电机驱动模块地使用

电机驱动模块地使用
电机驱动模块地使用

电机驱动模块的使用

学号 2015212822 学生姓名张家梁

专业名称应用物理学(通信基础科学)

所在系(院)理学院

指导教师韩康榕

2017 年 4 月 4 日

电机驱动模块的使用

张家梁

(北京邮电大学,北京 100876)

摘要:实验中使用电机驱动模块,采用一片双通道H桥电流控制电机驱动器DRV8833,可以同时驱动两个直流电机或一个步进电机,可通过代码改变DRV8833控制信号的占空比来改变电机的转速或LED的亮度,可以通过电流表、电压表、示波器等来完成对具体观测点的测量,对数据分析后验证功能是否正常。

关键词:直流电机;步进电机;TI Cortex M4;PWM信号驱动;示波器

The Use of Motor Drive Module

JiaLiang Zhang

(Department of Applied Physics, Beijing, BJ 10, China)

Abstract: The motor drive module is used in the experiment,. The dual-channel H-bridge current control motor driver DRV8833 can drive two DC motors or one stepper motor at the same time. The duty cycle of the DRV8833 control signal can be changed by code to change the motor speed or LED Of the brightness, you can through the ammeter, voltmeter, oscilloscope, etc. to complete the measurement of the specific point of view, after the data analysis function is normal. Keywords: DC motor; stepper motor; TI Cortex M4; PWM signal driver; oscilloscope.

1引言

电机驱动模块包括直流电机和步进电机,同时由PWM信号驱动,从而改变电机转速。

直流电机的驱动程序需要液晶、滚轮、Tiva的PWM输出、定时器等多个模块共同配合完成。液晶用于显示电机转数、滚轮用来调节 PWM 的占空比从而控制电机的转速、PWM 输出用于驱动直流电机旋转、而定时器则是用来检测电机的旋转数度。

2 实验原理

1.电机驱动模块布局

2.直流电机的控制与测速

电路等效原理结构图:

软件流程图:

3.步进电机的控制

电路等效原理结构图:

软件流程图:

4.高亮LED的驱动与电流检测

电路等效原理结构图:

软件流程图:与直流电机控制与测速使用同样的程序

3实验步骤

1.直流电机的控制与测速

2.步进电机的控制

3.高亮LED的驱动与电流检测

4实验数据及处理

1.直流电机的控制与测速

AOUT1测量点波形:

AOUT2测量点波形:

AIO测量点波形:

2.步进电机的控制

3.高亮LED的控制与电流检测

0.51mA

26.81mA

43.0mA

表89.1mA

135.6mA

313.9mA

由上述实验所得数据以及图像可知,随着滚轮转动,PWM波的频率越大,直流电机和步进电机的转速越快,驱动LED灯的信号的占空比越大,LED灯越亮。

5 思考题

1. 1.CoretxM4调节直流电机转速的方法?

直流电机的驱动程序需要液晶、滚轮、PWM输出、定时器等多个模块的共同配合完成。其中液晶用于显示电机转数、滚轮用来调节PWM的占空比从而控制电机的转速、PWM 输出用于驱动直流电机旋转。

故可通过调节LCD模块滚轮或改变代码中PWM波的占空比的初始值来调节直流电机的转速,这两种方式使在电机转速取到转速范围内的任意值。

2.CoretxM4调节步进电机转速的方法?

步进电机调节转速的方式同直流电机调节转速的方式相同。即调节LCD模块滚轮或改变代码中PWM波占空比。而如果要改变转速的初始值,则需要改变代码系统时钟分频,产生所需频率的PWM波。

6 总结

此次试验中需要注意的问题是注意S4开关的拨向,三个实验均不同,还有最后的高亮LED驱动需要跳线短接。其他就比较顺利了。遇到的问题是在步进电机驱动实验LCD模块没有准确的周期显示,改变代码后显示的只是相对值的大小,而且并没有解决这个问题,导致步进电机的控制实验显示的周期误差不正常,除此之外实验比较顺利。

7 参考文献

[1] TEXAS INSTRUMENTS使用手册.

