航天器发展史

航天器发展史
航天器发展史

航天器发展史

众所周知,航天器在人类社会生产发展历程中起着极大的推动作用。从一九零三年十二月十七日莱特兄弟研制的‘飞行者一号’试飞成功到一九五七年前苏联发射了人类第一颗人造卫星,这短短的几十年,带来了航天器飞跃式的发展,同时也带来人。类社会文明与进步。

1.航天器的概述

航天器指的是在稠密大气层外环绕地球,或在行星际空间,恒星系空间,基本上按照天体力学规律运行的各种飞行器,又称空间飞行器。航天器的发展共分为三个阶段。一是初期环境探测和技术试验阶段,这一阶段大致在五十年代末六十年代初,以人造卫星为主,探测地球周围空间环境,试验各种航天技术和有效载荷,掌握各类轨道的发射技术,为今后设计航天器提供依据。并在地面建立各种模拟实验设备,这一阶段的航天器重量是在几十千克到上百千克之间,工作寿命也短且功能较单一,主要用于探索航天器各系统实现的方案。发展相应的器件设备,验证他们的工作原理和功能。航天器的第二个发展阶段便是应用阶段,自六十年代中期各类航天器先后进入了应用阶段,形成了应用卫星系列。他们不断用先进技术改进,实现时间和空间上的连续服务,地面终端和数据中心也逐步完善,最终形成了各种卫星应用系统。卫星重量在一千千克左右,工作寿命可达几年到十几年,由单纯为本国服务到逐渐向其他国家开放,实现商业化应用机制,形成购买和租用卫星市场。航天器的第三个发展阶段便是空间站阶段。八十年代以来,卫星应用商业市场成熟,一些不从事航天活动的国家也重视卫星应用,包括建立对地观测卫星数据接收站和卫星通信地面站。通过试验性空间站的应用,证实了人在空间环境下长期生活和工作的能力,认识到利用空间独特环境可从事多种学科研究和应用试验,并形成了与空间站配套的空间运输系统。在此基础上,进入九十年代后,世界上从事航天技术的主要国家,如美国,俄罗斯,欧空局,日本和加拿大联合从事一项国际空间站计划,为实现在空间建立人们长期生活和工作的基地,开发空间及其丰富的理想的资源的理想,发挥各国的航天技术优势,把分散的力量集中起来,使航天科学发展进入一个更高的阶段。

2.未来航天器的发展

2.1未来航天器的发展方向

未来的应用卫星将朝着大型,长寿命,多功能方向发展,航天器的研制也走向双边或多边合作,出现了跨国公司和联合集团形式的航天企业。另一方面,随着航天科技的发展,特别是小型器件和微电子技术的发展,在九十年代初悄然兴起了小卫星热,他以造价低,重量小,风险小等特点受到军方,企业,大学和科研机构等重视。小卫星以通信卫星和对地观测卫星为主,与此相适应,小型运载火箭也开始受到重视,并开始起步。纵观航天科技发展的历史,在约五十年的时间里,他的发展速度之快,加入到这一领域的国家之多,航天活动开展之频繁,是其他高科技所不能比拟的。航天科技不再被少数几个发达国家所垄断,也不再是可望不可及的高科技尖端技术,他已对人类生产生活,国家经济与科学进步产生了深远的影响。

舟5号飞船顺利完成了我国首次在人航行,实现了中华民族“飞天”的千年梦想。21个小时23分钟的太空行程,标志着中国已成为世界上继前苏联/俄罗斯和美国之后第3个能够独立开展载人航天活动的国家。

2.2 发展航天事业的重要性

航天器在世界上发挥着重大的作用。首先,它能体现一个国家综合国力和提升国际威望。因为航天技术的水平与成就是一个国家经济、科学和技术实力的综合反映。载人航天是航天技术向更高阶

段的发展,载人航天的突破--用本国的载人航天器将航天员送入太空并安全返回,更是一个国家综合国力强大的标志。发展载人航天需要依靠先进的技术水平、发达的工业基础和雄厚的经济实力。迄今为止,只有俄罗斯和美国实现了载人航天。其他拥有一定航天技术基础或较强经济实力的国家,虽欲染指载人航天,但因力不从心,所以只能求助于与他们合作,出钱出资,用俄、美的载人航天器将本国航天员送上太空,以图逐步加入世界"载人航天俱乐部"。邓小平同志曾经说过:没有两弹一星就没有中国的大国地位。所以,我国航天员进入太空,也能像上世纪六七十年代我国拥有"两弹一星"那样,引起全世界注视,提高我国的国际地位,振奋民族精神,增强全民的凝聚力。

其次,它能体现现代科技多个领域的成就,同时又给现代科技各个领域提出新的发展需求,从而可以大大促进整个科技的发展,并将为培养和造就航天科技人才作贡献。例如,就载人航天器本身的研制和运行而言,它对通信、遥感、推进、测量、材料、计算机、系统工程、自动控制、环境控制和生命保障等技术提出了很高的要求,因而大大推动了这些技术的进步。

航天器的发展是人类历史上一次辉煌的成就,是人类以及全世界史上的一个伟大传奇。

参考文献

1.《中国航天发展史稿》李成智山东教育出版社

2.《21世纪国际载人航天技术发展新动向与启示》果琳丽《航天制造技术》

中国航天发展史简介

中国航天发展史简介 1956年10月8日,中国第一个火箭导弹研制机构——国防部第五研究院成立,钱学森任院长。 1964年7月19日,中国第一枚内载小白鼠的生物火箭在安徽广德发射成功,中国空间科学探测迈出了第一步。 1968年4月1日,中国航天医学工程研究所成立,开始选训宇航员和进行载人航天医学工程研究。 1970年4月24日,随着第一颗人造地球卫星“东方红”1号在酒泉发射成功,中国成为世界上第五个发射卫星的国家。 1975年11月26日,首颗返回式卫星发射成功,3天后顺利返回,中国成为世界上第三个掌握卫星返回技术的国家。 1988年9月7日,长征4号运载火箭在太原成功发射了风云1号A气象卫星。 1990年4月7日,“长征3号”运载火箭成功发射美国研制的“亚洲1号”卫星,中国在国际商业卫星发射服务市场中占有了一席之地。 1990年7月16日,“长征”2号捆绑式火箭首次在西昌发射成功,为发射载人航天器打下了基础。 1992年,中国载人飞船正式列入国家计划进行研制,这项工程后来被定名为“神舟”号飞船载人航天工程。 1999年11月20日,中国成功发射第一艘宇宙飞船--“神舟”试验飞船,飞船返回舱于次日在内蒙古自治区中部地区成功着陆。 2001年1月10日,中国成功发射“神舟”2号试验飞船,按照预定计划在太空完成空间科学和技术试验任务后,于1月16日在内蒙古中部地区准确返回。 2002年3月25日,中国成功发射“神舟”3号试验飞船,环绕地球飞行了108圈后,于4月1日准确降落在内蒙古中部地区。 2002年12月30日,中国成功发射“神舟”4号飞船。 载人航天工程又称“921工程”,是党中央国务院1992年1月做出决策并开始实施的重大工程。1999年月11月成功发射了第一艘无人飞船,随后又成功发射了3艘无人飞船,2003年10月15日,航天英雄杨利伟乘坐神舟5号飞船胜利完成了我国首次载人飞行,实现了中华民族“飞天”的千年梦想。

