微通道市场格局

微通道市场格局
微通道市场格局

家用空调领域微通道换热器的发展之路

2014/2/11 16:31:50 来源:产业在线ChinaIOL作者:孙静

微通道换热器应用广泛,除应用于家用空调和商用空调外,还应用于精密空调、大巴车、冷藏冷冻等领域。在家用空调方面,其换热器产品一直相对比较单一,以翅片式换热器为主。随着本世纪初,美国和韩国的一些人员和企业尝试微通道换热器在住宅空调器上的应用,逐渐引起国内外行业的重视,作为一个新产品,国外美国的Delph和York公司最早合作推出采用微通道换热器的住宅空调器产品;在国内,格力和三花丹佛斯公司合作在20 08年也推出了采用微通道换热器的新产品。

市场发展蜿蜒曲折

如今,在我国高效节能相关政策的推动下,高效、节能、环保已经成为空调整机市场的主流趋势,与整机发展关系比较密切的空调部件产品之一——换热器也不断发展升级,微通道换热器的发展也越来越受到业内关注,主要体现为其在空调系统中更高的换热效率,以及体积小、换热效率高、节省空间、节约冷媒、耐压等优势,被认为是一种技术发展趋势,并有望替代传统的翅片式换热器。然而,家用空调领域,微通道换热器的发展之路并非容易,仍面临许多困难需要逐步解决。

根据产业在线预计,2013年,微通道换热器在空调领域内销量130万套左右,同比2012年增长约8.6%。相对于快速增长的微通道出口市场来看,内销增幅并不明显,微通道内销市场没有迅速扩张,主要是受国内特定因素的制约。

图1 2012年-2013年国内微通道换热器销售规模

数据来源:产业在线单位:万套

制约因素一:制热技术尚待解决

目前微通道换热器在国内的发展仍处于起步阶段,在空调制热方面仍有问题,因此主要还是用在单冷式空调机上,在冷暖型空调上基本还没涉及,市场占比较小,成为制约其在空调市场发展的一大原因。因此,微通道在空调企业中的需求不大,分析其原因,国内单冷机一般用在广东等南方地区,随着经济条件不断好转,单冷机占比不断下滑,加上微通道在制热方面的技术问题还有待解决,因此微通道换热器目前主要应用在单冷空调出口机中,出口向以美洲、拉美、中东、印度等为主,尤其美国市场的单冷机越来越多。

从整机需求来看,除三星、LG两家外资企业需求量相对偏高外,目前,大部分国内企业的需求量还不大。不过,国内微通道换热器整体需求量虽然不大,每年都有增加,国内市场需求小幅增长,除了个别企业近两年相对谨慎保守,需求量有所下滑。另外,大部分整机企业多采用专业微通道厂家供货,尽管一些大的整机厂也都建了自己的微通道生产线,但多是技术储备为主,未来,随着微通道技术以及市场需求不断成熟,整机自供比例将快速提升,而现有的市场供给格局或将随之颠覆。

因此,微通道换热器国内销售市场发展并不容易,规模无法迅速扩张,主要困难之一便是应用市场需求空间有限,而其市场需求有限又主要是受制热技术限制,随着三花、康盛等企业都在对微通道换热器技术升级方面做出积极的探索,相信随着微通道换热器在制热技术上的突破,其在家用空调和中央空调市场的应用空间将更为广阔。

制约因素二:价格优势不明显

传统翅片式换热器先入为主,占据市场,新产品推广起来并不容易。微通道换热器虽然是未来发展趋势,但是国内市场短期来看,或将不会出现大幅增长,其发展一方面要看技术发展情况;另一方面要看铜价走势,如果铜价一直居高不下,那么必将刺激微通道换热器进一步发展。

从价格数据可以看出,一方面,铜价从2011年9月份开始持续偏低(详见:铜价走势图);另一方面,虽然铝价相对偏低(详见:铝价走势图),微通道换热器采用铝制材料,但其自身设计及对制造工艺较高的要求,使得微通道加工成本偏高,其与传统铜质换热器相比成本优势并不明显,市场售价甚至还高,一定程度上也制约了市场的推广。

铜价走势图:2008年至今铜现货期货月度均价走势对比

数据来源:中铝网

铝价走势图:2008年至今铝现货期货月度均价走势对比

数据来源:中铝网

企业竞争格局

图2 微通道换热器内销市场格局(按销量)

数据来源:产业在线

据了解,家用空调主要竞争企业,一般都有自己的两器厂,以备自供,一般只有在空调生产旺季,自供的两器不能满足自己主机厂需要时才会外购,或者家用空调生产的特殊规格产品会外购换热器。目前国内家用空调两器市场品牌集中度相当高,对于微通道换热器产品来说,三花和康盛等生产企业享有较高声誉。

三花微通道前身是中外合资三花丹佛斯(杭州)微通道换热器有限公司。2012年年初,合资公司因经营理念差异,两大股东分道扬镳,公司一拆为二:杭州三花微通道公司与嘉兴丹佛斯微通道公司;近两年,三花在我国微通道换热器市场中占据主导地位,占据内销市场近一半的份额。康盛在两器市场历史悠久,具有较高的知名度,积极推动空调领域“铝代铜”的应用和推广,其微通道产品大部分应用在汽车领域,而在家用空调和商用空调中的规模略小。同样,浙江三可热交换系统有限公司,目前其微通道主要应用于大巴车空调和精密空调领域,其在家用空调和商用空调领域涉及规模不多。与此同时,现在越来越多的企业投入微通道换热器生产线的建设中,如盾安、宁波精达、浙江台州银轮等等,其中,浙江盾安热工环境股份有限公司,已在2013年开始量产微通道,其在客户开拓方面具备很大优势。根据行业人士反馈,国内的微通道企业,每年都会增长5-10家企业,包括一些整机企业也开始逐步具备自己的微通道换热器生产线,这些生产线多以储备为主,以上也再次凸显了未来微通道换热器的发展趋势。

