浅谈管壳式换热器的制造工艺(精)

浅谈管壳式换热器的制造工艺(精)
浅谈管壳式换热器的制造工艺(精)

浅谈管壳式换热器的制造工艺

在换热器的制造中,筒体、封头等零件的制造工艺与一般容器制造无异,只是要求不同,其中重点把握材料的检验,管板、折流板管孔的配钻,筒体的焊接,法兰的加工等。纵观其制造工艺,大部分用的是传统工艺,其中焊接占的比例较高,因而必须严格按照焊接工艺施焊,并且对焊缝探伤。

1 检验材料

换热器用的材料中,钢材(钢板、钢管、型材、锻件)的质量及规格应符合下列现行国家标准、行业标准或有关技术条件,钢材应符合GB GB713-2008的要求,钢材的选用应接受国家质量技术监视局颁发《压力容器安全技术监察规程》的监察。其中,受压元件以及直接与受压元件焊接的非受压元件用钢材,必须附有钢厂的钢材质量证实书(或复制件,复制件上应加盖供给部分的印章)。常见的有碳素钢和低合金钢(如Q235-B、Q235-C、Q245R、Q345R等)。根据设备的使用条件,需留意材料的供货状态,如正火状态;必要时复验材料的化学成分和检验其机械性能;进行超声波检验等。

标准规定,压力容器用碳素钢和低合金钢,当壳体厚度大于30mm的Q245R和Q345R,其他受压元件(法兰、管板、平盖等)厚度大于50mm的Q245R和

Q345R,以及厚度大于16mm的15MnVR,应在正火状态下使用;调质状态下和用于多层包扎容器内筒的碳素钢和低合金钢要逐张进行拉力试验和夏比(V型)常温或低温冲击试验。

凡符合下列条件之一的,应逐张进行超声波检测:①艳服介质毒性程度为极度、高度危害的压力容器②艳服介质为液化石油气且硫化氢含量大于100mg/l的压力容器③最高工作压力大于即是10MPa的压力容器④GB150第二章和附录C、

GB151《管壳式换热器》、GB2337《钢制球形储罐》及其他国家标准和行业标准中规定应逐张进行超声波检测的钢板(详见各标准)⑤移动式压力容器。

选材时,经常要对材料焊接试板进行力学性能检验,主要有拉伸试验,弯曲试验和冲击试验。其中弯曲试样按规定要求冷弯到规定角度后,受拉面上不得有沿任何方向单条长度大于3mm的裂纹或缺陷。

常温冲击试验的合格指标:常温冲击功规定按图样或有关技术文件的规定,当不得小于27J(三个标准试样冲击功)。低温冲击功规定值按附录(标准的附录)的有关规定;试验温度下三个试样冲击功均匀值不得低于上述规定值,其中一个试验的冲击功可小于规定值,但不得小于规定值的70%。

2 焊接方式

制造过程中,常用的焊接方法有手工电弧焊、埋弧自动焊、气体保护焊(氩弧焊、CO2保护焊)等。根据不同的材料,不同的厚度,开不同的坡口,采用不同的焊接工艺。手工电弧焊是应用最广泛的焊接方法,其操纵灵活,设备简单,可

进行全位置的焊接,但焊接质量很大程度上取决于焊工的技术水平;埋弧自动焊电弧热量利用率高,焊接速度较快,生产率高,可节约金属和改善劳动条件,但受其限制,一般只用来焊接直焊缝和大圆周环焊缝。例如:筒体(δ≥18mm时)的纵缝、环缝焊接可以先用手工电弧焊打底,经试验检验合格后,再用埋弧自动焊焊牢;由于换热管比较薄,所以管板与换热管的焊接采用氩弧焊,之后再用胀管器胀接。

焊接过程中产生变形和应力是不可避免的,因而必须想办法降低其危害,采用好的焊接材料,更公道的焊接工艺,公道的工件结构和坡口等,退火消除应力。焊完后,不能保证焊缝中没有缺陷,完全合格,所以

根据不同的焊缝(AB类、CD类),采用不同的探伤方式,并且达到一定的等级合格。GB150-1998标准规定符合以下情况的压力容器的A类和B类焊缝应进行100%的射线或超声波检测:

①钢材厚度δs>30mm的碳素钢、Q345R;

②钢材厚度δs>25mm的15MnVR、15MnV、15MnNbR、20MnMo和奥氏体不锈钢

③进行气压试验的压力容器

④图样注明艳仰药性为极度危险或高度危害介质的容器

⑤多层包扎压力容器内筒的A类焊接接头等等

同时标准规定,凡符合下列条件之一的焊接接头,需按图样规定的方法,对其表面进行磁粉或渗透检测:

①凡属标准规定的容器上的C类和D类焊接接头;