航天器总体设计

航天器总体设计 (无平时成绩,考试试卷满分制,内容为21题中抽选13题)1、航天器研制及应用阶段的划分。 主要划分为工程论证、工程研制、发射、在轨测试与应用四个阶段。 1)工程论证阶段:开展任务分析、方案可行性论证工作。 2)工程研制阶段:包括方案设计阶段、初样设计与研制阶段、正样设计与研制阶段。 3)发射阶段:发射场测试及发射。 4)在轨测试与应用阶段:在轨测试阶段、在轨应用阶段。 2、航天工程系统的组成及各自的任务。 组成:航天工程系统是由航天器、航天运输系统、航天发射场、航天测控网、应用系统组成的完成特定航天任务的工程系统。 任务: 1)航天器:指在地球大气层以外的宇宙空间执行探索、开发和利用太空以及地球以外天体的特定任务飞行器,又称空间飞行器。 2)航天运输系统:指在地球和太空之间或在太空中运送航天器、人员或物资的飞行器系统,包括运载器、运输器、轨道机动飞行器和轨道转移飞行器等。 3)航天发射场:系指发射航天器的基地,包括测试区、发射区、发射指挥控制中心、综合测量设施、勤务保障设施等。 4)航天测控网:系指对航天运输系统、航天器进行跟踪、测量、监视、指挥和控制的综合系统,包括发射指挥控制中心、测控中心、航天指挥控制中心、测控站和多种传输线路及设备。 5)应用系统:系指航天器的用户系统,一般是地面应用系统,如各类应用卫星的地面应用系统、载人航天器的地面应用系统、空间探测器的地面应用系统。 3、航天器总体设计概念及主要阶段划分。 概念:航天器总体设计是指为完成航天任务规定的目标所开展的以航天器为对象的一系列设计活动。 主要阶段划分:主要分为任务分析、总体方案可行性论证、总体方案设计、总体详细设计四个阶段。总体详细设计又分为总体初样设计和总体正样设计。 4、航天器总体设计的基本原则。 满足用户需求的原则、系统整体性原则、系统层次性原则、研制的阶段性原则、创新性和继承性原则、效益性原则。 5、航天器技术从成熟程度上可分为哪四类技术,各自的含义。 1)成熟技术:已经过在轨飞行考验,沿用原有的分系统方案、部件、电路和结构。 2)成熟技术基础上的延伸技术:在成熟技术基础上需要进行少量修改设计的分系统方案、部件、电路和结构。 3)不成熟技术(关键技术):必须经过研究、生产和试验(攻关)后才能在卫星上应用的技术。

航天器开普勒轨道和非开普勒轨道的定义_分类及控制

第35卷 第4期2009年8月 空间控制技术与应用 Aer os pace Contr ol and App licati on 航天器开普勒轨道和非开普勒轨道的定义、分类及控制3 孙承启1,2 (11北京控制工程研究所,北京100190; 2.空间智能控制技术国家级重点实验室,北京100190) 摘 要:给出了航天器开普勒轨道(K O)和非开普勒轨道(NK O)的来源、定 义、分类和特点,阐明了K O和NK O之间的关系,介绍了相关的轨道控制与轨 道确定、制导与导航的涵义. 关键词:开普勒轨道;非开普勒轨道;轨道分类;轨道控制;轨道确定 中图分类号:V412.41 文献标识码:A 文章编号:167421579(2009)0420001205 Spacecraft Kepler i a n O rb its and Non2Kepler i a n O rb its: D ef i n iti on,C l a ssi f i ca ti on and Con trol S UN Chengqi1,2 (1.B eijing Institute of Control Engineering,B eijing100190,China; 2.N ationa l L aboratory of Space Intelligent Control,B eijing100190,China) Abstract:This paper describes s pacecraft’s Kep lerian orbits(K O)and non2Kep lerian orbits(NK O) including their origins,definiti ons,classificati ons and characteristics,exp lains the relati onshi p bet w een the K O and the NK O,and intr oduces briefly s ome issues related t o orbit contr ol and orbit deter m inati on, guidance and navigati on. Keywords:Kep lerian orbits;non2Kep lerian orbits;classificati on of orbits;orbit contr ol;orbit deter m inati on 3本文是作者在2008年8月30—31日国家863计划“空间非开普勒轨道动力学与控制专题讨论会”上报告的基础上修改而成的. 收稿日期:2009203216 作者简介:孙承启(1943—),男,浙江人,研究员,研究方向为航天器制导、导航与控制,空间交会对接(e2mail: sunchengqi@s https://www.360docs.net/doc/588308222.html,). 人类科学认识天体运动是从哥白尼(1473— 1543)开始的,开普勒(1571—1630)根据前人的天 文观测资料总结出了行星绕太阳运动的三大定律, 被后人称为开普勒三定律.开普勒和伽利略 (1564—1642)之后,牛顿(1642—1727)提出了万有 引力定律和物体运动的三大定律(后人称之为牛顿 三定律),以此为基础的牛顿力学是天体力学的基 础,也是航天动力学的基础.开普勒定律给出了行星 (也适用于航天器)轨道运动规律的运动学描述,牛 顿力学则是对这种轨道运动规律给出了动力学意义 下的解释.开普勒定律可以用牛顿力学得到严格证 明.从哥白尼的日心地动说的提出到牛顿力学的建 立是人类认识宇宙的第一次飞跃[1]. 二体问题是天体力学中的一个基本问题,它是 ? 1 ?