从企业竞争来看,目前微通道换热器内销市场格局还未稳定,三花近两年始终保持其龙头地位,且后劲很足,今年约占内销市场47%的份额;其次为三星自供,约占40%。未来随着市场和技术的不断成熟,三花、盾安、金龙、康盛等上市企业具备很大的优势和市场。本质上来说,现在的微通道换热器生产企业,跟空调企业的合作关系并不好处,很多生产线做做停停,美的、格力等也拥有一条自己的备用生产线,如果量多的时候,自己也供一部分。整机企业不断完善产业链的同时,也代表着微通道生产企业市场饼图的不断减少。

结语

总体来看,短期内微通道在冷暖机上的技术问题还有待解决,价格优势仍不明显,因此虽然微通道换热器是未来的发展趋势,但现在的增长速度并不高。目前来看,微通道加工成本高,这个是必然,原因在于这是一个新的工艺,随着这个产品在市场的不断成熟,加工成本会逐步下降;加上未来在制热方面技术的不断突破,相信微通道换热器市场会慢慢成熟起来的,是未来发展的一个趋势。

微通道反应器系统技术要求

微通道反应器系统技术要求 一、技术要求 1、★整体要求:合成反应系统包含可相互独立的反应物通道,独立的反应物通道不小于6个。 2、★反应器支架可灵活配置反应模块的数量(不少于4个),含不少于8个入料与收集接口,4个换热流体接口。 3、★反应器可通过两个恒温循环器与密封隔热板分隔实现两个温区,两个温区各自的控制区域可灵活设置。 4、★反应模块为三层结构,上层为底板,中间层为混合或反应通道,下层为换热通道。模块均采用碳化硅材质,成型工艺采用扩散焊接技术,整体成型,保证气密性和耐高压性能,为了避免金属溶出性污染,模块中间不得安装金属连接件。 5、★反应器包含多组碳化硅模块,包含混合模块及反应模块,可执行A+B→P或A+B→P’+C→P,混合模块也可用作猝灭模块,用于反应停止或降温。 6、★反应通道结构设计能够在强化传质的同时减少返混,保证物料在反应器内停留时间的一致性,要求提供内部结构图。 7、热传导率:≥100W/mK(温度200℃范围内)。 8、耐腐蚀性:反应器的触液材质能够耐反应器操作温度下的硫酸、氢氟酸、氢溴酸、强碱等物质。 9、年损失率:≤0.1mm/年(120℃1:1 HF/HNO3条件下测试)。 10、工艺侧工作温度范围:-20-150℃,换热测温度范围:-20-150℃。 11、工艺侧压力范围:0-25bar,测试压力75bar,提供压力检测证书;换热侧压力范围0-5bar。 12、通量:0.2-20mL/min。 13、★反应器内体积:0.95-13.5ml,单板的最小持液量不大于1ml,单板的最大持液量不大于4.8ml。 14、★反应通道尺寸不大于1.4×1.4mm,预热通道尺寸不大于1×1mm。 15、停留时间:2.7sec-60min。 16、反应器配件要求:进、出料管路及背压系统均采用抗腐蚀、耐压材质,保证气液反应、液液反应的进行。 二、配置要求 1、主反应器(含阳极氧化铝支架) 2、A+B型碳化硅预热混合模块 3、P’+C型碳化硅预热混合模块 4、碳化硅反应模块 5、背压系统(16bar) 三、技术支持及售后服务 1、技术支持: 生产厂家技术工程师进行仪器的安装调试和免费培训3名以上操作人员,培训时间根据用户实际情况来定,内容包括仪器的基本原理、结构、基本操作、维护知识及实验的应用与开发。前期使用供应方派专业技术人员陪用户技术人员共同操作仪器,直到用户使用人员可独立进行操作为止。供应商应提供仪器应用的详细应用资料,用户能够在此基础上开展新的实验研究。 2、售后服务:

狭缝通道两相流强化换热研究综述

收稿日期:2001-06-06;修订日期:2001-08-29 作者简介:王增辉(1976-),男,山西介休人,西安交通大学博士研究生. 专题综述 文章编号:1001-2060(2002)04-0329-03 狭缝通道两相流强化换热研究综述 王增辉,贾斗南,刘瑞兰 (西安交通大学核能与热能工程系,陕西西安 710049) 摘 要:在狭缝通道高速流体的冲刷下,狭缝不易产生杂质沉淀污染传热表面使传热工况恶化。狭缝两相流传热技术结构紧凑,具有显著的强化效果,是一种既经济又有效地强化传热方法,因此狭缝传热在航空航天、微电子和核反应堆等领域得到广泛应用。狭缝两相流强化传热的主导传热机理是受压变形气泡底部的微液膜蒸发机理。本文对狭缝通道内两相流强化换热的研究进展进行了一些介绍,并对研究现状进行了评述。关 键 词:狭缝通道;微膜蒸发;强化换热 中图分类号:TK124文献标识码:A 1 引 言 狭缝传热技术是一种新兴的强化传热方法,由于换热表面为光滑表面,在通道内高速流体的冲刷下,不易产生杂质沉淀污染传热表面使传热情况恶化。它具有显著的强化效果,而且结构紧凑,不需要复杂的表面加工处理。由于这些原因,狭缝传热在航空航天、微电子、核反应堆和热能工程等领域得到广泛的应用。此外,在大型空分装置中,若能使核心部件主冷凝蒸发器的换热温差减少1K,则仅一个机组每年就可节省100万美元以上,同时国 内外一些学者已将狭缝强化换热技术应用于板翅式换热器,收到了显著效果[1]。20多年以来,研究者们对窄缝通道两相流强化换 热及其机理、窄缝通道两相流流型及转换等进行了一些实验和理论研究,以下对这些研究情况做一介绍及评述。 2 换热试验研究 杜建通通过试验观察证实了窄通道在矩形窄通道中加热时[2],通道内有大量扁平气泡的存在,并证实了窄通道对液氮的沸腾传热有明显的强化传热效果。试验窄通道是由铝板加工而成,传热工质为饱和液氮,当间隙尺寸为0.5~ 1.0mm 与相同条件下8.9mm 的铜管换热相比沸腾换热系数提高了0.78~ 2.35倍。Johston 对纯净水在水平环状窄通道内沸腾传热试验后得出结论[3],其与一般的沸腾换热相比,传热系数提高了230%。作者所在科研组通过对间隙为1.5mm 的环形狭缝进行沸腾传热试验研究发现[4],应用Jens-Lottes 公式对试验数据进行整理,得到的结果为环形狭缝中换热能力增加了4.11倍,有明显的强化换热趋 势。 当将窄通道竖直放置于液体介质中,对通道壁面加热负荷时,通道内的液体沸腾,产生气泡,于是通道内外产生密度差,并相应产生静压差,从而形成液体由窄通道壁面底部不断流进内部,形成流动的自然循环,这种现象称热虹吸沸腾换热。狭窄通道中的热虹吸沸腾换热有明显的强化换热效果[5] 。Yao 、Chang 用水、丙酮、氟利昂作工质[6~7],对不同间距底端封闭的非对称小环形通道变热流密度自然对流沸腾传热特性进行了研究。Yao 的试验管道高度为25.4mm 和76.2m m,间隙宽度0.32~2.58m m 。Ishibashi 和Nishjka wa 试验研究了两端敞开竖直圆环通道内的自然对流沸腾传热[8]。试验结果表明环形通道沸腾区域的聚集泡状流的区域传热得到强化,传热系数有时可达饱和沸腾的4倍。 Danilova 证实缝宽与气泡脱离直径接近时,窄缝通道强化传热效果好[9]。黄鸿鼎在研究环隙通道时发现,对于水、乙醇、丙醇、三乙胺等十来种物质,当缝宽为2~2.5mm 时,能明显强化传热,大于3mm 时不起强化作用,窄矩形通道的缝宽与传热工质的表 第17卷(总第100期) 热能动力工程 2002年7月