②堆焊表面;

③复合钢板的复合层焊接接头;

④层板材料标准抗拉强度下限值δb>540MPa的多层包扎压力容器的层板C类焊接接头等等

焊缝的射线检测按JB4730-94进行,其检查结果对100%检测的A类、B类焊缝,Ⅱ级为合格;对局部检测的A类和B类焊缝,Ⅲ级为合格。

焊缝的超声波检测按JB4730-94进行,其检查结果对100%检测的A类、B类焊缝,Ⅰ级为合格;对局部检测的A类和B类焊缝,Ⅱ级为合格。

经过射线或超声波检测分歧格的焊缝,用碳弧气刨清根处理,重新施焊,并用原来的探伤方式进行探伤,直至检验合格。

3 几个重要的工艺

①管板、折流板的制造是制造过程中突出题目。管板由机械加工完成,其孔径和孔间距根据不同的管束有公差要求。钻孔可用划线钻孔、钻模钻孔,先进一点可以采用数控机床。但采用划线钻孔时,由于精度较差,在钻折流板管孔时,必须

将管板和折流板重叠起来配钻,钻后再把折流板依次编号和方位图,便于装配。折流板应按整块圆板钻孔,钻完孔后再划线切割成所需外形。

②管子与管板的连接,常见的有以下几种:a、强度胀b、强度焊c、强度胀加密封焊d、强度焊家贴胀。目前广泛采用的是胀焊并用,这种方法可进步连接处的抗疲惫性能,消除应力腐蚀和间隙腐蚀。对于焊接管接头的检测,目前普遍采用表面渗透或磁粉检测方法控制接头质量,对于焊接接头内部缺陷并没有任何检测要求。

③容器大部分采用焊接工艺,必须对焊缝进行消氢处理和焊后热处理。焊接过程中,来自焊条、焊剂和空气中的氢气,在高温下分解成原子状态溶于液态金属中,焊缝冷却时,氢在钢中的溶解度急剧下降,由于焊缝冷却很快,氢来不及逸出,留在焊缝金属中,过一段时间形成延迟裂纹。焊后对焊缝加热至200℃,16小时,进行消氢处理。焊后热处理有将焊件整体或局部加热到A线(相变点)以下某一温度进行保温,然后炉冷或空冷。其只要目的是消除和降低焊接过程中产生的应力,避免焊接结构产生裂纹(氢裂纹),恢复冷作而损失的力学性能等。需留意的是,管箱设备法兰,为了保证其密封,往往要求整体热处理后,再加工其密封面。

4 总装工艺

换热器的装配工艺,也没有一个标准,只要讲究公道,轻易装配,就是好工艺。根据不用公司的设备情况,先焊接接管或是管法兰,没有一个定论。以下是固定管板式换热器的制造和装配,其顺序如下:

(1)将一块管板垂竖立稳作为基准零件;

(2)将拉杆拧紧在管板上;

(3)按图将定距管和折流板;

(4)穿进全部换热管;

(5)套进筒体

(6)装上另一块管板,并将全部管子的右端引进此管板内,校正后将管板与筒体点焊好;

(7)在辊轮架上焊接管板与筒体联接环缝;

(8)管子与管板的胀接或焊接,若采用焊接,则先点焊再将换热器竖直,使管板处于水平位置,以便于施焊;

(9)装接管、支座。接管可根据具体操纵情况在筒体套进前定位开孔,甚至装焊在筒体上;

(10)壳层水压试验,目的在于检查胀管质量,管子的质量,筒体与管板连接的焊缝质量,筒体的纵、环焊缝质量等;

(11)装上两头管箱;

(12)管程水压试验,主要检查管板与封头联结处的密封面,封头上的接管焊缝质量;

(13)清理、油漆

装配是一个烦琐的过程,但仍需留意对焊缝的探伤,和壳层、管程的试压试验,以及保护法兰密封面,最后留意装配工时,按时交货给客户。

综上所述是管壳式换热器的主要制作工艺及其留意点,设计与制造按照标准进行。尽管工艺已经成熟,但是没有相应的工艺设备条件及其技术也是难做成,材料、工艺,设备相辅相成。(end)