航天器的发展史

航天器的发展史 摘要美丽的星空、浩瀚的宇宙对于人们来说充满了无限的诱惑,激励人们不停地去探索与发现。从古代的嫦娥奔月到现在的嫦娥一号升天,都寄予着人们无限的希望。随着科学技术的发展,航天器的出现使得脱离大气层飞向外太空不再是一个梦想。同时,对宇宙的探索提高了人们对大自然的认识,对人类自我的认知程度。当然也必定会带动现在社会的经济与政治发展,使得我们的社会文化与经济文化向更加多元化的方向发展。 关键词宇宙;探索与发现;科学技术的发展;航天器;经济与政治 Spacecraft Development Abstract:The beauty of the sky, the vast universe filled with infinite enticement for people,inspiring people to keep exploring and discovering.From ancient chang e to the number of now ascended into heaven, which wholly people infinite hope. With the development of science and technology, the emergence of the spacecraft made from the atmosphere to fly to the outer space is not a dream.At the same time, the exploration of the universe improved people the understanding of nature and human cognitive degree of self.Of course it also will drive the economy and society development, making our social culture and economic culture more diversified development. Keywords: Universe; Exploration and discovery; The development of science and technology; The spacecraft; Economic and political 1 航天器的概要 航天器又称空间飞行器、太空飞行器。它是卫星、飞船、空间站、航天飞机和宇宙探测器的总称。航天器是按照天体力学的规律在太空运行,执行探索、开发、利用太空和天体等特定任务的各类飞行器。相传最早的试图飞天的人是中国一名叫做“万户”的人,他做了两个大风筝绑在椅子两边,并且将不少的火药绑在凳子上,然后命令仆人点燃火药,但是随着巨响,他消失在烟雾中,人类最早

飞行器的分类

飞行器的分类 作者:佚名转贴自:互连网点击数:175 [编辑本段] 飞行器flight vehicle 在大气层内或大气层外空间(太空)飞行的器械。飞行器分为3类:航空器、航天器、火箭和导弹。在大气层内飞行的飞行器称为航空器,如气球、滑翔机、飞艇、飞机、直升机等。它们靠空气的静浮力或空气相对运动产生的空气动力升空飞行。在空间飞行的飞行器称为航天器,如人造地球卫星、载人飞船、空间探测器、航天飞机等。它们在运载火箭的推动下获得必要的速度进入太空,然后在引力作用下完成轨道运动。火箭是以火箭发动机为动力的飞行器,可以在大气层内,也可以在大气层外飞行。导弹是装有战斗部的可控制的火箭,有主要在大气层外飞行的弹道导弹和装有翼面在大气层内飞行的地空导弹、巡航导弹等。 飞行器分为航空器和航天器 飞行器 在大气层内或大气层外空间飞行的器械。 航空器 大气层内飞行的飞行器,分为轻于空气的航空器和重于空气的航空器。 航天器 在大气层外空间(太空)飞行的飞行器。 气球(轻于空气的航空器) 无推进装置、不可控制的轻于空气的航空器。由气囊和吊在其下的吊篮或吊舱组成。气囊内充以密度比空气小的浮升气体使气球升空。吊舱用来乘人或放置物品。现今,气球在空吊货物、气象、通信、体育

运动等方面仍有用武之地。 飞艇(轻于空气的航空器) 有动力装置、可控制飞行的轻于空气的航空器。由巨大的流线型艇体、位于艇体下面的吊舱、起稳定控制作用的尾面和推进装置组成。艇体的气囊内充以密度比空气小的浮升气体使飞艇升空。吊舱供乘人或装载货物。早期飞艇都充灌氢气,易爆炸;近代飞艇充灌氦气,较安全。广泛用于电视转播、广告、旅游、城市治安等。 滑翔机(重于空气的航空器) 无动力装置重于空气的固定翼航空器。靠飞机拖曳,或用绞盘、汽车等牵引起飞,升空后靠自身重力在飞行方向的分力向前滑翔。有些滑翔机装小型发动机,称动力滑翔机,但其发动机只用来在滑翔飞行前获得初始速度。现代滑翔机主要用于体育运动。 飞机(重于空气的航空器) 由动力装置产生使之前进的拉力/推力,由固定机翼产生升力,在大气层中飞行的重于空气的航空器。 直升机(重于空气的航空器) 以动力驱动的旋翼作为主要升力来源,能垂直起落的重于空气的航空器。 旋翼机(重于空气的航空器) 利用前飞时的相对气流吹动旋翼自转以产生升力的旋翼航空器。其前进力由动力装置提供。它不能垂直上升,也不能在空中悬停,必须滑跑加速才能起飞。现今一般用于浏览和体育活动。

最新航天器控制原理自测试题三

航天器控制原理自测试题三 一、名词解释(15%) 1、本体坐标系 2、偏置动量轮 3、主动控制系统 4、大圆弧轨迹机动 5、惯性导航 二、简答题(60%) 1、阐述航天器基本系统组成及各部分作用。 2、引力参数u是如何定义的? 3、叙述质点的动量矩定理及其守恒条件。 4、叙述双轴模拟式太阳敏感器的工作原理,并绘出原理结构图。 5、为了确保稳定性,对惯量比有什么要求? 6、画出喷气三轴姿态稳定控制系统的原理框图。简述喷气推力姿态稳定的基本原理。 7、自旋稳定卫星喷气姿态机动的原理是什么?喷气角的选择为什么不能过小? 8、GPS有哪几部分组成,各有什么功用。 9、举例说明载人飞船的主要构造。 10、航天飞机基本结构组成是什么?哪些可以重复使用,那些不可以? 三、推导题(15%) 1、证明在仅有二体引力的作用下,航天起的机械能守恒。 2、推导欧拉力矩方程式。 四、计算题(10%) 已知一自旋卫星动量矩H=3500Kg·m2/s,自旋角速度为ω=60r/min,喷气力矩Mc=40N·m,喷气角为γ=40。,要求自旋进动θc=80。问喷气一次自旋进动多少?总共需要多少次和多长时间才能完成进动?