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

微通道反应器的适用范围

我们都知道微反应器有很多的优点,比如说优秀的传质传热能力,很大程度上减少了发生事故的可能性;快速直接的放大能力,节省成本时间等等。当然对于它也是有一定的局限性的,而正是因为有这样一些原因有很多实验不能使用微反应器进行实验。所以对于化工企业来说了解微通道反应器的适用的范围是很有必要的。 首先严格来说,目前很难界定哪些反应适用于微通道反应器,因为每个反应的特性不同,同时微通道反应器装置的种类也非常多。但一般认为,现有的合成反应有20-30%可以通过微通道反应器进行技改。同时利用微通道反应器,我们可以将大约20%-30%过去认为是危险的工艺流程进行实现。也就是说目前来看有接近30-50%的化工工艺可以通过微通道反应器进行技改。 从结构特点上来说,目前微通道反应器可以用于以下几种类型反应 1. 反应本身速度很快,但受制于传递过程的,整体反应速度偏低的反应这类反应主要为液液多相反应,也包括液液萃取等物理过程。这种过程的特点就在于:反应本身速度快,但是由于底物要在液相间扩散导致反应整体速率偏低。在传统的反应釜内部一般采用搅拌器进行反应,效率较低,无法充分实现两个液相间的混合,因此反应效率低下。而在微通道反应器内由于通道尺寸小带来的扩散尺度减小,导致这类反应可以快速进行。

2.反应本身速度快,但反应剧烈,强放热,产物容易破坏的反应这类反应主要有硝化,重氮化以及部分水解与烷基化反应。硝化以及重氮化反应本身是非常快速而剧烈的,但是实际工厂操作的时候往往反应时间是以小时计的。这是因为反应釜传热能力有限,为了防止体系内温度过高不可控制,需要一点一点的滴加试剂。可以说反应速度完全由移热能力确定。如果使用移热能力强的微通道反应器就可以快速通入试剂并维持反应平稳进行。可以说这一类反应最具有工业化前景,是应当优先考虑的过程。 3.需要严格控制反应器内部流型的反应。 这种反应主要为纳米颗粒的合成等,这类过程在之前已经介绍过了,主要利用微通道内部的流动规律性制备颗粒分布窄的材料,提高产品附加值。这类反应一般产品产量低,附加值很大,有的时候几块实验装置结合就能成为生产装置,应用前景也较为广阔。 4.部分气液反应从机理上可以采用微通道反应器,但是目前尚未出现好的气液反应器结构最明显的就是加氢,加氢当然有很多种类,部分加氢反应反应速率高,但受到氢气向液相扩散的限制,导致整体反应速率较低。在这种状况下,当然可以利用微通道的反应器的混合特性进行反应,类似于第一类反应,不过这里加强的是气液传质过程。但是气液过程有其特殊性,主要是在流体分配与控制方面,这导致适宜放大的气液微通道反应器还不存在。因此这方面实验研究非常活跃,工业应用上除非产量小可以直接使用实验装置否则没有可行性。

