水源的水质问题一直是困扰水源热泵设计的一大技术要点,对此有两种解决办法:处理水质和采用闭式换热系统。本文介绍闭式换热系统的一种形式:湖水换热系统。 关键词:水源热泵闭式换热系统PE 管湖水换热系统 水源热泵的运行工况是一年四季相对稳定的,地下水与土壤浅层温度为16~20℃,大容量地表水体温度为6~14℃(冬季),22~26℃(夏季),比环境空气温度好很多,使运行更稳定可靠,热泵寿命可长达25 年以上,保证了系统的高效性和经济性。与空气源热泵及溴化锂直燃机相比,相当于减少35?"50% 以上的能源消耗。 水源热泵是以水为冷热源。水流经机组的换热器将冷/热量交换给制冷剂,再由机组将冷/热量泵到所需适用区域。水源热泵适用的水源可以是江、河、湖、海水、地下水,甚至中水、城市污水等。 水源热泵换热系统型式分为开式系统和闭式系统。开式系统是所利用水源的水直接与水源热泵机组热交换器进行热交换。闭式系统是在机组的换热器与水源水之间外加一个换热器。闭式换热系统有如下两种形式:1、开式水源加板式换热器2、PE 管湖水换热系统。 深圳光明高尔夫球场会所采用的是PE 管湖水换热系统。下面对该项目的PE 管湖水换热系统进行介绍。 一、工程简介 本工程为深圳光明高尔夫会所中央空调工程。该建筑空调制冷面积约10,000m2,冷负荷1,000kW;生活热水用量40m3/d,出水温度55℃。为了与高尔夫球场的绿色秀美的环境相映衬,该项目的中央空调系统选用节能、环保的水源热泵空调系统。利用会所周围的人工湖湖水作为该会所空调系统的冷热源。

地下水源热泵现状及应用介绍

地下水源热泵的现状与应用 引言 地下水源热泵(Ground Water Heat Pumps,GWHP)是地源热泵(Ground Source Heat Pumps,GSHP)的一个分支。这项技术起始于1912年,瑞士Zoelly提出了“地热源热泵”的概念。1948年,第一台地下水源热泵系统在美国俄勒冈州波特兰市的联邦大厦投入了运行。在其后的几十年中,地下水源热泵得到了更为广泛的应用。美国在过去的10年内,地下水源热泵的年增长率为12%,现在大约有500,000套(每套相当于12kW)地下水源热泵在运行,每年大约有50,000套地下水源热泵在安装。我国地下水源热泵从1997年开始学习和引进欧洲产品,出现了大规模的地下水源热泵采暖工程项目。到1999年底,全国大约有100套地下水源热泵供热或制冷系统[1]. 在我国,煤炭作为主要能源,长期以来在生产、消费中占据着绝对主导地位。尽管近年来煤炭所占比例略有下降,但仍保持在65%以上,并再次呈现出上升的迹象[2].只有减少煤炭的使用,大气污染问题才有可能得到解决。我国城乡建筑发展迅速,近几年来每年建成的住宅面积,城镇已至4~5亿平方米,农村则达7~8亿平方米,其中供热、空调的建筑面积高达6.5亿平方米。与气候条件接近的发达国家相比,我国居住建筑单位面积供暖能耗为他们的3倍左右[3].现在,这些高能耗建筑冬季供暖与夏季空调的使用正日益普遍,解决它们所造成的能源浪费和环境污染问题已成为紧迫的需要。现在我国禁止在城镇建设中小型燃煤锅炉房。因此,除了集中供热的型式以外急需发展其它的替代供热方式。热泵(包括地下水源热泵)就是这样一种可以有效节省能源、减少大气污染和CO排放的供热和空调新技术。 1、基本工作原理 地下水源热泵系统的低位热源是从水井或废弃的矿井中抽取的地下水。热泵机组冬季从生产井提供的地下水中吸热,提高品位后,对建筑物供暖,把低位热源中的热量转移到需要供热和加湿的地方,取热后的地下水通过回灌井回到地下。夏季,则生产井与回灌井交换,而将室内余热转移到低位热源中,达到降温或制冷的目的,另外还可以起到养井的作用。 如果是水质良好的地下水,可以直接进入热泵进行换热,这样的系统我们称为开式环路。实际工程中更多采用闭式环路形式的热泵循环水系统,即采用板式换热器把地下水和通过热泵的循环水分隔开,以防止地下水中的泥沙和腐蚀性杂质对热泵机组的影响[3]. 由于较深的地层不会受到大气温度变化的干扰,故能常年保持恒定的温度,远高于冬季的室外空气温度,也低于夏季的室外空气温度,且具有较大的热容量,因此地下水源热泵系统的效率比空气源热泵高,COP值一般在3和4.5之间,并且不存在结霜等问题。此外,冬季通过热泵吸收大地中的热量提高空气温度后对建筑物供热,同时使大地中的温度降低,即蓄存了冷量,可供夏季使用;夏季通过热泵把建筑物的热量传输给大地,对建筑物降温,同时在大地中蓄存热量以供冬季使用。这样,在地下水源热泵系统中大地起到了蓄能器的作用,进一步提高了空调系统全年的能源利用效率。 地下水源热泵系统还可以产出生活热水,其水路连接方式大致有四种。最简单的方式有空调水系统与生活热水水系统完全分开和相关联且井水系统串级连接这两种,但是前者冷凝

相关文档
最新文档