航天器控制原理自测试题三答案 一、名词解释15% 1、本体坐标系 答:又称为星体坐标系。在此坐标系中,原点0在航天器质心,Ox ,Oy ,Oz 三轴固定在航天器本体上。若Ox ,Oy ,Oz 三轴为航天器的惯量主轴,则该坐标系称为主轴坐标系。 2、偏置动量轮 答:如果飞轮的平均动量矩是一个不为零的常值——偏置值,也就是说飞轮储存了一个较大的动量矩,飞轮的转速可以相对于偏置值有一定的变化,从而产生控制力矩。具有这种特点的飞轮称为动量轮或偏置动量轮。 3、主动控制系统 答:航天器主动式姿态控制系统的控制力矩来自于航天器上的能源,它属于闭环控制系统。 4、大圆弧轨迹机动 答:若要求自旋轴在天球上描绘的轨迹是大圆弧 ,那么自旋轴必须在同一平面内从初始方向机动到目标方向,所以每次喷气产生的横向控制力矩必须在此平面内,即推力器喷气的相位相对于空间惯性坐标系是固定的。此为大圆弧轨迹机动. 5、惯性导航 答:它主要由惯性测量装置、计算机和稳定平台(捷联式没有稳定平台)组成。通过陀螺和加速度计测量航天器相对于惯性空间的角速度和线加速度,并由计算机推算出航天器的位置、速度和姿态等信息。因此惯性导航系统也是航天器的自备式航位推算系统。 二、简答题 0F AA A 0OA F OA

航空航天的基本概念、飞行器分类和航空器发展概况.doc

航空航天的基本概念、飞行器分类和航空器发展概况 一、航空航天的基本内涵 航空是指在地球周围稠密的大气层内的航行活动。 航天是指在大气层之外的近地空间、行星际空间、行星附近以及恒星际空间的航行活动。 航空航天技术是高度综合的现代科学技术,综合运用了基础科学和应用科学的最新成就,以及工程技术的最新成果。 航空航天的发展与军事应用密切相关 航天技术与其他技术相结合,开拓了许多崭新的领域。 二、飞行器分类 在地球大气层内或大气层之外的空间飞行的器械,统称为飞行器。 三大类 (1)航空器`

(2)航天器 (3)火箭和导弹 在许多文献中,火箭一词有时既指火箭发动机又指以火箭发动机为动力的飞行器。 三、航空器发展概况 (a)轻于空气的航空器 原理:利用空气静浮力 10世纪初期中国的“孔明灯” 18世纪末期法国蒙哥尔费兄弟热气球 1783年10月15日罗齐埃热气球高度26米 同年11月21日罗齐埃和达尔兰德斯热气球高度1000米 随后,法国查理充以氢气的气球高度915米 1900年德国齐柏林硬式飞艇 1937年在一次从德国到美国的飞行中飞艇突然起火爆炸,飞艇结束了商

业飞行 20世纪70年代,飞艇采用了新的技术和材料,用以巡逻和吊装大型装备 (b)重于空气的航空器 19世纪初英国的乔治·凯利《论空中的航行》,为后来航空器的研制提供了重要的理论基础和经验。 为了使飞机能够成功的飞行,必须解决升力、动力、稳定飞行和操纵等问题。 1896年美国科学家兰利制造了一个用蒸汽机作动力的飞机模型1893年汽油内燃机问世 20世纪初兰利又制造了安装活塞式发动机的飞机,因为未能解决飞机稳定飞行和操纵的问题,两次试飞未能成功。 1891~1896 德国李林达尔用滑翔机进行了2000多次的滑翔试验,为解决滑翔机的稳定飞行和操纵问题,积累了大量的数据 1903年莱特兄弟‘飞行者’1号飞机实现了人类最早的持续动力飞行 1906年法国阿尔贝托·桑托斯-杜蒙成功的飞行了他们自己设计的飞机 1909年法国布莱里奥成功的飞行了他们自己设计的飞机(首次飞越了英吉利海峡) 第一次世界大战肯定了飞机在战争中的应用。空气动力学理论迅猛发展,

航天器控制工具箱

航天器控制工具箱 Spacecraft Control Toolbox 基于Matlab软件的航天器控制工具箱Spacecraft Control Toolbox 是Princeton Satellite System公司(简称PSS)最早和应用最广的产品之一,有20多年的历史,被广泛用来设计控制系统、进行姿态估计、分析位置保持精度、制定燃料预算以及分析航天器动力学特性等工作。Spacecraft Control Toolbox 工具箱经过多次飞行验证,证明是行之有效的。这个工具箱涵盖了航天器控制设计的各个方面。用户可以在很短的时间内完成各种类型航天器控制系统的设计和仿真试验。软件的模型和数据易于修改,具有良好的可视化功能。大部分算法都可以看到源代码。 Spacecraft Control Toolbox(简称SCT)由不同的模块组成。 组成结构图如下 各个模块的主要功能和特点

SCT Core Toolbox -- 基本工具箱 SCT基本工具箱针对需要迅速解决实际工程问题的工程师而设计,包含了航天器控制系统设计的基本内容,也是其他SCT模块运行的基础。它建立在PSS公司大量工程经验的基础上,其中包括GPS IIR、Inmarsat 3和GGS Polar Platform卫星的控制系统设计。迄今这些系统仍然在太空正常运行。PSS公司使用这个工具箱完成的Cakrawarta-1卫星姿态控制系统设计,所花费用仅仅是通常的十分之一。这颗卫星从1997年11月升空一直运行至今。另外的例子还包括一颗NASA卫星的姿态控制系统设计。 主要功能和特点 ?航天器控制系统设计和分析 ?柔性多体航天器姿态动力学建模 ?包含柔性体展开模型和多体的逻辑树描述 ?轨道动力学分析和仿真 ?姿态估计 ?星历表计算 ?包括大气、重力场和磁场的环境模型 ?指向保持的燃料预算 ?各种有用参数的数据库; ?可视化