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

步进电机及其驱动系统简介中英文翻译

步进电机及其驱动系统简介中英文翻译Step characteristics for machine for angular displacement for entering the electrical engineering is first kind will give or get an electric shocking the pulse signal conversion cowgirl or line potential moving battery carry outing a piece, having the fast stopping, accurate step entering and directly accepting the arithmetic figure measuring, because of but got the extensive application.Such as in the drafting machine, print the machine and optical instrument inside, and all adopt the inside of a place control system for entering the electrical engineering to positioning to paint the pen print head or optical prinipal, especially indrstry process the type control, and move to spread to feel the to can immediately attain the precision fixed position because of its precision and need not potential, and control the technique along with the calculator of continuously deveolp, applied to would be more and more extensive. Control and can is divided into the simple control sum the complicacy to control to motor two kind.The simple control points to proceeds to start to motor, the system move, positive and negative revolution and sequential https://www.360docs.net/doc/5814534982.html,plicacy the control point to the motor's revolving speed, screw angle, turning moment, tension, electric current etc. physics quantisty progress control.Control technique that the

较大功率直流电机驱动电路的方案与对策

1 引言 直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。 许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。 2 H 桥功率驱动电路的设计 在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。 2.1 H 桥驱动原理 要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

电机驱动模块的使用

共享知识分享快乐 电机驱动模块的使用 2015212822 号学 张家梁学生姓名 应用物理学(通信基础科学)专业名称 理学院所在系(院) 指导教师韩康榕

日月年2017 4 4 卑微如蝼蚁、坚强似大象. 共享知识分享快乐 电机驱动模块的使用 张家梁 () 100876北京邮电大学,北京摘要:实验中使用电机驱动模块,采用一片双通道H桥电流控制电机驱动器DRV8833,可以同时驱动两个直流电机或一个步进电机,可通过代码改变DRV8833控制信号的占空比来改变电机的转速或LED的亮度,可以通过电流表、电压表、示波器等来完成对具体观测点的测量,对数据分析后验证功能是否正常。 信号驱动;示波器;PWM关键词:直流电机;步进电机;TI Cortex M4 The Use of Motor Drive Module JiaLiang Zhang (Department of Applied Physics, Beijing, BJ 10, China) Abstract:The motor drive module is used in the experiment,. The dual-channel H-bridge current control motor driver DRV8833 can drive two DC motors or one stepper motor at the same time. The duty cycle of the DRV8833 control signal can be changed by code to change the motor speed or LED Of the brightness, you can through the ammeter, voltmeter, oscilloscope, etc. to complete the measurement of the specific point of view, after the data analysis function is normal. Keywords: DC motor; stepper motor; TI Cortex M4; PWM signal driver; oscilloscope. 1引言 电机驱动模块包括直流电机和步进电机,同时由PWM信号驱动,从而改变电机转速。 直流电机的驱动程序需要液晶、滚轮、Tiva的PWM输出、定时器等多个模块共同配合完成。液晶用于显示电机转数、滚轮用来调节PWM 的占空比从而控制电机的转速、PWM 输出用于驱动直流电机旋转、而定时器则是用来检测电机的旋转数度。 2 实验原理 1.电机驱动模块布局 卑微如蝼蚁、坚强似大象. 共享知识分享快乐 2.直流电机的控制与测速 电路等效原理结构图:

步进电机驱动电路设计

https://www.360docs.net/doc/5814534982.html,/gykz/2010/0310/article_2772.html 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。

直流电机驱动控制电路_NMosfet

1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。 2 直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一 由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。 在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。 3 H桥功率驱动原理 直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。

L298N电机驱动模块详解

L298N电机驱动器使用说明书 注意:本说明书中添加超链接的按CTRL并点击连接,即可看到内容。

实例一:步进电机的控制实例 步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。 一、步进电机最大特点是: 1、它是通过输入脉冲信号来进行控制的。 2、电机的总转动角度由输入脉冲数决定。 3、电机的转速由脉冲信号频率决定。 二、步进电机的驱动电路 根据控制信号工作,控制信号由单片机产生。(或者其他信号源)