环形狭缝通道内环状流模型的数值分析

第!!卷第"期核科学与工程#$%&!!’$&" !((!年%!月)*+,-.-/$01,23$4’053-2165+-,5-2,78,9+,--1+,9:-5&!((!作者简介:刘瑞兰(%;<=—),女,!((%年获西安交通大学核热能系博士学位, 现在新加坡南洋理工大学做博士后研究。主要从事狭缝和微通道内流动与换热方向的研究; 贾斗南(%;>"! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!—),男,教授,西安交通大学核热能系博士生导师。 环形狭缝通道内环状流模型的数值分析 刘瑞兰,贾斗南,王增辉,苟军利 (西安交通大学能源与动力工程学院,?%((";) 摘要:对环形狭缝通道内的环状流建立了分离流模型。应用质量、动量和能量守恒方程,加上相应的 边界条件和使方程组封闭的经验关系式,对环形狭缝通道的内、外液膜厚度、液膜内的速度分布和温度分布,以及内、外管的换热系数进行了数值计算求解。关键词:环状流模型;狭缝通道;数值分析 弹状流和环状流是环形狭缝通道内沸腾换热的主要流型,汽泡很容易发生聚合,形成长的汽弹,与液柱相比长得多。而环形狭缝通道内 的流动更多的是环状流[%]。因此对环状流进 行分析比较接近实际情况。为此本文将在前人研究的基础上,对环形狭缝通道内的环状流动采取分离流模型进行分析,根据边界条件和使方程封闭的经验关系式求解液膜厚度、换热系数,并与实验数据进行比较。 %控制方程的建立 环形流道内环状流内、外壁液膜形成示意 图如图%所示。加热量由壁面传入,汽芯中存在液滴夹带。在方程建立之前需做以下假设:(%)流体的流动是不可压缩的;(!)流动是稳定的;(>)外管壁内和内管壁外的周向液膜厚度均匀;(")汽液界面光滑;(@)压力沿径向不变;(<)蒸汽产生于汽A 液界面上;(?)汽芯中夹带的液滴均匀分布。 根据B-C+DD 和B233AE2F 3$1[!] 的理论,在分析环状流动时,可将汽相和液相分别加以考察,分析中忽略加速压降。对于液膜的一微段,利 用力平衡方程可得环形通道外管内表面及内管 图%环形流道液膜形成示意图 G+9&% 6H-D5*$43+I 0+74+3J +,2,,032192K 外表面的液膜的速度分布,分别为:7!7"#!$ "3$#J $3%$&%$%$&() " $%!7’ 7($$3( )) %(&""3$#J $( )3 %(&%$%(&() "! &[] % (%) = %>万方数据

复合材料中的尺寸效应

复合材料中的尺寸效应 复合材料本身就是一种广义的结构,这种结构的破坏问题与结构的尺寸效应有 着必然的联系,复合材料中很多都属于准脆性材料,因此尺寸效应显得尤其重要, 从尺度律和尺寸效应角度研究强度问题是个重要的观点,比如一个长细杠件它的稳定性能一定较差,这也是一种较常见的尺寸效应问题。强度随机性引起的尺寸效应,能量释放的尺寸效应和微裂纹和断裂的分形特性产生的尺寸效应都对复合材料结构的强度的影响有着重要意义。 目前,固体力学中有三种有关尺寸效应的基本理论 : (1)随机强度统计理论 ; (2)长裂纹引起的应力重新分布和断裂能量释放理论 (3)裂纹分形理论,它可分为两大类 : (a) 裂纹表面的侵入式分形特性理论(即表面粗糙度的分形属性) (b) 间隙分形特性理论(代表着微裂纹的分形分布)

这些基本理论概括表现为材料的四种尺寸效应: (l)边界层效应:它是由材料的非均匀性和泊松效应造成的.前者可以混凝土之类的材料为例,由于各种骨料不能穿透表面而使表面层具有不同的成分;而泊松效应指的是,在试样内部可能存在平面应变的状态,它们发生在与试件表面平行的平面上 ,但不是发生在试样的表面,而是发生在试件的中心部位 . (2)表面与裂纹边缘连接处存在三维应力的奇异性: 这也是由于泊松效应引起的.这就造成了断裂扩展区域靠近表面的那一部分的力学行为不同于试样内部 的力学行为 . (3)由扩散现象引起的时间相关的尺寸效应, 所谓扩散可以是多孔介质中热的输运或湿气和化学物质的输运,这一点已在收缩和干燥蠕变现象的尺寸效应中显示出来,原因是半干燥期依赖于尺寸,以及这种尺寸效应对收缩致裂的影响。 (4)材料本构关系的时间相关性 ,特别是材料应变软化的粘性特征

微通道反应器的特点

微通道反应器是微化工技术发展过程中研发的新型反应器产品,依据微化工技术着重研究的时空特征尺度的特点,该类型反应器具有微米级尺寸的反应通道。 相比于传统化工设备,微通道反应器内部通道尺寸小,流体薄层间距离极短,通过流体微团的介观粘性变形和分子扩散可实现反应物料间的快速微观混合;微通道反应器具有极大的比表面积,流体与器壁间有充分的接触面积,故而使换热效率显著提高,可实现反应过程中的原位高效换热;再者,微通道反应器通道内微小的持液量使得微通道反应器具有明显的安全性能;综上特点,该类反应器可应用于快速混合、强放热及易燃易爆的化工反应过程,并且能显著提高过程安全性以及实现连续化操作的过程。 一、微通道反应器有很多特点: (1)比表面积大,传递率高,接触时间短,副产物少:微反应通道特征尺度小,微通道比一般为5000 ~50000m2.m,单位体面积上传热、传质能力显著增强。(2)快速、直接放大:传统放大过程存在着放大效应,通过增大生产设备体积和规模达到放大目的,过程耗时费力,不能根据市场需求立即作出相应的反应,具有滞后性。而微反应系统呈多通道结构,每一通道相当于一独立反应器,在扩大生产时不再需要对反应器进行尺度放大,只需并行增加微反应器的数量,即所谓的“数增放大”。(3)安全性高:大量热量也可以及时移走,从而保证反应温度维持在设定范围以内,最大程度上减少了发生事故可能性。(4)操作性好:微反应系统是呈模块结构的并行系统,具有便携

性好特点,可实现在产品使用地分散建设并就地生产、供货,真正实现将化工厂便携化,并可根据市场情况增减通道数和更换模块来调节生产具有很高的操作弹性。 目前在大多数含能材料的合成过程中常伴有剧烈的放热反应,在这些反应过程中一旦温度控制不好,就会在短时间释放大量的热量和气体,从而引起冒料等一系列严重后果。在强放热反应过程中,一般很难控制反应温度,也很难实现高效快速混合。对强放热反应过程,常规反应器一般采用逐渐滴加的方式加料,即使这样,在滴加的瞬时局部也会因过热而产生一定量的副产物。 相对常规反应器,微反应器因有较高的比表面积而能缩短反应时间,从而实现快速传热并保持恒温;而且微反应器能提供快速混合,能及时导出热量,反应温度可实现精确控制,因此消除了局部过热,显著提高反应的收率和选择性。所以将微反应器和强放热反应结合起来,可以减小生产危险性、减少副产物并提高生产效率。 上海惠和化德生物科技有限公司,是一家专注于微反应器连续工艺开发及工业化的创新性高科技公司。公司于2015年6月在中国(上海)自由贸易试验区内成立,随着业务的发展,公司于2019年10月整体搬迁至上海化学工业园内。公司上海本部实验室配备十余套微反应器,并与梅特勒托利多共建化学过程联合实验室、与沈阳化工研究院和上海化工研究院共建过程安全联合体、与南大淮安高新技术研究院共建特殊反应实验室等。公司主要服务于国内外精细化工企业,帮助客户进行微反应器连续流工艺咨询与评估、工艺开发、工业化项