航天技术发展史

航天技术发展史 在过去半年中,接连发生了两起重大航天灾难。尽管人们备感痛惜,但这些挫折并不能阻挡人类进军宇宙的步伐。既然航天活动风险如此之大,为什么人类依然不放弃进军宇宙的梦想呢?从长期看,地球的资源是有限的,人类总有一天必须走出自己的摇篮;从中短期看,航天活动可带来巨大回报,是一个国家综合国力的体现。进军宇宙是人类现在和未来的一项伟大事业。于是,载人航天成为现代航天科技发展的重中之重…… 中国载人航天技术的发展及其意义和前景 俗话说,天高任鸟飞,海阔凭鱼跃。人类在漫长的社会进步中不断扩展自身的生存空间。现在,人类的活动范围已经历了从陆地到海洋,从海洋到大气层空间,再从大气层空间到太空的逐步发展过程。人类活动范围的每一次扩展都是一次伟大的飞跃。 中国载人航天技术的发展历程 很久以前,人类就有飞出地球、探知太空奥秘和开发宇宙资源的愿望,我国古代的不少神话故事便是突出的反映。最典型的是流传很广的嫦娥奔月,它描写一个叫嫦娥的美女,偷吃了丈夫后羿从西王母那里求得的长生不老的仙药后,身体变轻飘到月亮上去了。 历史上第一个试验乘火箭上天的人是15世纪中国官员万户。1945年,美国学者基姆在他的《火箭与喷气发动机》一书中是这样描写的:万户先做了两个大风筝,并排装在一把椅子的两边。然后,他在椅子下面捆绑了47支当时能买到的最大火箭。准备完毕后,万户坐在椅子当中,然后命其仆人点燃火箭。但是,随着一声巨响,他消失在火焰和烟雾中,人类首次火箭飞行尝试没有成功。 20世纪80年代,改革开放带来了航天技术的春天。1986年,中共中央、国务院批准了《高技术研究发展计划("863"计划)纲要》,把航天技术列为我国高技术研究发展的重点之一。"863"高技术航天领域的专家们对我国航天技术未来的发展进行了深入细致的论证,描绘了我国航天技术发展前景的蓝图,一致认为载人航天是我国继人造卫星工程之后合乎逻辑的下一步发展目标。1992年1月,党中央批准研制载人飞船工程。自此,我国的载人航天工程正式启动。1999年11月20日,我国成功发射了自行研制的第一艘飞船神舟1号,成为世界上第三个发射宇宙飞船的国家。此后,又分别把神舟2、3和4号送上九重天。在1992 年开始研制载人飞船之前,我国"863"高技术航天领域的专家们曾为研制哪种运

航天器控制原理

1.1 世界航天技术发展的概况 航天技术发展是当今世界上最引人注目的事业之一,它推动着人类科学技术的进步,使人类活动的领域由大气层内扩展到宇宙空间。航天技术是现代科学技术的结晶,是基础科学和技术科学的集成,力学、热力学、材料学、医学、电子技术、光电子技术、自动控制、计算机、真空技术、低温技术、半导体技术、喷气推进、制造工艺学等学科,以及这些科学技术在航天应用中相互交叉、渗透而产生的大量新学科,都对航天技术的发展起了重要作用。所以,航天技术是一个国家科学技术水平的重要标志。 航天技术是一门综合性的工程技术,主要包括:制导与控制技术,热控制技术,喷气推进技术,能源技术,空间通信技术,遥测遥控技术,生命保障技术,航天环境工程技术,火箭及航天器的设计、制造和试验技术,航天器的发射、返回和在轨技术等。由多种技术融于一体的航天系统是现代高技术的复杂大系统,不仅规模庞大,技术高新、尖端,而且人力、物力耗费巨大,工程周期长。时至今日,航天技术已被广泛应用到政治、军事、经济和科学探测等领域,已成为一个国家综合国力的象征。 .1.2 近代航天技术的发展 19世纪末20世纪初,火箭才又重新蓬勃地发展起来。近代的火箭技术和航天飞行的发展,涌现出许多勇于探索的航天先驱者,其中代表人物K.3.齐奥尔科夫斯基,R.戈达德(Robert Goddard),H.奥伯特(Hermann Oberth)。 航天技术从20世纪50年代末期的研究试验阶段到70年代中期,发展到了广泛实际应用阶段。其中60年代以来,为科学研究、国民经济和军事服务的各种科学卫星与应用卫星得到了很大发展。至70年代,军、民用卫星已全面进入应用阶段。一方面向侦察、通信、导航、预警、气象、测地、海洋、天文观测和地球资源等专门化的方向发展,同时另一方面,各类卫星亦向多用途、长寿命、高可靠性和低成本的方向发展。这两种趋势相互补充,取得了显著的效益。80年代中后期,基于模块化和集成化设计思想的新型微、小卫星崛起,成为航天技术发展中的一个新动向。这类卫星重量轻、成本低、研制周期短、见效快,已逐渐成为今后应用卫星的一支生力军。

航天器的分类与信息系统的应用

浅谈飞机和航天器的分类以及信息系统在航空航天中的应用 学院:政治与公共管理学院 专业:信息管理与信息系统 学号:2011126010007 姓名:董晓 指导教师:朱波 2012年5月11日

目录 一、摘要 (3) 二、关键字 (3) 三、正文 航天器的概念 (3) 航天器的分类 (3) 飞机的概念 (4) 飞机的分类 (4) 信息技术的概念 (5) 信息技术与航空航天的关系及应用 (5) 四、总结 (8) 五、参考文献 (9)

一、摘要 随着社会与科技地不断进步,人类的活动空间逐渐开始由陆地和海洋向着更加高远的天空进发。现在,人类的活动范围已经历了从陆地到海洋,从海洋到大气层空间,再从大气层空间到太空的逐步发展过程。人类活动范围的每一次扩展都是一次伟大的飞跃。由陆地到海洋的发展极大的促进了欧洲国家的发展,使历史进程与世界格局发生了巨大的变化。因此我们可以肯定,航空航天技术的进步必将更大的推动整个人类的发展。而作为航天技术的直接体现者和航天活动的承担者,各种各样的航天器在航空航天领域起着举足轻重的作用。而现代信息技术的发展又对航空航天的发展起到了巨大的推进作用。因此研究航天器的分类以及信息技术在其中所起的作用有着重要的意义。 二、关键字 航空航天、航天器、信息技术、飞机、计算机 三、正文 1、航天器的概念 航天器又称空间飞行器、太空飞行器。按照天体力学的规律在太空运行,执行探索、开发、利用太空和天体等特定任务的各类飞行器。由于航天器在地球大气层以外运行,摆脱了大气层及重力的阻碍,从而大大拓宽了人们的认知和活动空间。 2、航天器的分类 航天器有着多种分类标准。航天器具有多种分类方法,即可以按照其轨道性质、科技特点、质量大小、应用领域和是否载人进行分类。其中按照是否载人的分类方法是最常见的分类方法。 按照是否载人分为无人航天器和载人航天器,无人航天器按是否环绕地球运行又可分为人造地球卫星和空间探测器。 人造地球卫星,简称人造卫星,是数量最多的航天器,约占航天器总数的90%以上。它按用途分为科学卫星、应用卫星和技术试验卫星。科学卫星用于科学探测和研究;应用卫星是直接为国民经济和军事服务的人造卫星,按用途分为通信卫星、气象卫星、侦察卫星、导航卫星、测地卫星等;技术试验卫星则是利用太空真空、微重力和强辐射的特殊环境对某些难以在地球上实验的特殊技术进行研究实验的卫星,在生物工程领域的应用十分广泛。 空间探测器,又称深空探测器,按探测目标分为月球探测器、行星探测器行星际探测器。各种行星和行星际探测器分别用于探测金星、火星、水星、木星、土