三、基本原理作用如下: 两相四拍工作模式时序图: (1)控制换相顺序 1、通电换相这一过程称为脉冲分配。 例如: 1、两相四线步进电机的四拍工作方式,其各相通电顺序为(A-B-A ’-B ’)通电控制脉冲必须严格按照这一顺序分别控制A,B 相的通断。) 2、两相四线步进电机的四拍工作方式,其各相通电顺序为: (A -AB -B -BA ’-A ’-A ’B ’-B ’-B ’依次循环。(出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用八拍工作方式)

(2)控制步进电机的转向 如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。如:正转通电顺序是:(A-B-A’-B’依次循环。)则反转的通电顺序是:(B‘-A’-B-A依次循环。) 参考下例: (3)控制步进电机的速度 如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整单片机发出的脉冲频率,就可以对步进电机进行调速。(注意:如果脉冲频率的速度大于了电机的反应速度,那么步进电机将会出现失步现象)。参考下例: (4)四相电机的控制程序

步进电机驱动方式的分类及比较

步进电机驱动方式的分类及比较 步进电机驱动方式的分类及比较:步进电机驱动方法的分类主要有恒电压驱动方式、恒电流斩波驱动方式和细分驱动方式。以下是这几种驱动方式的简介及比较。 1 恒电压驱动方式 1.1 单电压驱动 单电压驱动是指在电机绕组工作过程中,只用一个方向电压对绕组供电。如图2所示,L为电机绕组,VCC为电源。当输入信号In为高电平时,提供足够大的基极电流使三极管T处于饱和状态,若忽略其饱和压降,则电源电压全部作用在电机绕组上。当In为低电平时,三极管截止,绕组无电流通过。 为使通电时绕组电流迅速达到预设电流,串入电阻Rc;为防止关断T时绕组电流变化率太大,而产生很大的反电势将T击穿,在绕组的两端并联一个二极管D和电阻Rd,为绕组电流提供一个泄放回路,也称“续流回路”。 单电压功率驱动电路的优点是电路结构简单、元件少、成本低、可靠性高。但是由于串入电阻后,功耗加大,整个功率驱动电路的效率较低,仅适合于驱动小功率步进电机。 1.2 高低压驱动 为了使通电时绕组能迅速到达设定电流,关断时绕组电流迅速衰减为零,同时又具有较高的效率,出现了高低压驱动方式。 如图3所示,Th、T1分别为高压管和低压管,Vh、V1分别为高低压电源,Ih、I1分别为高低端的脉冲信号。在导通前沿用高电压供电来提高电流的前沿上升率,而在前沿过后用低电压来维持绕组的电流。高低压驱动可获得较好的高频特性,但是由于高压管的导通时间不变,在低频时,绕组获得了过多的能量,容易引起振荡。可通过改变其高压管导通时间来解决低频振荡问题,然而其控制电路较单电压复杂,可靠性降低,一旦高压管失控,将会因电流太大损坏电机。 2 恒电流斩波驱动方式 2.1 自激式恒电流斩波驱动 图4为自激式恒电流斩波驱动框图。把步进电机绕组电流值转化为一定比例的电压,与D/A转换器输出的预设值进行比较,控制功率管的开关,从而达到控制绕组相电流的目的。从理论上讲,自激式恒电流斩波驱动可以将电机绕组的电流控制在某一恒定值。但由于斩波频率是可变的,会使绕组激起很高的浪涌电压,因而对控制电路产生很大的干扰,容易产生振荡,可靠性大大降低。