精对苯二甲酸生产工艺技术

精对苯二甲酸(PTA)的生产工艺技术 2.1 PTA生产工艺及分析 PTA精制工艺发展较为成熟,不同生产商在精制部分生产工艺基本相似,主要区别在于氧化部分。对二甲苯(PX)氧化是PTA生产的核心部分,也是各专利商竞争的焦点所在,氧化部分直接决定PTA生产的产质耗水平。依据氧化反应温度的不同,目前国际上主要PTA生产工艺可分为高温氧化工艺、中温氧化工艺以及低温氧化工艺。 高温氧化工艺(以BP-Amoco工艺和Invista工艺为代表,其特点是采取较高的氧化反应温度(190-205℃) 。Amoco工艺源自中世纪(Mid-Century )公司(MC)的专利技术,(化工产品市场调研报告https://www.360docs.net/doc/586723477.html,)MC公司1954年发明了PX液相空气氧化工艺(以钴、锰为催化剂、溴为促进剂) ,大大缩短了反应时间,提高了反应的转化率。美国Amoco于1956年从MC公司购得MC对二甲苯液相氧化工艺,并在此专利基础上不断改进,1965年Amoco公司成功开发了TA加氢精制生产精对苯二甲酸(PTA) ,实现了PTA生产工业化,去除了高温氧化过程中形成的有害杂质,特别是非常有效地除去了 4-CBA杂质。 Amoco公司率先实现了PTA生产的大规模工业化,并在全世界范围内推广其专利技术,至20世纪末,Amoco工艺在所有PTA生产工艺中占据绝对优势,世界范围内投产PTA装置80%以上采用Amoco工艺。20世纪80年代,我国PTA工业刚刚起步时,引进装置多采用Amoco工艺,1989年投产的扬子石化公司2套22.5万t/a

PTA装置及1995年投产的仪征化纤25万t/a PTA装置均为Amoco工艺技术。 1999年,Amoco公司被英国石油(BP)公司收购,其PA生产工艺相应改称BP-Amoco工艺。 Invista工艺即原Du Pont-ICI工艺。ICI公司差不多与Amoco 公司同时将PX 高温氧化技术投入生产,但申请专利晚了一步,转而与Amoco公司结成伙伴关系。ICI公司于1980年才由于技术上有独创的改进而获得专利权。Du Pont公司由于在1998年收购了ICI的PA业务部门从而获得ICI的PTA专利技术,收购后,杜邦PTA工艺称为 Du Pont-ICI工艺。2003年,Du Pont公司将其服装、室内饰材、中间体制造等所有业务剥离给其新成立的公司Invista公司,同时杜邦公司和美国科氏工业集团 (Koch Industes)公布协议,科氏旗下的KOSA子公司将出资4亿美元现金购买杜邦控股的Invista公司。目前,Invista工艺由于装置操作更稳定,能耗和物耗更低,单套装置生产能力更大,(化工产品市场调研报告https://www.360docs.net/doc/586723477.html,)使它在与其他主流PTA工艺竞争中占据绝对优势。这一点从我国新建PTA 装置所选用专利技术不难看出。2000年后,我国新投产15套PTA 装置,其中有7套采用Invista专利,采用BP-Aoco专利技术的只有3套,而目前在建的4套PA装置有2套采用Invista专利。 中温氧化工艺以日本三井油化(MPC) PTA专利技术为代表。20世纪70年代初,日本三井油化公司引进Amoco公司技术后在Amoco 工艺基础研究开发了三井-Amoco技术。其主要特点有,采用反应-脱水2段塔釜式反应器,中温氧化(185℃) ,共沸精馏脱水回收溶剂及

换热器设计开题报告

毕业设计(论文)开题报告设计(论文)题目: 学院:化工装备学院 专业班级:过程装备与控制工程0802 学生: 指导教师: 开题时间:2011年10 月18 日

指导教师评阅意见

一、选题的目的及意义: 换热器的基建投资在一般化工、石化企业中约占设备总投资的20%,其中固定管板式换热器约占换热器的70%。 固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。 特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。 固定管板换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束根据换热器的长度设置了若干块折流板。这种换热器管程可以用隔板分成任何程数。 固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格围广,故在工程上广泛应用。壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。 本课题所设计的冷却器属于固定管板换热器,是针对给定的设计参数,按照相关规定的要求,通过壁厚计算和强度校核等,设计固定管板式换热器产品。熟悉压力容器设计的基本要求,掌握固定管板式换热器的常规设计方法,把所学的知识应用到实际的工程设计中区,为以后的工作和学习打下扎实的基础。 二、国外现状发展及趋势 2.1 国外情况 对国外换热器市场的调查表明,管壳式换热器占64%。虽然各种板式换热器的竞争力在上升,但管壳式换热器仍将占主导地位。随着动力、石油化工工业的发展,其设备也继续向着高温、高压、大型化方向发展。而换热器在结构方面也有不少新的发展。螺旋折流板换热器是最新发展起来的一种管壳式换热器是由美国ABB公司提出的。其基本原理为:将圆截面的特制板安装在“拟螺旋折流系统”中每块折流板占换热器壳程中横剖面的四分之一其倾角朝向换热器的轴线即与换热器轴线保持一定倾斜度。相邻折流板的周边相接与外圆处成连续螺旋状。每个折流板与壳程流体的流动方向成一定的角度使壳程流体做螺旋运动能减少管板与壳体之间易结垢的死角从而提高了换热效率。在气一水换热的情况下传递相同热量时该换热器可减少30%-40%的传热面积节省材料20%-30%。相对于弓形折