航天器的发展史

航天器的发展史 【摘要】本文文首先简要介绍了航天器的基本概念和特征,然后 ,阐述了航天器的分类,并对三种载人航天器做了简单的对比,重点概括了航天器的发展历史,包括卫星、空间探测器、载人航天飞船和国际空间站的发展过程,简要分析了各种航天器发展过程中的技术进步。最后 ,对航天器的发展目标和前景作了展望。 【关键词】航天器卫星空间探测器载人航天器发展历史 【引言】航天技术“是高度综合的现代科技 ,是许多最新科技成就的集成 ,对国家现代化和社会进步有宏观促进作用 ,高投入、高风险和高效益是其特点,航天器的发展体现了一个国家的综合科技水平”。航天器的发展是人类的对外太空奥秘探索的进步,是人类发展和认知的进步。航天器的发展是紧紧依赖于各学科的发展的,材料、动力学等自然学科对它们的发展有直接的关键的影响,航天器的进步也是科学的进步,标志着新型能源、新型材料的发展日趋成熟。 1航天器基本介绍 航天器,又称空间飞行器、太空载具等,是指在地球大气层以外的宇宙空间中,基本按照天体力学的规律运动的各种飞行器。载人航天器家族中有三个成员:载人飞船、空间站和航天飞机。 航天器大多不携带飞行动力装置,依靠运载火箭,通常为第二级火箭提供的初速来运动。运载火箭在燃料耗尽后就自动分离,向地球下落;航天器或者进入绕地球轨道,或者在给以动量情况下,继续飞向太空目的地。在极高真空的宇宙空间航天器靠惯性自由飞行。航天器的运动速度为八到十几公里每秒。 绝大多数航天器为无人飞行器,各系统的工作要依靠地面遥控或自动控制。航天员对载人航天器各系统的工作能够参与监视和控制,但是仍然要依赖于地面指挥和控制。航天器控制主要是借助地面和航天器上的无线电测控系统配合完成的。 航天器的电源不仅要求寿命长,比能量大,而且还要功率大,从几十瓦到几千瓦。[1]它使用的太阳电池阵电源系统、燃料电池和核电源系统都比较复杂,涉及到半导体和核能等项技术。航天器轨道控制和姿态控制系统不仅采用了很多特有的敏感器、推力器和控制执行机构以及数字计算装置等,而且应用了现代控制论的新方法,形成为多变量的反馈控制系统。 2航天器的分类 [2]航天器分为无人航天器和载人航天器。无人航天器按是否环绕地球运行分为人造地球卫星和空间探测器。通常,航天器分为人造地球卫星、空间探测器和载人航天器。 2.1 人造地球卫星 简称人造卫星,是数量最多的航天器,约占航天器总数的90%以上。它按用途分为科学卫星、应用卫星和技术试验卫星。科学卫星用于科学探测和研究,应用卫星是直接为国民经济和军事服务的人造卫星,按是否专门用于军事应用卫星又可分为军用卫星和民用卫星,[3]军用航天器包括军用卫星、天基武器和执行军事使命的载人航天器,有许多应用卫星是军民兼用的。 2.2 空间探测器 又称深空探测器,按探测目标分为月球探测器、行星和行星际探测器。各种

航天器发展史

机械小论文 12 年10月8日

航天器发展史 [摘要] 分类介绍了火箭、卫星、空间探测器、载人航天飞船的发展,主要介绍了苏(俄)美两国对航天器的研究以及他们在不同年代所发射的航天器 [关键词] 航天器;火箭;卫星;空间探测器;载人航天飞船 引言 航天器的基本知识 “在太空基本上按照天体力学规律运行,具有一定功能并执行一定任务的飞行器,称为航天器。航天器包括人造卫星、载人航天器(载人飞船、空间站和航天飞机)和空间探测器(月球探测器、行星探测器等)三大类。[1]世界上第一个航天器是苏联1957 ” 年10 月 4 日发射的“人造地球卫星1 号” ,第一个载人航天器是苏联航天员加加林乘坐的东方号飞船,第一个把人送到月球上的航天器是美国“阿波罗11 号”飞船,第一个兼有运载火箭、航天器和飞机特征的航天飞机是美国“哥伦比亚号” 航天飞机。至今,航天器还都是在太阳系内运行。通常,航天器分为人造地球卫星、空间探测器和载人航天器。人造地球卫星,简称人造卫星,是数量最多的航天器,约占航天器总数的90%以上。空间探测器,又称深空探测器,按探测目标分类。载人航天器,按飞行和工作方式分为载人飞船、航天站和航天飞机。航天飞机既是航天器又是可重复使用的航天运载器。航天器在天体引力场作用下的运动方式主要有两种:环绕地球运行和飞离地球在行星际空间航行。环绕地球运行轨道是以地 球为焦点之一的椭圆轨道或以地心为圆心的圆轨道。行星际空间航行轨道大多是以太阳为焦点之一的椭圆轨道的一部分。航天器克服地球引力在空间运行,必须获得足够大的初始速度。在地球表面的环绕速度,称为第一宇宙速度。高度越高,所需的环绕速度越小。航天器在空间某预定点脱离地球进入行星际飞行必须达到的最小速度叫做脱离速度,又叫逃逸速度。预定点高度不同,脱离速度也不同。在地球表面的脱离速度称为第二宇宙速度。从地球表面发射飞出太阳系的航天器所需的速度称为第三宇宙速度。 一、火箭技术 火箭是人类实现航天的重要工具,无论是载人飞船还是人造卫星,都需要火箭作为运输载体。中国三国时期就出现一种带火的箭,即在箭杆前部绑有易燃物,点燃后用弓弩射出,称为火箭。后来火箭在古代中国逐渐发展为多种构造,如神火飞鸦,火龙出水等。19 世纪末20 世纪初,随着科学技术的进步,近代火箭技术和航天飞行发展起来,先驱者的代表人物有前苏联的齐奥尔科夫斯基,美国人戈达德和德国奥伯特。齐奥尔科夫斯基毕生从事火箭技术和航天飞行的 研究。在他的经典著作中,对火箭飞行的思想进行了深刻的论证,最早从理论上证明用多级火箭可以克服地心引力进入太空。他建立了火箭运动的基本数学方程,奠定了理论基础。戈达德博士在1010 年开始进行近代火箭的研究工作。他在1919 年的论文中提出了火箭飞行的数学原理,指出火箭必须具有7.9km/s 的速度才能克服地球的引力。他认识到液体推进剂火箭具有极大的潜力,1926 年3 月他成功在研制和发射了世界上第一枚液