电机驱动及控制模块

电机驱动及控制模块

3.3电机驱动及控制模块 331 电机特性 —小车前进的动力是通过直流电机来驱动的,直流电机是最早出现的电动机, 也是最早能实现调速的电动机。长期以来,直流电动机一直占据着调速控制的 统治地位。它具有良 图7主、从单片机小系统应用电路 好的线性调速特性,简单的控制性能, 较高的效率,优异的动态特性。系统 选用的大谷基础车的260马达作为驱动电机。其额定电压为 3-12V ,额定功率 0.02KW 额定转速 3000r/min 。 近年来,直流电动机的结构和控制方式都发生了很大变化, 随着计算机进入 控制领域,以及新型的电力电子功率元件的不断出现,使采用全控制型的开关 功率元件进行脉冲调制(Pulse Width Modulation 简称PWM 控制方式已经成 为主流,这种控制方式容易在单片机控制中实现。 BE yr CAPCAP 2+ CAP + CiP I * EP Z CAP b HT-OVTl rr-xrr: T-m TDU rae.-[tfi E-C'UTL 化UT2 H 山习4 F21TF 匸曲 ~IF P22 vcc P22 m 酯T KX1WXI Pi - ? TTCZ'JPJL Pl? YT 11 T m 電 XTALi P14 nffo/pss F13 D1TLJP3J P12 JP34 P1J PLD PA 回■! P 討TCAO PM 时 ow P 禹 PIO Vcc P]1 FOCUADQ P32 POL/ADL E>JJ ! Plfl Pt3(AD3 P]5 P 】6 f :^AD5 P17 P0*'AD6 PB7/AD7 RST Tmjpsi EX LVD^ fiZRST2 AL&FI 5 曲朗 卜⑷PJ 4 wwu TflrP34 ri 郴 PIT PM 廻p 北 F35 FiZiiP]! F24 F33 xrAi.3 P]3 j^TALL P.3L Pin tr 空【 时 LED T 级, 厂:1巧处4打"卜单怜机 VCC 鱼T Z? 1. P ■ ■ ?一 ■■ ■ ■ b w 1 ? 3 *?!>rr ? .1 L I I I I r —PF p p Lp

步进电机及其驱动电路

第三节步进电动机及其驱动 一、步进电机的特点与种类 1.步进电机的特点 步进电机又称脉冲电机。它是将电脉冲信号转换成机械角位移的执行元件。每当输入一个电脉冲时,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。 步进电动机具有以下特点: ?工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响; ?步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ; ?由于可以直接用数字信号控制,与微机接口比较容易; ?控制性能好,在起动、停止、反转时不易“丢步”; ?不需要传感器进行反馈,可以进行开环控制; ?缺点是能量效率较低。 就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种: (1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机 (2)永磁(PM-Permanent Magnet)型 (3)混合(HB-Hybrid)型 (1)可变磁阻(VR-Variable Reluctance) 结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。其结构原理如图3.5定子1 上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。

图3.6 可变式阻步进电机 可变磁阻步进电机的特点: 反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力; 需要将气隙作得尽可能小,例如几个微米; 结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°) 制造材料费用低; 有些数控机床及工业机器人上使用。 (3)混合(HB-Hybrid)型 结构原理 这类电机是PM式和VR式的复合形式。其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。其结构如图3.7所示。 混合式步进电机特点: HB兼有PM和VR式步进电机的特点: 步距角可以做得较小(0.9~3.6°); 无励磁时具有保持力; 可以产生较大转矩,应用较广。

实用的步进电机驱动电路图

实用的步进电机驱动电路(图) 概述 步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。 图1 步进电机控制系统框图 硬件简介 ● PMM8713原理框图及功能 PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。

图2 PMM8713的原理框图 在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。 激励方式控制电路用来选择采用何种励磁方式。激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。 ● SI-7300A的结构及功率驱动原理 SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。 步进电机功率驱动级电路可分为电压和电流两种驱动方式。电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。