纳米材料的小尺寸效应

纳米材料的小尺寸效应 吴顺康四川大学生命科学学院 2016 级生命科学拔尖班 小尺寸现象产生的原因: 纳米粒子的特性当粒子的尺寸进入纳米量级时,微粒内包含的原子数仅为 100?10000 个,其中有 50 %左右为界原子,纳米微粒的微小尺寸和高比例的表面原子数导致了它的量子尺寸效应和其他一些特殊的物理性质。 小尺寸效应导致的性质(以及部分应用) 由于纳米微粒的尺寸比可见光的波长还小,光在纳米材料中传播的周期性被破坏,其光学性质就会呈现与普通材料不同的情形。例如,金属由于光反射显现各种颜色,而金属纳米微粒都呈黑色,说明它们对光的均匀吸收性、吸收峰的位置和峰的半高宽都与粒子半径的倒数有关。⑵利用这一性质,可以通过控制颗粒尺寸制造出具有一定频宽的微波吸收纳米材 料,可用于磁波屏蔽、隐形飞机等。⑴此外,金属超微颗粒的光反射率极低,可低于1%, 大约几毫米就可以完全消光。可以利用此特性,高效持续的将太阳能转化为热能和电能。 在物质超细微化之后,纳米材料的熔点显著降低,犹在颗粒直径为 10 纳米时较为明显,例如金(Au)常规熔点在1064度;然而在颗粒尺寸减少到 2纳米时仅为327度;由此,超细银粉制成的导电浆料可以进行低温烧结,此时的基片可以仅仅使用塑胶而不是高温陶瓷。使用超细银粉,可以使膜厚均匀,覆盖面积大,省料而质量高。 纳米小尺寸效应的应用: 纳米材料作为功能材料与产业技术的结合,具有很多潜在的应用价值。小尺寸超微颗粒的磁性与大尺寸材料显著不同,在颗粒尺寸下降到 0.02 微米以下之后,其矫顽力可增加 1000 倍,若进一步

减小尺寸,其矫顽力反而可以降到0,呈现出超顺磁性。利用超顺磁性颗粒的

微反应工艺开发介绍

微反应技术是目前化工过程实现强化的主要方式之一,它帮助化工企业实现高效、安全、环保生产的新兴技术。它也是未来化工技术发展的方向,而微反应器是企业化工研究和生产所依赖的主要手段。本文主要对微反应工艺中的重氮化反应工艺开发进行详细介绍. 一、实验方法 称定量的红色基KD、水及盐酸在烧杯中,搅拌,打浆成均匀乳状液;称取定量的亚硝酸钠配成水溶液;调整两者体积达到一定比例;利用计量泵将KD乳液与亚硝酸钠溶液以摩尔化学反应量准确注入到微通道反应器中反应。记录入口温度、出口温度、流速、出口物料状态。 二、实验装置 将微通道反应器做成微预混器和微混合器两个部件,将进、出料系统与微通反应器相连,建立连续重氮化反应装置。(下图) 三、结果和讨论

影响重氮化反应的因素包括温度、酸用量、流速、停留时间、微通道尺寸、加料方式等,经过反应装置和合成工艺条件的优化,对各种不同的芳胺进行重氮化反应,实验结果见表1所示。 微通道反应器可实现溶液、乳化液、悬浮液等状态芳胺的连续重氮化反应。大多数的重氮化反应温度一般在0~5℃进行,温度稍高就会产生很多杂质,影响重氮液的品质和偶合反应的收率。但是表

1中温度条件下的实验结果说明,在微通道反应器中大部分氨基物的重氮化反应温度可在10~20℃或更高的室温下进行,这样可大大减少冰的使用,节能效果明显。所得重氮盐溶液外观清澈透明、无分解物,可直接进入下一步,与对应的化合物进行偶合反应,以重氮盐计偶合收率可达98%~100%。 与传统釜式方法生产的产品相比,采用微通道反应器合成有机颜料,产品收率较传统方法均有所提高;色光、近似,着色力略高。颜料产品的透明度可根据要求通过改变设备参数进行调整,且更适合生产透明性颜料。另外,从所得粗品的粒径分布看,微通道反应装置合成的颜料化合物,其粒径分布更集中,总体粒径更小。 采用微通道反应器连续化合成分散染料,产品收率较传统方法均有所提高;产品纯度略有提高,着色力等与传统釜式方法生产的产品近似或略优;部分产品因纯度提高造成色光有微差;发现部分分散染料的分散研磨普遍得到改善,扩散性及分散性均优于现有产品。 上海惠和化德生物科技有限公司,是一家专注于微反应器连续工艺开发及工业化的创新性高科技公司。公司于2015年6月在中国(上海)自由贸易试验区内成立,随着业务的发展,公司于2019年10月整体搬迁至上海化学工业园内。公司上海本部实验室配备十余套微反应器,并与梅特勒托利多共建化学过程联合实验室、与沈阳化工研究院和上海化工研究院共建过程安全联合体、与南大淮安高新技术研究院共建特殊反应实验室等。公司主要服务于国内外精细化工企业,帮助客户进行微反应器连续流工艺咨询与评估、工艺开发、工业化项