精对苯二甲酸

精对苯二甲酸(PTA) 班级:XXXXXXXXXXX 学号:XXXXXXXXXXX 姓名:DAYHL

摘要: 简要分析了近年来,国内外精对苯二甲酸(PTA)生产能力和消费量快速增长, 单套装置规模越来越大,新工艺、新技术、新设备和节能技术的开发应用也日新月异。着重论述了PTA的工艺技术和新的研究合成方法,以提高PTA装置的技术水平, 实现产业的绿色节能环保和可持续发展,讨论了国内外精对苯二甲酸的市场,以及市场分析,和未来的发展。 关键字: 现状、PTA、合成、新路线、发展、应用、趋势 一、精对苯二甲酸的需求现状 1.国外产能及消费 世界PTA 需求近几年增长率约为5.4%,2014 年将达到4 620 万t。2010 年供给过剩40 万t,预测到2014 年供给过剩将达到420 万t。PTA 主要生产地和需求地是亚洲,从近几年世界PTA 贸易量的趋势来看,亚洲地区的贸易量占世界总贸易量的比例逐年上升,而西欧地区、北美地区贸易量呈下降的趋势。在全球,PTA 用于生产聚对苯二甲酸乙二醇酯( PET) 占PTA 总消费量的98%以上。 2 .国内产能及消费 近几年,随着国有聚酯生产技术的开发成功,国内新建聚酯装置的投资成本大大降低,民营资本、外资不断加入聚酯行业,同时,国家对东南亚出口实行“零关税”,促使化纤行业的快速发展,纺织和服装出口需求增大,国内PTA 下游聚酯产能的扩大,棉花大量的社会游资投机操作等因素,引起PTA 市场价格一直处在高位,民营和外资等投资主体新建了多套PTA 装置,打破了国有企业长期以来对PTA 行业的垄断地位。[1] 二、精对苯二甲酸的主要性质

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

管壳式换热器的有效设计外文翻译

武汉工程大学邮电与信息工程学院毕业设计(论文)外文资料翻译 原文题目:Effectively Design Shell-and-Tube Heat Exchangers 原文来源:Chemical Engineering Progress February 1998 文章译名:管壳式换热器的优化设计 姓名:xxx 学号:62021703xx 指导教师(职称):王成刚(副教授) 专业:过程装备与控制工程 班级:03班 所在学院:机电学部

管壳式换热器的优化设计 为了充分利用换热器设计软件,我们需要了解管壳式换热器的分类、换热器组件、换热管布局、挡板、压降和平均温差。 管壳式换热器的热设计是通过复杂的计算机软件完成的。然而,为了有效使用该软件,需要很好地了解换热器设计的基本原则。 本文介绍了传热设计的基础,涵盖的主题有:管壳式换热器组件、管壳式换热器的结构和使用范围、传热设计所需的数据、管程设计、壳程设计、换热管布局、挡板、壳程压降和平均温差。关于换热器管程和壳程的热传导和压力降的基本方程已众所周知。在这里,我们将专注于换热器优化设计中的相关应用。后续文章是关于管壳式换热器设计的前沿课题,例如管程和壳程流体的分配、多壳程的使用、重复设计以及浪费等预计将在下一期介绍。 管壳式换热器组件 至关重要的是,设计者对管壳式换热器功能有良好的工作特性的认知,以及它们如何影响换热设计。管壳式换热器的主要组成部分有:壳体 封头 换热管 管箱 管箱盖 管板 折流板 接管 其他组成部分包括拉杆和定距管、隔板、防冲挡板、纵向挡板、密封圈、支座和地基等。 管式换热器制造商协会标准详细介绍了这些不同的组成部分。 管壳式换热器可分为三个部分:前端封头、壳体和后端封头。图1举例了各种结构可能的命名。换热器用字母编码描述三个部分,例如,BFL 型换热器有一个阀盖,双通的有纵向挡板的壳程和固定的管程后端封头。根据结构