步进电机驱动模块L298N介绍

不进电机驱动L298N均采用ST原装芯片,性能非常稳定! 一、特点 L298N是ST公司生产的一款电机驱动芯片,L298N芯片内含两个全桥式驱动器,可以同时驱动两个直流电机或者一个两相四线步进电机。逻辑输入部分加入光电隔离模块,从而更好的保护控制器;模块最大输入电压为40V,单路峰值电流为3A,持续2A,最大功率不得超过25W;逻辑端输入端采用标准TTL电平控制,并设有两个使能端ENA\ENB,用来允许、禁止器件工作,默认接到VCC。

IN1-IN4:逻辑输入端,其中IN1、IN2控制电机M1;IN3、IN4控制电机M2。例如IN1输入高电平1,IN2输入低电平0,对应电机M1正转;IN1输入低电平0,IN2输入高电平1,对应电机M1反转,调速就是改变高电平的占空比。 ENA、ENB:L298N使能端(高电平有效,默认用短接到VCC),可通过这两个端口实现PWM 调速(使用PWM调速时取下跳线帽),具体参考L298N芯片手册。 VCC/GND:逻辑控制部分供电,可以用控制器的5V/3.3V来供电。 VIN/GND:电机供电电源接口,VIN、GND分别接电源正、负极 M1、M2:电机接口,没有正负之分,如果发现电机转向不对将电机两线调换即可

例子 四、电机控制: 例如逻辑输入部分接单片机P0口的P0.0-P0.3,那么想让电机正转只要给1010,反转给0101即可: Void main() { While(1) { P0=0xaa;//IN1-4输入1010,电机正转

Delay(1000);//延时1秒 P0=0x55;//IN1-4输入0101,电机反转 Delay(1000);//延时1秒 } }

电机驱动系统效率优化控制技术研究现状

1.2 电机驱动系统效率优化控制技术研究现状 电动汽车的动力由电动机提供,电机驱动系统(简称驱动系统)的性能直接影响了电动汽车的性能。电动汽车系统需要能够满足频繁停车启动、加速、大负载爬坡以及紧急制动等要求,也需要考虑到汽车行驶路况复杂多变,存在雨天、酷热、下雪等恶劣天气,以及颠簸、泥泞等复杂路况。另外,在满足行驶条件的情况下还应最大限度地保证驾驶人员和乘坐人员的舒适安全。作为电动汽车的核心部分,驱动系统应满足宽调速范围、宽转矩输出范围、良好的加减速(起动、制动)性能、运行效率高(提高续航里程)以及高可靠性等要求。 针对永磁同步电机驱动系统的效率优化,总体来说可分为以下三个方向: 1)从电机本体的电磁设计、制造工艺以及电机的材料着手,开发高效电机。 2)改进脉宽调制(Pulse Width Modulation,PWM)技术,降低功率开关器件上的损耗从而提高逆变器的整体效率;降低变频器输出电压的谐波含量,如采取空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)技术和软开关技术,减小谐波含量从而提高驱动系统的整体效率。 3)研究合适的控制策略,在保证电机满足运行条件的情况下减小直流侧的功率输入,提高驱动系统的效率。 目前,针对永磁同步电机驱动系统效率优化所提出的控制策略很多,总体来说可以分为两大类:第一类是基于损耗模型的效率优化控制(Loss Model Control,LMC)策略;第二类是基于搜索法的效率优化控制(Search Control,SC)策略。下面分别进行概述。 1.2.1 基于损耗模型的效率优化控制策略 该控制策略作为一种基于前馈式的控制方法,基本原理是:在充分考虑电机各部分损耗的基础上,建立较为精确的损耗模型,根据电机运行状况(负载转矩和实际转速)计算出该运行状况下最优的控制变量(一般为磁场、电压或者电流)以减小驱动系统的损耗。若控制变量为电枢电流,对永磁电机驱动系统来讲一般选择最优的直轴电流i d和交轴电流i q,对混合励磁电机驱动系统来讲包括i d、i q以及励磁电流I f。这种控制策略目前已被广泛应用到了闭环传动系统中,可以保障电机驱动系统在全局运行范围内都能实现效优化。基于损耗模型的同步电机效率优化控制基本框图如图1.1所示。 基于损耗模型的驱动系统效率优化策略最早由T.M.Rowan和T.A.Lipo[1],以及H.G.Kim [2]等人提出并进行研究;1987年Bose[3][4]等人将该策略运用到永磁同步电机驱动系统中。美国学者X.Wei和R.D.Lorenz已将基于损耗模型控制策略结合直接转矩控制(Direct Torque Control,DTC)中,以提高永磁同步电机在瞬态过程中的效率[5]。针对同步电机而言,基于损耗模型的效率优化策略总共可以分为五种类型:考虑铁损的损耗模型控制策略[6][7]、考虑铜损的损耗模型控制策略[8][9]、考虑铁损和铜损的损耗模型控制策略[10][11]、基于电机精确损耗模型损耗模型控制策略[12][13]和约束条件下的损耗模型控制策略[14][15]。