大直径桩考虑尺寸效应系数的原因

大直径桩考虑尺寸效应系数的原因 近日,提出一个问题:“桩基规范在计算大直径桩承载力时需考虑桩侧阻力尺寸效应系数(<1的系数),但计算嵌岩桩时没有区分大直径桩,没有考虑桩侧阻力尺寸效应系数,是否 有点儿前后不对应呢?” 为了解释这个问题,我们先了解下规范是如何规定的,《建筑桩基技术规范》JGJ94-2008对于大直径桩单桩极 限承载力标准值是这样规定的: 5.3.6根据土的物理指标与承载力参数之间的经验关系,确定大直径桩单桩极限承载力标准值时,可按下式计算: ——桩侧第i层土极限侧阻力标准值,如无当地式中q sik 经验值时,可按本规范表5.3.5-1取值,对于扩底桩变截面以上2d长度范围不计侧阻力; ——桩径为800mm的极限端阻力标准值,对于干作业q pk 挖孔(清底干净)可采用深层载荷板试验确定;当不能进行 深层载荷板试验时,可按表5.3.6-1取值; 、——大直径桩侧阻、端阻尺寸效应系数,按表 5.3.6-2取

值. 而对于嵌岩桩却没有尺寸效应系数: 5.3.9桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成.当根据岩石单轴抗压强度确定单桩竖向极限承载力标准值时,可按下列公式计算: 式中Q sk 、Q rk ——分别为土的总极限侧阻力、嵌岩段总 极限阻力; q sik ——桩周第i层土的极限侧阻力,无当地经验时,可根据成桩工艺按本规范表5.3.5-1取值; f rk ——岩石饱和单轴抗压强度标准值,黏土岩取天然湿度单轴抗压强度标准值; ——嵌岩段侧阻和端阻综合系数,与嵌岩深径比h r /d、岩石软硬程度和成桩工艺有关,可按表5.3.9采用;表中数值

(完整)量子尺寸效应

(完整)量子尺寸效应 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)量子尺寸效应)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)量子尺寸效应的全部内容。

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级 由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道和最低未 被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、催化和超导性等 特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下降而增大,电阻温度 系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~ 25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力 变为零,表现为超顺磁性。 1。1。2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等 物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面 层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小尺寸效应.例如: 光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态转变,超导相向正常相 的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1。1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应.由于表面原子与内部原子所处的环境 不同,当粒子直径比原子直径大时(如大于0。01时),表面原子可以忽略,但当粒子直径 逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表 面能和表面结合能都发生很大变化.人们把由此引起的种种特殊效应统称表面效应[8,9]。 随着粒径的减小,比表面迅速增大.当粒径为5nm时,表面原子数比例达到约50%以上,当 粒径为2nm时,表面原子数达到80%,原子几乎全部集中到纳米粒子的表面.庞大的表面原 子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强,主要表现在:(1)熔点降低.就熔点来说,纳 米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅 较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时 纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔 点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点 仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大.(3)化学活性增加,有利于催化反应等。 1.1。4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微 粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧道效应,利 用它可以解释纳米镍粒子在低温下继续保持超顺磁性的现象。宏观量子隧道效应的研究对 基础研究及实用都具有重要的意义,它确立了现存微电子器件进一步微型化的极限,是未来 微电子器件的基础. 上述的小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应都是纳米微粒与 纳米固体的基本特性。它使纳米微粒和纳米固体呈现许多奇异的物理、化学性质,出现一 些“反常现象”。例如金属纳米材料的电阻随尺寸下降而增大,电阻温度系数下降甚至变 成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10nm-25nm的铁磁金属

微反应器技术的应用

过程强化技术 结业论文 论文题目:微反应器技术及其在有机反应中的应用姓名:姜炜 学号:10110494 学院:化工学院 班级:循环110

摘要 近年来,微反应器技术已逐渐成为国际化工技术领域的研究热点。该文介绍了微反应技术的研究进展;阐明了微反应器的特殊优势;分析了微反应器适合的化学反应;列举了大量微反应器在有机化学中应用的成功案例。 关键词:微反应器,有机氧化,有机合成

Abstract As an emerging technology,micro-reaction technology is becoming an increasing hot spot in the global chemical industry.The advances of this technology are introduced. This paper demonstrates the superior advantage of micro-reactor,types of chemical reactions that could benefit from the micro-reactor are discussed.In the major part of this paper,many successful applications of micro-reaction technology are presented. Keywords: micro-reactor,oxidation of organic,organic synthesis

目录 1 微反应器的分类............................. 错误!未定义书签。 1.1 气固相催化反应器 (2) 1.2 液液相微反应器................................... 错误!未定义书签。 1.3 气液相微反应器................................... 错误!未定义书签。 1.4 气液固三相微反应器 (3) 1.5 电化学和光化学微反应器 (3) 2 微反应器的反应特征 (4) 2.1 反应温度能够精确控制 (4) 2.2 物料能够精确比例................................. 错误!未定义书签。 2.3 反应时间的精确控制 (4) 2.4 小试工艺能力可以直接放大 (4) 2.5 有着良好的操作性 (4) 2.6 结构安全性 (5) 3 微反应器适合的反应类型 (6) 3.1 放热剧烈的反应 (6) 3.2 反应物或产物不稳定的反应 (6) 3.3 对反应物配比要求很严的快速反应 (6) 3.4 危险化学反应以及高温高压反应 (6) 3.5 纳米材料及需要产物均匀分布的颗粒形成反应或聚合反应 (7) 4 反应器的优点总结 (8) 4.1 温度控制 (8) 4.2 反应器体积 (8) 4.3 转化率和收率 (8) 4.4 安全性能 (8) 4.5 放大问题 (9) 5 微反应器在有机氧化反应中的应用 (10) 5.1 低温Swern氧化反应 (10) 5.2 高温硝化反应 (11) 6 微反应器在有机合成方面的应用 (14) 7 结语 (18) 8 参考文献 (19)