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

对苯二甲酸DOTP的合成工艺

课程设计题目对苯二甲酸二辛酯工艺设计 学院 专业 班级 学生 学号 指导教师化学工程系课程指导小组 X年X月X日

学院化学化工学院专业 学生学号 设计题目对苯二甲酸二辛酯工艺设计 一、课程设计的内容 主要内容为年产3000吨对苯二甲酸二辛酯工艺设计。通过物料衡算和能量衡算,确定关键设备的选型和材料,绘制出工艺流程图、反应釜、车间布置图等相关图纸,对生产过程中的安全技术、综合利用提出了合理的要求,并进行经济核算。 二、课程设计的要求 1.查阅国内外的相关文献不得少于5篇,完成课程设计任务。 2.独立完成给定的设计任务后编写出符合要求的课程设计说明书,要求工艺设计合理,将研 究、开发的技术及过程开发的成果与过程建设、经济核算衔接起来;绘制出必要的设计图纸。 3. 综合应用化学工程和相关学科的理论知识与技能,分析和解决实际问题。 4. 完成课程设计的撰写。 三、文献查询方向及范围 1.利用学校的清华同方数据库、万方学位论文全文数据库、ScienceDirect、ACS(美国化学学会)数据库查询卟啉在流动注射化学中的应用等中英文文献与硕博论文。 2.主要参考文献 [1] 孙永泰. 对苯二甲酸二辛酯(DOTP)的合成工艺及应用[M]. 塑料制造, 2008年4月刊. [2] 沈晓洁. 由聚酯废料合成DOTP[J]. 抚顺石油学院学报, 1998年6月第2期18卷 [3] 汪多仁. DOTP的非酸催化合成与应用[J].塑料助剂, 1998年第3期. [4] 王良、陶红侠,富氧化合物SnO2-ZnO催化废聚醋合成DOPT的研究[M].吉林师范大学 学报(自然科学版),2006年5月第6期 [5] Kiyoko Takamura, Takatoshi Matsumoto. Characterization of a titanium(IV)-porphyrin complex as a highly sensitive and selective reagent for the determination of hydrogen peroxide: a computational chemistry approach and a critical review[J]. Anal Bioanal Chem, 2008, 391: 951-961.

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

管壳式换热器设计毕业设计

管壳式换热器设计毕业设计 目录 1 引言 (1) 1.1 管壳式换热器的研究 (1) 1.2 管壳式换热器的研究趋势 (1) 1.3 螺旋板式换热器的研究 (2) 1.3.1 螺旋板式换热器国内研究进展 (2) 1.3.2 螺旋板式换热器国外研究进展 (2) 1.4 本课题的目的和意义 (2) 2管壳式换热器的工艺计算 (3) 2.2 确定管程软水的物性参数 (3) 2.2.1 定性温度 (3) 2.2.2 热容 (4) 2.2.3 黏度 (4) 2.2.4 导热系数 (4) 2.2.5 密度 (4) 2.3 确定壳程气氨的物性参数 (4) 2.3.1 定性温度 (4) 2.3.2 热容 (4) 2.3.3 黏度 (4) 2.3.4 导热系数 (4) 2.3.5 密度 (4) 2.4 估算传热面积 (4) 2.4.1 热负荷Q按大的传热量 (4) 2.4.2 平均有效温差 : (5) tm 2.4.3 传热面积 (5) 2.5 工艺结构尺寸 (5) 2.5.1 决定通入空间,确定管径 (5) 2.5.3 确定管程(数)、传热管数n、管长L及壳体内径 (5) 2.5.4 拉杆 (5) 2.5.5 折流板 (5) 2.5.6 画布管图 (6)

2.5.7 接管 (6) 2.6 换热器核算 (7) 2.6.1 传热能力的核算 (7) 2.6.2 换热器内流体阻力计算 (9) 3 管壳式换热器的结构设计及强度计算 (12) 3.1 换热器筒体及封头的设计 (12) 3.1.1 筒体设计 (12) 3.1.2 封头与管箱设计 (12) 3.2 换热器水压试验及其壳体应力校核 (13) 3.2.1 压力试验的目的 (13) 3.2.2 试验压力及应力校核 (13) 3.3 开孔补强 (13) φ管程接管的补强计算 (13) 3.3.1 对mm 9 219? φ壳程接管的补强计算 (15) 3.3.2对mm 480? 10 3.4 法兰的选用 (17) 3.4.1 筒体法兰的选用 (17) 3.4.2 管法兰的选用 (17) 3.5 折流板设计 (17) 3.6 管板设计 (17) 3.6.1换热气的设计条件 (17) 3.6.2结构尺寸参数 (17) 3.6.3各元件材料及其设计数据 (19) 3.6.4设计计算 (19) 3.7 支座形式的确定 (30) 3.7.1 已知条件 (30) 3.7.2 校核 (31) 3.7.3 计算支座承受的实际载荷Q (31) M (31) 3.7.4 计算支座处圆筒所受的支座弯矩 L 4 螺旋板式换热器的设计 (31) 4.1 传热工艺计算 (31) 4.1.1 传热量计算 (32) 4.1 .2 冷却水的出口温度 (32) 4.1.3 螺旋通道截面积与当量直径de的计算 (32) 4.1.4 雷诺数Re和普朗特数 P (32) r