步进电机及其驱动

步进电机及其驱动 1.步进电机的特点与种类 (1)步进电机的特点 步进电机又称脉冲电动机。它是将电脉冲信号转换成机械角位移的执行元件。其输入一个电脉冲就转动一步,即每当电动机绕组接受一个电脉冲,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步,只要控制输入电脉冲的数量、频率以及电动机绕组通电相序即可获得所需的转角、转速及转向、很容易用微机实现数字控制。步进电机具有如下特点: 1)步进电机的工作状态不易受各种干扰因素(如电源电压的波动、电流的大小与波形的变化、温度等)的影响,只要在它们的大小未引起步进电机产生“丢步”现象之前,就不影响其正常工作; 2)步进电机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零”,因此不会长期积累; 3)控制性能好,在启动、停止、反转时不易“丢步”。因此,步进电机被广泛应用于开环控制的机电一体化系统,使系统简化,并可靠地获得较高的位置精度。 (2)步进电机的种类 步进电机的种类很多,有旋转式步进电机,也有直线步进电机;从励磁相数来分有三相、四相、五相、六相等步进电机。就常用的旋转式步进电机的转子结构来说,可将其分为以下三种: 1)可变磁阻(VR-VariableReluctance)型 该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称反应式步进电机。其结构原理如下图所示。其定子1与转子2由铁心构成,没有永久磁铁,定子上嵌有线圈,转子朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁型。 此类电动机的转子结构简单、转子直径小,有利于高速响应。由于VR型步进电机的铁心无极性,故不需改变电流极性,因此多为单极性励磁。

步进电机驱动器以及原理图

` 基于L297系列芯片的步进电机驱动器 设计说明书 一:概述 步进电动机是用脉冲信号进行控制,将点脉冲信号转换成相应的角位移和线位移的微电机,广泛地应用于打印机等办公知道设备以及各种控制装置。 步进电机和一般的电机不同,之接电源步进电机不能转动,而每加一个点脉冲仅转动一定的角度,另外,改变脉冲的频率时,步进电机的速率也跟着改变。 步进电机按电磁转距产生机理的不同可以分为反应式步进电机,永磁式步进电机和混合式步进电机,而按绕组的相数又可以分为单相,两相,三相。五相……… 二:步进电机的驱动方式 由于篇幅有限和设计的实际情况,在这我只介绍和设计方式相关的二相步进电机的励磁方式和驱动方式。 (一)驱动器结构简介 步进电机驱动器主要结构可以由下图表示 各部分的主要作用为 1:环行分配器:根据输入信号的要求产生电机在不同状态下的开关波形 2:信号处理:对环行分配器产生的开关信号波形进行PWM调制以及对相关的波形进行滤波整形处理 3:推动级:对开关信号的电压,电流进行放大提升 4:主开关电路:用功率元器件直接控制电机的各相绕组 5:保护电路:当绕组电流过大时产生关断信号对主回路进行关断,以保护电机驱动器和电机绕组 6:传感器:对电机的位置和角度进行实时监控,传回信号的产生装置。 (二):励磁方式