航天器控制原理

航天器控制原理自测试题一 一、名词解释(15%) 1、姿态运动学 2、惯性轮 3、姿态机动控制 4、空间导航 5、空间站的姿态控制 二、简答题(60%) 1、航天器按载人与否是如何分类的?各类航天器的作用和特点是什么?请举出你所知的各类航天器的国内外的例子。 2、开普勒三大定律是什么?牛顿三大定律是什么? 3、分析描述航天器姿态运动常用的参考坐标系之间的相对关系。 4、画出航天器控制系统结构图并叙述其原理。 5、液体环阻尼器有什么特点,适用于什么场合? 6、写出卫星姿态自由转动的欧拉动力学方程。 7、主动姿态稳定系统包括哪几种方式? 8、推力器的工作时间为什么不能过小? 9、简述导航与制导系统的功能,及其为实现此功能而必须完成的工作。 10、载人飞船在结构上较一般卫星有什么特点? 三、推导题(15%) 1、利用牛顿万有引力定律推导、分析航天器受N体引力时的运动方程,并阐述简化为二体相对运动的合理性。8% 2、推导Oxyz和OXYZ两坐标系之间按“1-2-3”顺序旋转的变换矩阵和逆变换矩阵,并在小角度假设下予以线性化。7%

四、计算题(10%) 1. 已知一自旋卫星动量矩H=2500Kg·m2/s,自旋角速度为ω=60r/min,喷气力矩 Mc=20N·m,喷气角为γ=45。,要求自旋进动θc=90。。问喷气一次自旋进动多少?总共需 要多少次和多长时间才能完成进动? 航天器控制原理自测试题一答案 一、名词解释(15%) 1、姿态运动学 答:航天器的姿态运动学是从几何学的观点来研究航天器的运动,它只讨论航天器运动的几何性质,不涉及产生运动和改变运动的原因 2、惯性轮 答:当飞轮的支承与航天器固连时,飞轮动量矩方向相对于航天器本体坐标系Oxyz不变,但飞轮的转速可以变化,这种工作方式的飞轮通常称为惯性轮。 3、姿态机动控制 答:姿态机动控制是研究航天器从一个初始姿态转变到另一个姿态的再定向过程。如果初始姿态未知,例如当航天器与运载工具分离时,航天器还处在未控状态;或者由于受到干扰影响,航天器姿态不能预先完全确定,那么特地把这种从一个未知姿态或者未控姿态机动到预定姿态的过程称为姿态捕获或对准。 4、空间导航 答:航天器轨道的变化也称为空间导航,包括轨道确定和轨道控制两个方面,由导航与制导系统完成。 5、空间站的姿态控制 答:空间站姿态控制分为姿态稳定和姿态机动两部分。姿态稳定又分为两种情况:第一种情况为对地球指向稳定,主要为与地面通信联系和有关的数据传递提供稳定姿态。第二种情况,姿态控制精度由有效载荷或者在空间站进行的有关实验提出,此种精度要求视有效载荷和实验研究的不同而不同。 二、简答题(60%) 1、航天器按载人与否是如何分类的?各类航天器的作用和特点是什么?请举出你所知的各类航天器的国内外的例子。

航天器的控制系统

航天器的控制系统 航天学院 151220205 李欢 一、关于控制的基础知识 系统是能够在一起协同工作并产生输出的所有部分的集合。系统具有输入(进入系统的东西)、输出(从系统中发出的东西)和把输入变成输出的处理过程。对于航天器的任务而言,任务的成败取决于各种子系统的输出,因而我们最关心控制系统。最简单的控制系统是一种开环式的,输入生成输出,但不能动态调整输入来控制输出。而闭环控制系统,也叫反馈控制系统,能很好地保证得到想要的输出。因为它能感知输出(得到的),将它与想要的输出(想得到的)进行比较,并根据需要调整输入。 所有控制系统必须实现的四个基本任务: 1.理解系统的行为——装置是如何对包括环境输入在内的输入产生反应来生成输出的,这也被称为装置模型; 2、观察系统的当前状态——利用传感器; 3、决定做什么——控制器的作用; 4、执行——利用执行器。 姿态确定就是根据姿态测量元件提供的测量信息(含有噪声)求出姿态角和角速度,其精度与测量元件的精度、安装方式和信息处理的方法有关。姿态确定航天器在空间的指向方位,同时,发射航天器需要控制它们的姿态以进入正确的轨道。通常用角度来定义航天器的姿态,用以飞行器为中心的本体坐标系的旋转角度来描述姿态,常以滚动角、俯仰角和偏航角给出。 为了观察系统姿态,并将这些观察结果转换成控制器能处理的信号,航天器都有一个内置姿态传感器系统。它利用两个参照点来确定航天器在三维空间里的姿态。 执行特定飞行使命的航天器需按特定的轨迹运动,为满足这个要求常需对轨道进行控制。这种控制包括利用航天器的推进系统产生的反作用推力的主动控制及利用客观存在的外力(如地球引力、气动力、太阳辐射压力及其他行星的引力等)的被动控制。对航天器的质心施加外力,以改变其运动轨迹的技术,实现航天器轨道控制的装置的组合称为航天器轨道控制系统。 航天器的轨道一般由主动飞行段和自由飞行段组成。主动飞行段是航天器变轨发动机的点火段,变轨发动机熄火后是自由飞行段。航天器在脱离运载火箭后便进入自由飞行段。如果要改变它的轨道,就要插入主动飞行段。