精品精对苯二甲酸(PTA)生产技术及工艺流程

精对苯二甲酸(PTA)生产技术及工艺流程 摘要 精对苯二甲酸(PTA)英文名称:Pure terephthalic acid(PTA)分子式C6H4(COOH)2 。是以对二甲苯为原料,液相氧化生成粗对苯二甲酸,再经加氢精制,结晶,分离,干燥,得到精对苯二甲酸。精对苯二甲酸为白色针状结晶或粉末,约在 300℃升华,自燃点680℃。能溶于热乙醇,微溶于水,不溶于乙醚、冰醋酸和氯仿。低毒,易燃。其粉尘与空气形成爆炸性混合物,爆炸极限0.05g/L~12.5g/ L。 精对苯二甲酸是生产聚酯切片、长短涤纶纤维等化纤产品和其它重要化工产品的原料。精对苯二甲酸(PTA)是重要的大宗有机原料之一,其主要用途是生产聚酯纤维(涤纶)、聚酯薄膜和聚酯瓶,广泛用于与化学纤维、轻工、电子、建筑等国民经济的各个方面,与人民生活水平的高低密切相关。 关键词:氧化反应结晶高压吸收常压吸收分离干燥溶剂及催化剂回收残渣蒸发溶剂脱水萃取常压汽提系统加氢反应过滤 I

目录 摘要 ··········································································································I 前言 ······································································································- 1 -第一章精对苯二甲酸的工业概貌 ································································- 2 - 1.1 世界精对苯二甲酸工业概貌 ··························································- 2 - 1.2 我国精对苯二甲酸工业概貌 ··························································- 3 -第二章精对苯二甲酸的上下游产业链······················································- 5 - 2.1 精对苯二甲酸的上游产业······························································- 5 - 2.2 精对苯二甲酸的下游产业······························································- 5 -第三章精对苯二甲酸的性质及其主要用途 ···············································- 6 - 3.1 精对苯二甲酸的性质 ····································································- 6 - 3.1 精对苯二甲酸的主要用途······························································- 6 -第四章精对苯二甲酸的主要原料·····························································- 7 -第五章产品方案及规格···········································································- 8 - 5.1 产品方案······················································································- 8 - 5.2 主要产品规格···············································································- 8 -第六章精对苯二甲酸的生产工艺技术······················································- 9 - 6.1 国外工艺技术现状 ········································································- 9 - 6.2 国内的工艺技术选择 ··································································- 10 -第七章精对苯二甲酸的工艺流程及操作条件 ·········································- 11 - 7.1 反应历程简介·············································································- 11 - 7.1.1 对二甲苯氧化 ···································································- 11 - 7.1.2对苯二甲酸精制·································································- 12 - 7.2 工艺流程简述·············································································- 12 - 7.2.1 空气压缩机·······································································- 12 - 7.2.2 100 单元---母液储存罐····················································- 12 - 7.2.3 200 单元--氧化反应、结晶、高压吸收及常压吸收。 ·········- 13 - 7.2.4 300 单元--分离、干燥 ··················································- 14 - 7.2.5 400 单元--溶剂及催化剂回收、残渣蒸发、溶剂脱水、萃取、 常压汽提系统。 ···········································································- 14 - 7.2.6 500 单元—进料配制、反应进料预热、加氢反应、结晶 ·····- 16 - 7.2.7 600 单元—过滤、干燥······················································- 19 - 7.2.8 PTA 产品之储存装袋及出料···············································- 20 -第八章精对苯二甲酸生产的关键设备及其特点 ······································- 22 - 8.1 精对苯二甲酸氧化单元的关键设备——氧化反应器······················- 22 - 8.2 精对苯二甲酸精制单元的关键设备··············································- 22 - I

管壳式换热器设计计算用matlab源代码

%物性参数 % 有机液体取69度 p1=997; cp1=2220; mu1=0.0006; num1=0.16; % 水取30度 p2=995.7; mu2=0.0008; cp2=4174; num2=0.62; %操作参数 % 有机物 qm1=18;%-----------有机物流量-------------- dt1=78; dt2=60; % 水 t1=23; t2=37;%----------自选----------- %系标准选择 dd=0.4;%内径 ntc=15;%中心排管数 dn=2;%管程数 n=164;%管数 dd0=0.002;%管粗 d0=0.019;%管外径 l=0.025;%管心距 dl=3;%换热管长度 s=0.0145;%管程流通面积 da=28.4;%换热面积 fie=0.98;%温差修正系数----------根据R和P查表------------ B=0.4;%挡板间距-----------------自选-------------- %预选计算 dq=qm1*cp1*(dt1-dt2); dtm=((dt1-t2)-(dt2-t1))/(log((dt1-t2)/(dt2-t1))); R=(dt1-dt2)/(t2-t1); P=(t2-t1)/(dt1-t1); %管程流速 qm2=dq/cp2/(t2-t1); ui=qm2/(s*p2);