本设计对二相双极性电机进行的,所以介绍二相电机的励磁方式 1:一相励磁:通电的绕组只有一相,依次切换相电流产生旋转步距角为1。8度,对这种励磁方式,每个脉冲到来时的旋转角的响应有振动,若频率过高,有时会产生失步现象 2:两相励磁:两相同时流通电流,也采用依次切换相电流的方法,二相励磁的步距角为1.8度,二相历次的总电流增大2倍,则最高启动频率增大,能获得高的转速,另外,过度性能也好。 3:一,二相励磁:这是一种交替进行一相励磁,二相励磁的方法,启动电流每两个始终切换依次,因此步距角为0。9度,励磁电流变大,过度性能也好,最大启动频率也高。 (三):驱动方式 单极性和双极性是步进电机最常采用的两种驱动架构。单极性驱动电路使用四颗晶体管来驱动步进电机的两组相位,电机结构则如图1所示包含两组带有中间抽头的线圈,整个电机共有六条线与外界连接。这类电机有时又称为四相电机,但这种称呼容易令人混淆又不正确,因为它其实只有两个相位,精确的说法应是双相位六线式步进电机。六线式步进电机虽又称为单极性步进电机,实际上却能同时使用单极性或双极性驱动电路。 单极性步进电机驱动电路 双极性步进电机的驱动电路则如图2所示,它会使用八颗晶体管来驱动两组相位。双极性驱动电路可以同时驱动四线式或六线式步进电机,虽然四线式电机只能使用双极性驱动电路,它却能大幅降低量产型应用的成本。双极性步进电机驱动电路的晶体管数目是单极性驱动电路的两倍,其中四颗下端晶体管通常是由微控制器直接驱动,上端晶体管则需要成本较高的上端驱动电路。双极性驱动电路的晶体管只需承受电机电压,所以它不像单极性驱动电路一样需要箝位电路。

直流电机H桥驱动原理和驱动电路选择L9110_L298N_LMD18200

在直流电机驱动电路的设计中,主要考虑一下几点: 1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机 即可,当电机需要双向转动时,可以使用由4 个功率元件组成的H 桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使 用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM (脉冲宽度调制)调速。 2.性能:对于PWM 调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防 止共态导通(H 桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或 光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 H桥驱动电路:H桥式电机驱动电路包括4个三极管和一个电机,因其外形酷似字母'H',所以称作H桥驱动电路。 要使电机M运转,必须使对角线上的一对三极管导通。例如当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。电机顺时针转动。当三极管Q2和Q3导通时,电流将从右至左流过电机,驱动电机逆时针方向转动。

电机驱动模块的使用

电机驱动模块的使用 学号 2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学) 所在系(院)理学院 指导教师韩康榕 2017 年 4 月 4 日

电机驱动模块的使用 张家梁 (北京邮电大学,北京 100876) 摘要:实验中使用电机驱动模块,采用一片双通道H桥电流控制电机驱动器DRV8833,可以同时驱动两个直流电机或一个步进电机,可通过代码改变DRV8833控制信号的占空比来改变电机的转速或LED的亮度,可以通过电流表、电压表、示波器等来完成对具体观测点的测量,对数据分析后验证功能是否正常。 关键词:直流电机;步进电机;TI Cortex M4;PWM信号驱动;示波器 The Use of Motor Drive Module JiaLiang Zhang (Department of Applied Physics, Beijing, BJ 10, China) Abstract:The motor drive module is used in the experiment,. The dual-channel H-bridge current control motor driver DRV8833 can drive two DC motors or one stepper motor at the same time. The duty cycle of the DRV8833 control signal can be changed by code to change the motor speed or LED Of the brightness, you can through the ammeter, voltmeter, oscilloscope, etc. to complete the measurement of the specific point of view, after the data analysis function is normal. Keywords: DC motor; stepper motor; TI Cortex M4; PWM signal driver; oscilloscope. 1引言 电机驱动模块包括直流电机和步进电机,同时由PWM信号驱动,从而改变电机转速。直流电机的驱动程序需要液晶、滚轮、Tiva的PWM输出、定时器等多个模块共同配合完成。液晶用于显示电机转数、滚轮用来调节PWM 的占空比从而控制电机的转速、PWM 输出用于驱动直流电机旋转、而定时器则是用来检测电机的旋转数度。 2 实验原理 1.电机驱动模块布局