窄缝环形通道内饱和沸腾的实验研究

核 动 力 工 程 Nuclear Power Engineering 第24卷 第6 期(增刊) 2 0 0 3年12月 V ol. 24. No. 6S2 Dec. 2 0 0 3 文章编号:0258-0926(2003)06S2-0088-05 窄缝环形通道内饱和沸腾的实验研究 张 弛1,吴埃敏1,苏光辉1,彭常宏1,秋穗正1, 褚 俊1,贾斗南1,聂常华2 (1. 西安交通大学核能与热能工程系,710049;2.中国核动力研究设计院,成都,610041) 摘要:对间隙为1.5mm 的同心环形通道内流动换热的饱和沸腾进行了实验与理论研究。实验通过电加热内外不锈钢管道来控制改变热流密度,工质为去离子水。文中以加热当量直径作为研究窄缝环形通道的定性尺寸。实验结果表明,在间隙为1.5mm 的同心垂直环形窄缝通道中的饱和沸腾,与常规尺寸圆管换热相比,起到了强化作用。通过对实验数据的总结,得出了中压、低流量情况下的沸腾换热系数的经验计算公式。 关键词:垂直环形通道;饱和沸腾;加热当量直径 中图分类号:TK124 文献标识码:A 1 前 言 同心环形通道内流动具有结构紧凑而高效传热的特点,在动力、造船、航天等行业应用越来越广泛。在进行同心环形通道的直流蒸汽发生器的设计中,其饱和沸腾换热系数是很重要的参数,需要对其深入研究。近30年来,国内外众多学者针对常规尺寸通道总结了许多的饱和沸腾换热的经验公式,如早期的Chen 氏公式、Jens-lottes 公式,较近期的Lazarek & Black 公式、Kandlikar 公式、Liu & Winterton 公式、Tran et al.公式、Shah 公式[1~ 6]等。但关于间隙为1.5mm 的同心环形通道内流动换热的饱和沸腾研究报道很少。 本文以加热当量直径作为研究窄缝环形通道的定性尺寸,进行了环形通道内饱和沸腾流动换热的实验研究,并将实验数据同国内外常用的常规尺寸的多个经验公式进行了比较。以加热当量直径为通道的定性尺寸,结合环形通道单相对流换热的公式,给出了在中压、小流量情况下的窄缝环形通道内饱和沸腾换热系数计算关系式。对饱和沸腾换热机理进行了探讨。 2 实验装置 实验在西安交通大学核能与热能工程系高压热工水力实验回路上进行(图1)。试验段由内外径   图1 实验装置示意图 Fig. 1 Sketch Map of Experiment Equipment 1——主泵;2——稳压器;3——蛇型预热器;4——流量计;5——电加热预热器;6——U 型预热器;7——压力传感器;8——实验段;9,10——压差变送器;11——冷却 器;12——一次侧进水系统;13——稳压器进水系统; 14——环形通道 分别为φ7×1mm 、φ14×2mm 的圆管组成,形成具有1.5mm 间隙的同心狭缝通道(图2)。 3 实验步骤 实验参数见表1。实验中,在压力、流量确定的情况下,通过改变预热段功率及内外管热流密度,使实验段中出现饱和沸腾工况,记录壁温、压力、流量、液体温度、保温层温度在内的大量数据;然后再改变实验的压力、流量,重复进行 收稿日期:2003-09-02;修回日期:2003-12-02 基金项目:获中国核动力研究设计院空泡物理和自然循环国防重点实验室的资助

康宁微通道反应器技术客户交流会

《康宁微通道反应器技术客户交流会》会议报告 2013年3月27日,本人参加了在上海举办的康宁反应器技术客户交流会,此行目的主要是针对本公司丙烯二聚反应,重氮-环化反应在康宁微通道反应器上应用进行技术咨询。 会议对于康宁公司的发展历史、康宁反应器技术从研发到生产的无缝对接以及康宁高通量--微通道反应器的成功案例进行了较详细的讲述。康宁公司是一家特种玻璃和陶瓷材料的全球领导厂商,有162年的发展历史,此次会议主要讲述了康宁反应器技术与服务,康宁高通量—微通道反应器从实验室工艺研发到大规模工业化生产的无缝对接。 康宁微通道反应器模块形式: 康宁G4反应器(年通量在2000吨/年) 康宁微通道反应器的特点: 1.专利设计保证了高效的传热-传质(混合)以及化学反应的 集成。 2.与传统的搅拌釜式反应器相比:安全性高、占地面积小、节 省溶剂、选择性高、能耗低。 3.对于反应速度快、高放(吸)热反应具有明显优势。 4.玻璃材质耐酸,利于进行光化学反应。 5.温度范围-25~200℃,最高压力18kg。

6.康宁微通道反应器技术无放大效应。 康宁微通道反应器的成功应用案例: 1.选择性硝化反应----强化非均相液-液反应体系 此反应为有机相与无机相的液-液反应,反应速度快,放热量高,利用康宁微通道反应器,可以极大的加强传质-传热效果,提高了反应的选择性。 2.氧化反应---气-液反应体系 此反应为气相与液相反应,利用康宁微通道反应器,可以极大的提高反应接触面积,提高反应转化率。 3.选择性加氢反应----气-固-液反应体系 此反应为气相、液相、固相三相反应体系,固相粒径在200微米以下,与液相形成稳定的浆液,利用康宁反应器 反应时间从10小时缩短至90秒,反应浓度从35%提高到 45%,反应温度从30℃提高到140℃,催化剂从0.4%减少到 0.%。 康宁微通道反应器对于反应以及反应介质有一定的要求: 1.要求快速反应与中速反应,慢速反应不适合。 2.要求反应介质为液-液反应、气-液反应,且反应产物不能为不溶 性固体,或者形成的产物固体粒径是微米级(200微米以下),能与液相形成稳定的浆态,不沉积、淤结在反应器壁上,以防堵塞。 3.反应介质为液-固相反应体系,要求固体粒径在200微米以下,与 液相形成稳定浆态,能随反应介质流动且不沉积、淤结在反应器