%管程给热系数计算 rei=(d0-2*dd0)*ui*p2/mu2; pri=cp2*mu2/num2; ai=0.023*(num2/(d0-2*dd0))*rei^0.8*pri^0.4; %管壳给热系数计算 %采用正三角形排列 Apie=B*dd*(1-d0/l);%最大截流面积 u0=qm1/p1/Apie; de=4*(sqrt(3)/2*l^2-pi/4*d0^2)/(pi*d0);%当量直径 re0=de*u0*p1/mu1; pr0=cp1*mu1/num1; if re0>=2000 a0=0.36*re0^0.55*pr0^(1/3)*0.95*num1/de; else a0=0.5*re0^0.507*pr0^(1/3)*0.95*num1/de; end %K计算 K=1/(1/ai*d0/(d0-2*dd0)+1/a0+2.6*10^(-5)+3.4*10^-5+dd0/45.4); %A Aj=dq/(K*dtm*fie); disp('K=') disp(K); disp('A/A计='); disp(da/Aj); %计算管程压降 ed=0.00001/(d0-2*dd0); num=0.008; err=100; for i=0:5000 err=1/sqrt(num)-1.74+2*log(2*ed+18.7/(rei*sqrt(num)))/log(10); berr=err/(1/sqrt(num)); if berr<0.01 break; else num=num+num*0.01;

精对苯二甲酸安全生产要点标准范本

操作规程编号:LX-FS-A64863 精对苯二甲酸安全生产要点标准范 本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

精对苯二甲酸安全生产要点标准范 本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1工艺简述 精对苯二甲酸(PTA)是生产聚脂的重要中间体。目前国内外普遍采用阿莫柯法(即高温液相空气氧化法)。生产工艺由氧化和精制两部分组成。其简要生产过程是: 1.1氧化将原料对二甲苯(PX)、溶剂醋酸、催化剂(醋酸钴、醋酸锰、四溴乙烷)和空气(或富氧空气)送入反应器,在195±3℃和1.2~1.6MPa 条件下,一次氧化生成对苯二甲酸浆料。浆料在第一结晶器进行二次氧化,在第二、三结晶器降压后经过

管壳式换热器传热计算示例(终)-用于合并

管壳式换热器传热设计说明书 设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程(表压),壳程压力为(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。 2、设计计算过程: (1)热力计算 1)原始数据: 过冷却水进口温度t1′=145℃; 过冷却水出口温度t1〞=45℃; 过冷却水工作压力P1=(表压) 冷水流量G1=80000kg/h; 冷却水进口温度t2′=20℃; 冷却水出口温度t2〞=50℃; 冷却水工作压力P2= Mp a(表压)。改为冷却水工作压力P2= Mp 2)定性温度及物性参数: 冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃; 冷却水的密度查物性表得ρ2= kg/m3; 冷却水的比热查物性表得C p2= kJ/kg.℃ 冷却水的导热系数查物性表得λ2= W/m.℃ 冷却水的粘度μ2=×10-6 Pa·s; 冷却水的普朗特数查物性表得P r2=; 过冷水的定性温度℃; 过冷水的密度查物性表得ρ1=976 kg/m3; 过冷水的比热查物性表得C p1=kg.℃; 过冷水的导热系数查物性表得λ1=m.℃; 过冷水的普朗特数查物性表得P r2; 过冷水的粘度μ1=×10-6 Pa·s。 过冷水的工作压力P1= Mp a(表压) 3)传热量与水热流量 取定换热器热效率为η=; 设计传热量: 过冷却水流量: ; 4)有效平均温差 逆流平均温差:

根据式(3-20)计算参数p、R: 参数P: 参数R: 换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=; 有效平均温差: 5)管程换热系数计算: 附录10,初定传热系数K0=400 W/m.℃; 初选传热面积: m2; 选用φ25×无缝钢管作换热管; 管子外径d0=m; 管子内径d i=×=0.02 m; 管子长度取为l=3 m; 管子总数: 取720根管程流通截面积: m2 管程流速: m/s 管程雷诺数: 湍流管程传热系数:(式3-33c) 6)结构初步设计: 布管方式见图所示: 管间距s=0.032m(按GB151,取); 管束中心排管的管数按所给的公式确定: 取20根;

换热器设计开题报告

换热器设计开题报告 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

理工学院毕业设计(论文)开题报告题目:气-液介质专用换热器设计 学生姓名:石静学号:09L0503216 专业:过程装备与控制工程 指导教师:郭彦书(教授) 2013 年 4月 8 日