步进电机驱动模块

一.方案论证 方案一:由单片机编程产生并分配环形脉冲,由分散元件构成功率放大电路,信号经其放大后驱动步进电机。设计方框图如图J.1所示。 图J.1 方案一 该方案由单片机作为脉冲产生模块以及脉冲分配模块,经编程后从单片机输出已经分配的环形脉冲,经一些分散元件构成的放大电路放大后驱动步进电机。此方案结构简单易行,驱动电机所需要的控制信号直接由软件实现。由分散元件构成的放大电路实现简单,而且所需元件常见,价格便宜,节约成本。但是该设计在步进电机在低频工作时,振动大、噪声大。另外占用单片机资源较多,编程复杂,而且不能实现对脉冲实现细分,达到对步进电机的精确控制。 方案二:由单片机产生脉冲,经L298N芯片进行脉冲分配和功率放大后,将脉冲信号输入步进电机进行驱动。设计方案如图J.2所示。 图J.2 方案二 L298N可以驱动两个二相电机,也可以驱动一个四相电机,可直接通过电源来调节输出电压,直接用单片机的I/O口提供信号。但是其电路较为复杂,调试相对繁琐,最大只能1/4细分,低速运行震动噪音较大。 方案三:由单片机产生脉冲,经TA8435H专用芯片进行脉冲分配和功率放大后,将脉冲信号输入步进电机进行驱动。设计方案如图J.3所示。 图J.3 方案三 使用细分方式,能很好的解决步进电机在低频工作时,振动大、噪声大的问题。步进电机的细分控制,从本质上讲是通过对步进电机励磁绕组中电流的控制,使步进电机内部的合

成磁场为均匀的圆形旋转磁场,从而实现步距角的细分。跟用L298N比较:调试简单,最大1/8细分,低速运行震动噪音小;而且简化了电路。 通过综合比较为达到最佳驱动效果,选择TA8435H芯片驱动步进电机。 二.理论分析与计算 步进电机有两种工作方式:整步方式和半步方式。以步进 角1.8°四相混合式步进电机为例,在整步方式下,步进电 机每接收一个脉冲,旋转1.8°,旋转一周,则需要2OO个 脉冲。在半步方式下,步进电机每接收一个脉冲,旋转0.9°, 旋转一周脉冲数: N=2π/0.9° =400 旋转一周,则需要4OO个脉冲。控制步进电机旋转必须按一定 时序对步进电机引线输入脉冲。以四相六线制电进电机为例, 其半步工作方式和整步工作方式的控制时序如表1和表2所 列。步进电机在低频工作时.会有振动大、噪声大的缺点。如 果使用细分方式,就能很好的解决这个问题。步进电机的细分 控制,从本质上讲是通过对步进电机励磁绕组中电流的控制, 使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。步进电机半步工作方式就蕴涵了细分的工作原理。 在图J.3中,第一个CK时钟周期时,解码器打开桥式驱动电路,电流从VMA流经电机的线圈后经RNFA后与地构成回路,由于线圈电感的作用,电流是逐渐增大的,所以RNFB 上的电压也随之上升。当RNFB上的电压大于比较器正端的电压时,比较器使桥式驱动电路关闭,电机线圈上的电流开始衰减,RNFB上的电压也相应减小;当电压值小于比较器正向电压时,桥式驱动电路又重新导通,如此循环,电流不断的上升和下降形成锯齿波,其波形如图3中IA波形的第1段。另外由于斩波器频率很高,一般在几十kHz,其频率大小与所选用电容有关。在OSC作用下.电流锯齿波纹是非常小的,可以近似认为输出电流是直流。在第2

相关文档
最新文档