航天器发展史

航天器发展史 众所周知,航天器在人类社会生产发展历程中起着极大的推动作用。从一九零三年十二月十七日莱特兄弟研制的‘飞行者一号’试飞成功到一九五七年前苏联发射了人类第一颗人造卫星,这短短的几十年,带来了航天器飞跃式的发展,同时也带来人。类社会文明与进步。 1.航天器的概述 航天器指的是在稠密大气层外环绕地球,或在行星际空间,恒星系空间,基本上按照天体力学规律运行的各种飞行器,又称空间飞行器。航天器的发展共分为三个阶段。一是初期环境探测和技术试验阶段,这一阶段大致在五十年代末六十年代初,以人造卫星为主,探测地球周围空间环境,试验各种航天技术和有效载荷,掌握各类轨道的发射技术,为今后设计航天器提供依据。并在地面建立各种模拟实验设备,这一阶段的航天器重量是在几十千克到上百千克之间,工作寿命也短且功能较单一,主要用于探索航天器各系统实现的方案。发展相应的器件设备,验证他们的工作原理和功能。航天器的第二个发展阶段便是应用阶段,自六十年代中期各类航天器先后进入了应用阶段,形成了应用卫星系列。他们不断用先进技术改进,实现时间和空间上的连续服务,地面终端和数据中心也逐步完善,最终形成了各种卫星应用系统。卫星重量在一千千克左右,工作寿命可达几年到十几年,由单纯为本国服务到逐渐向其他国家开放,实现商业化应用机制,形成购买和租用卫星市场。航天器的第三个发展阶段便是空间站阶段。八十年代以来,卫星应用商业市场成熟,一些不从事航天活动的国家也重视卫星应用,包括建立对地观测卫星数据接收站和卫星通信地面站。通过试验性空间站的应用,证实了人在空间环境下长期生活和工作的能力,认识到利用空间独特环境可从事多种学科研究和应用试验,并形成了与空间站配套的空间运输系统。在此基础上,进入九十年代后,世界上从事航天技术的主要国家,如美国,俄罗斯,欧空局,日本和加拿大联合从事一项国际空间站计划,为实现在空间建立人们长期生活和工作的基地,开发空间及其丰富的理想的资源的理想,发挥各国的航天技术优势,把分散的力量集中起来,使航天科学发展进入一个更高的阶段。 2.未来航天器的发展 2.1未来航天器的发展方向 未来的应用卫星将朝着大型,长寿命,多功能方向发展,航天器的研制也走向双边或多边合作,出现了跨国公司和联合集团形式的航天企业。另一方面,随着航天科技的发展,特别是小型器件和微电子技术的发展,在九十年代初悄然兴起了小卫星热,他以造价低,重量小,风险小等特点受到军方,企业,大学和科研机构等重视。小卫星以通信卫星和对地观测卫星为主,与此相适应,小型运载火箭也开始受到重视,并开始起步。纵观航天科技发展的历史,在约五十年的时间里,他的发展速度之快,加入到这一领域的国家之多,航天活动开展之频繁,是其他高科技所不能比拟的。航天科技不再被少数几个发达国家所垄断,也不再是可望不可及的高科技尖端技术,他已对人类生产生活,国家经济与科学进步产生了深远的影响。 舟5号飞船顺利完成了我国首次在人航行,实现了中华民族“飞天”的千年梦想。21个小时23分钟的太空行程,标志着中国已成为世界上继前苏联/俄罗斯和美国之后第3个能够独立开展载人航天活动的国家。 2.2 发展航天事业的重要性 航天器在世界上发挥着重大的作用。首先,它能体现一个国家综合国力和提升国际威望。因为航天技术的水平与成就是一个国家经济、科学和技术实力的综合反映。载人航天是航天技术向更高阶

航天器供电系统简介

航天器电源系统 名词术语 主电源与副电源:有些航天器的供电系统不只一套,使命期中长期供电的称为主电源,仅用于短期峰值功率补充供电或应急备用等情况的,称为副电源(或辅助电源)。 一次电源与二次电源:供电系统主母线输出的电能称为一次电源,我国航天工程师习惯将供电系统称为一次电源(系统)。由于配电系统的主要部件是电源变换器,因此我国航天界也习惯将电源变换器称为二次电源(设备),或将电源变换器输出的电能称为二次电源。 原生电源与再生电源:供电系统中输出原始电能的装置,称为电能源。原生电源通常指电能源。再生电源即贮能装置,习惯上也指从贮能装置输出的电能。 原电池与蓄电池:原电池是指电极火星物质的电化学反应可逆性较差,不能进行有效再充电的电池,亦称为一次电池。原电池可作为电能源使用。蓄电池是指以化学能的形式贮存电能并能将化学能直接以电能形式释放的、可进行多次充放电循环的电化学装置,亦称为可充电池或二次电池,可作为贮能装置使用。 电能源与贮能装置 电能源是航天器中输出原始电能的装置,亦称为“原生电源”。工作寿命短的航天器可采用原生电池作为电能源。常用的电能源有银锌电池、化学动力系统、燃料电池、放射性同位素热点系统或动力系统、核动力系统、太阳电池阵以及太阳动力系统等。比功率或(与)能量密度是电能源的一项重要的性能指标,它与电源系统的重量有关。虽然重量不一定是电源系统最佳化的最起作用的驱动因素,但与航天器的发射费用及运载器的运输能力有直接关系。 原电池以较高的能量密度著称,但一般不能再充电,通常适用于短期飞行任务(几天、十几天)。最常用的原电池是银锌电池,它有很高的能量密度。“水星”飞船以及“阿波罗”登月舱应用了银锌电池。在长寿命空间系统中,原电池可作为副电源应用,主要为火工品点火与伸展装置的启动提供电功率。对于有特高功率需求的短期飞行任务(如月球表面钻探),可应用化学动力系统为副电源,如开式循环单组元或双组元推进剂往复运动装置。近几年来,锂电池已在太空使命中应用。在现有的空间原电池中,锂电池有很高的能量密度。 贮能装置可称为“再生电源”,如蓄电池(常用镍镉电池与镍氢电池)、再生式燃料电池、以及飞轮等。蓄电池的能量密度比原电池要低很多,且受放电深度的限制,可以利用的能量密度(能量密度与放电深度之积)更低。飞轮的能量密度与蓄电池差不多,但可用能量密度比较高,可达30Wh/kg。 在太阳光电源系统中,太阳电池阵是电能源,即电能生成装置,蓄电池是贮能装置。太阳电池阵与蓄电池组发出的电能,在功率调节与控制系统作用下,其电压值调制为额定的母

相关文档
最新文档