微通道反应器的分类介绍

微反应器,即微通道反应器,利用精密加工技术制造的特征尺寸在10到300微米(或者1000微米)之间的微型反应器,微反应器的“微”表示工艺流体的通道在微米级别,而不是指微反应设备的外形尺寸小或产品的产量小。微反应器中可以包含有成百万上千万的微型通道,因此也实现很高的产量。 微反应器又可分为气固相催化微反应器、液液相微反应器、气液相微反应器和气液固三相催化微反应器等。 1.气固相催化微反应器 由于微反应器的特点适合于气固相催化反应,迄今为止微反应器的研究主要集中于气固相催化反应,因而气固相催化微反应器的种类最多。最简单的气固相催化微反应器莫过于壁面固定有催化剂的微通道。复杂的气固相催化微反应器一般都耦合了混合、换热、传感和分离等某一功能或多项功能。运用最广的甲苯气-固催化氧化。 2.液液相反应器 到目前为止,与气固相催化微反应器相比较,液相微反应器的种类非常少。液液相反应的一个关键影响因素是充分混合,因而液液相微反应器或者与微混合器耦合在一起,或者本身就是一个微混合器。专为液液相反应而设计的与微混合器等其他功能单元耦合在一起的微反应器案例为数不多。主要有BASF设计的维生素前体合成微反应器和麻省理工学院设计的用于完成Dushman化学反应的微反应器。 3.气液相微反应器 一类是气液分别从两根微通道汇流进一根微通道,整个结构呈T

字形。由于在气液两相液中,流体的流动状态与泡罩塔类似,随着气体和液体的流速变化出现了气泡流、节涌流、环状流和喷射流等典型的流型,这一类气液相微反应器被称做微泡罩塔。 另一类是沉降膜式微反应器,液相自上而下呈膜状流动,气液两相在膜表面充分接触。气液反应的速率和转化率等往往取决于气液两相的接触面积。这两类气液相反应器气液相接触面积都非常大,其内表面积均接近20000m2/m3,比传统的气液相反应器大一个数量级。4.气液固三相催化微反应器 气液固三相反应在化学反应中也比较常见,种类较多,在大多数情况下固体为催化剂,气体和液体为反应物或产物,美国麻省理工学院发展了一种用于气液固三相催化反应的微填充床反应器,其结构类似于固定床反应器,在反应室(微通道)中填充了催化剂固定颗粒,气相和液相被分成若干流股,再经管汇到反应室中混合进行催化反应。 上海惠和化德生物科技有限公司,是一家专注于微反应器连续工艺开发及工业化的创新性高科技公司。公司于2015年6月在中国(上海)自由贸易试验区内成立,随着业务的发展,公司于2019年10月整体搬迁至上海化学工业园内。公司上海本部实验室配备十余套微反应器,并与梅特勒托利多共建化学过程联合实验室、与沈阳化工研究院和上海化工研究院共建过程安全联合体、与南大淮安高新技术研究院共建特殊反应实验室等。公司主要服务于国内外精细化工企业,帮助客户进行微反应器连续流工艺咨询与评估、工艺开发、工业化项目投资和管理等。公司立足于客户具体项目,以“以终为始”的项目

什么是微反应器

微反应器作为一种新型化工反应设备,是一种利用微加工技术集换热、混合、反应、分离等基本操作单元于一体的装置。在很多领域微反应技术的微都反应器表现出来诸多的优势,解决了实验在环境、安全、成本、产品质量等方面的问题。所以包含医药化工领域在内的很多领域都在致力于微反应技术的开发和应用。 一、微反应器的特点 1、微反应器内部有百万乃至千万条连续流动的通道,一般这种反应器的工艺流微通道尺寸一般在500微米以内,比表面积大,传递速率高,接触时间短,副产物少等特点。 2、与传统放大过程相比,通过增大生产设备体积和规模达到放大的目的费时费力,并且对于市场需求无法做出及时反映,具有滞后性的特点。而微反应器体内因为有大量的连接通道机构,并且每个通道都具有一个独立的反应器,在扩大生产的时候,不需要进行尺寸放大,只需要进行增加微反应器的数量即可拥有较高的产量。 3、因为反应发生的时候大量的热量被及时被带走,保证了反应温度可以维持在设定的范围之内,大大减少了人为因素发生的可能性。 4、因为微反应器系统是呈模块结构并行的系统,具有良好的便携性。可实现在产品使用地分散建设并就地生产、供货,真正实现将化工厂便携化,并可根据市场情况增减通道数和更换模块来调节生产,具有很高的操作弹性。

二、微反应器的分类 微反应器包括化工单元所需要的混合器、换热器、反应器控制器等。目前,微反应器总体构造可分为两种: 1、一种是整体结构,这种方式以错流或逆流热交换器的形式体现,可在单位体积中进行高通量操作。在微反应器的整体结构中只能同时进行一种操作步骤,最后由这些相应的装置连接起来构成复杂的系统。 2、另一种是层状结构,这类体系由一叠不同功能的模块构成,在一层模块中进行一种操作,而在另一层模块中进行另一种操作。流体在各层模块中的流动可由智能分流装置控制对于更高的通量,某些微通道反应器或体系通常以并联方式进行操作。 上海惠和化德生物科技有限公司,是一家专注于微反应器连续工艺开发及工业化的创新性高科技公司。公司于2015年6月在中国(上海)自由贸易试验区内成立,随着业务的发展,公司于2019年10月整体搬迁至上海化学工业园内。公司上海本部实验室配备十余套微反应器,并与梅特勒托利多共建化学过程联合实验室、与沈阳化工研究院和上海化工研究院共建过程安全联合体、与南大淮安高新技术研究院共建特殊反应实验室等。公司主要服务于国内外精细化工企业,帮助客户进行微反应器连续流工艺咨询与评估、工艺开发、工业化项目投资和管理等。公司立足于客户具体项目,以“以终为始”的项目开发思路为指导,着眼于“双赢”和共同发展。目前,公司已经完成了多个项目的工业化,有丰富的工程化经验。完善的设施,丰富的经

相关文档
最新文档