1文献综述 绪论 换热设备是化工、炼油、动力、能源、冶金、食品、机械、建筑工业中普遍应用的典型设备。一般换热设备在化工、炼油装置中的建设费用比例达20%~50%因此无论从能源利用,还是从工业的投资来看,合理地选择和设计换热器,都具有重要意义。在各种换热器中,由于管壳式换热器具有单位体积内能够提供较大的传热面积、传热效果好、适应性强、操作弹性大、易制造、成本低、易于检修和清洗等特点,因此应用最广泛。管壳式换热器按结构特点分为固定管板式、U型管式、浮头式、双重管式、填涵式和双管板等几种形式。不同的结构各有优缺点,适用于不同的场合。本文介绍的是板式换热器[1]。 管壳式换热器的特点 管壳式换热器是由一系列具有一定波纹形状的的金属片叠装而成的一种高效换热器。换热器的各板片之间形成许多小流通断面的流道,通过板片进行热量交换,它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多。板式换热器的广泛应用,加速了我国板式换热器行业的迅速发展,但我国板式换热器设计与发达国家之间仍存在着不小的差距。板式换热器是以波纹为传热面,在流道中布满网状触电,流体沿着板间狭窄弯曲、犹如迷宫式的通道流动,其速度大小和方向不断改变,形成强烈的湍流,从而破坏边界层,减少界面膜热阻,并使固体颗粒悬浮,不易沉积,有效地强化了传热,因此,它比管壳式等其他类型换热器具有很多独特的优点。第一,传热系数高,由于换热器的特殊结构及组装方式,使介质在流经相邻两板片间的流道时,流动方向和流速不断变化,在低流速下,形成急剧湍流,强化换热;第二,温差小,由于板式换热器具有较高的传热系数及强烈的湍流,可使热交换器的一、二次流体温度十分接近,温差趋近1~3℃;第三,热损失小,由于板片边缘及密封垫暴露在大气中,所以热损失极小,一般为1%左右,不需采取保护措施。在相同换热面积情况下,板式换热器的热损失仅为管壳式换热器的五分之一,而重量则不到管壳式的一半;第四,结构紧凑,换热板片由薄的不透钢板压制而成,板片间距一般为4mm,板片表面的波纹大大增加了有效换热面积,这样单位容积中可容纳很大的传热面积(每立方米体积可布置250㎡的传热面积),占地面积仅为管壳式的五分之一到十分之一。因此,体积小,节省安装空间。第五,适应性强,可根据产量及工艺要求,方便地增加或减少传热板片,亦可将板片重新排列,改变流程组合;第六,用途广泛,目前已广泛应用于化工、石油、机械、冶金、电力、食品、热水供应、集中供暖等工程领域,完成加热、冷却、蒸发、冷凝、余热回收等工艺过程中截

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

管壳式换热器的有效设计-外文翻译

武汉工程大学邮电与信息工程学院 毕业设计(论文)外文资料翻译 原文题目: Effectively Design Shell-and-Tube Heat Exchangers 原文来源: Chemical Engineering Progress February 1998 文章译名:管壳式换热器的优化设计 姓名: xxx 学号: 62021703xx 指导教师(职称):王成刚(副教授) 专业:过程装备与控制工程 班级: 03班 所在学院:机电学部

管壳式换热器的优化设计 为了充分利用换热器设计软件,我们需要了解管壳式换热器的分类、换热器组件、换热管布局、挡板、压降和平均温差。 管壳式换热器的热设计是通过复杂的计算机软件完成的。然而,为了有效使用该软件,需要很好地了解换热器设计的基本原则。 本文介绍了传热设计的基础,涵盖的主题有:管壳式换热器组件、管壳式换热器的结构和使用范围、传热设计所需的数据、管程设计、壳程设计、换热管布局、挡板、壳程压降和平均温差。关于换热器管程和壳程的热传导和压力降的基本方程已众所周知。在这里,我们将专注于换热器优化设计中的相关应用。后续文章是关于管壳式换热器设计的前沿课题,例如管程和壳程流体的分配、多壳程的使用、重复设计以及浪费等预计将在下一期介绍。 管壳式换热器组件 至关重要的是,设计者对管壳式换热器功能有良好的工作特性的认知,以及它们如何影响换热设计。管壳式换热器的主要组成部分有:壳体 封头 换热管 管箱 管箱盖 管板 折流板 接管 其他组成部分包括拉杆和定距管、隔板、防冲挡板、纵向挡板、密封圈、支座和地基等。 管式换热器制造商协会标准详细介绍了这些不同的组成部分。 管壳式换热器可分为三个部分:前端封头、壳体和后端封头。图1举例了各种结构可能的命名。换热器用字母编码描述三个部分,例如,BFL 型换热器有一个阀盖,双通的有纵向挡板的壳程和固定的管程后端封头。根据结构

相关文档
最新文档