2,3-二甲基吡啶的提纯工艺的制作方法

2,3-二甲基吡啶的提纯工艺的制作方法
2,3-二甲基吡啶的提纯工艺的制作方法

本技术涉及多甲基吡啶生产技术领域,具体地说就是一种2,3二甲基吡啶的提纯工艺。该工艺主要包括以下步骤:采用吡啶生产工艺副产高沸物,进行一次精馏和二次精馏,得到高纯度2,3二甲基吡啶。本技术有效解决了沸点相近物料难以高效分离的问题,且减压精馏能够使组分沸点降低,减少能耗;采用的波纹网填料比表面积和空隙都很大,传质效率高,分离效果好;且进行两次精馏能够将2,3二甲基吡啶浓度提高到99.5±0.1wt%,收率达到80%,整体提纯工艺完全利用蒸馏的方法,全密闭生产工艺,安全环保,产量高,值得推广。

技术要求

1.一种2,3-二甲基吡啶的提纯工艺,其特征在于:包括以下步骤:

S1:原料:采用吡啶生产工艺副产高沸物;

S2:一次精馏:

A.检查脱氢精馏塔和成品精馏塔密闭性,抽负压至-78~-82KPa,维持15min-35min;

B.开启原料泵向脱轻精馏塔内进料;

C.待脱轻精馏塔内有足够打起回流的物料时,脱轻精馏塔再沸器进蒸汽疏水升温,待物

料汽化到脱轻塔顶冷凝到回流罐有一定液位时,开启脱轻塔回流泵,进行全回流1h;

D.全回流后,开启脱轻精馏塔顶采出调节阀,调节回流比,采出原料中的轻组分;开启

脱轻精馏塔底出料泵,向成品精馏塔进料;

E.待成品精馏塔内有足够打起回流的物料时,成品精馏塔再沸器进蒸汽疏水升温,待物料汽化到成品精馏塔顶冷凝到回流罐有一定液位时,开启成品精馏塔回流泵,进行全回流

1h;

F.全回流后,开启成品精馏塔底出料泵,采出原料中的重组分;开启成品精馏塔顶采出调

节阀,调节回流比,采出一次精馏2,3-二甲基吡啶;

S3:二次精馏:重复S2操作进行二次精馏,成品精馏塔顶采出高纯度2,3-二甲基吡啶。

2.根据权利要求1所述的一种2,3-二甲基吡啶的提纯工艺,其特征在于:所述的S2的步骤D 中脱轻精馏塔回流比为20:1~25:1,S2的步骤F中成品精馏塔回流比为15:1~20:1,所述的S3中二次精馏脱轻精馏塔回流比为100:1,成品精馏塔回流比为17:2。

3.根据权利要求1所述的一种2,3-二甲基吡啶的提纯工艺,其特征在于:所述的S2中成品精馏塔塔顶采出2,3-二甲基吡啶浓度为92±1wt%,所述的S3中成品精馏塔塔顶采出2,3-二甲基吡啶浓度为99.5±0.1wt%。

4.根据权利要求1所述的一种2,3-二甲基吡啶的提纯工艺,其特征在于:所述的脱轻精馏塔和成品精馏塔均为填料塔,采用波纹网填料。

5.根据权利要求1所述的一种2,3-二甲基吡啶的提纯工艺,其特征在于:所述的步骤S1中,所述的吡啶生产工艺副产高沸物采用气相色谱分析,所述的2,3-二甲基吡啶含量占比为20±5wt%。

6.根据权利要求1所述的一种2,3-二甲基吡啶的提纯工艺,其特征在于:所述的步骤C中,待脱轻精馏塔内液位达到1200mm时,脱轻精馏塔再沸器进蒸汽疏水升温,待物料汽化到脱轻塔顶冷凝到回流罐有300mm液位时,开启脱轻塔回流泵。

7.根据权利要求1所述的一种2,3-二甲基吡啶的提纯工艺,其特征在于:所述的步骤E中,待成品精馏塔内液位达到1200mm时,成品精馏塔再沸器进蒸汽疏水升温,待物料汽化到成品精馏塔顶冷凝到回流罐有300mm液位时,开启成品精馏塔回流泵。

8.根据权利要求1所述的一种2,3-二甲基吡啶的提纯工艺,其特征在于:所述的S2的步骤D 中脱轻精馏塔回流比为25:1,S2的步骤F中成品精馏塔回流比为20:1,所述的S3中二次精馏脱轻精馏塔回流比为100:1,成品精馏塔回流比为17:2。

技术说明书

一种2,3-二甲基吡啶的提纯工艺

技术领域

本技术涉及多甲基吡啶生产技术领域,具体地说就是一种2,3-二甲基吡啶的提纯工艺。

背景技术

吡啶是含有一个氮原子的六元杂环有机化合物,主要存在于煤焦油、骨焦油、石油中,广泛应用于医药、农药领域,是合成一系列产品的原料。2,3-二甲基吡啶是吡啶合成工艺中产生的高附加值的烷基吡啶化合物,是合成治疗消化性溃疡、胃食管反流病、胃泌素瘤等胃病最有效的药物兰索拉唑的主要原料,由于2,3-二甲基吡啶分离提纯技术较为复杂,现阶段一般采用成盐、结晶、洗涤、解析、萃取和脱溶等工艺对2,3-二甲基吡啶进行分离提纯,较为复杂,且收率低,因此国内对原料的需求主要靠进口,这就严重制约着这些以吡啶同系物为原料的生物医药中间体的发展。

技术内容

为解决上述2,3-二甲基吡啶的提纯问题,本技术提供了一种2,3-二甲基吡啶的提纯工艺。

本技术解决其技术问题所采取的技术方案是:一种2,3-二甲基吡啶的提纯工艺,包括以下步骤:

S1:原料:采用吡啶生产工艺副产高沸物;

S2:一次精馏:

A.检查脱氢精馏塔和成品精馏塔密闭性,抽负压至-78~-82KPa,维持15min-35min;

B.开启原料泵向脱轻精馏塔内进料;

C.待脱轻精馏塔内有足够打起回流的物料时,脱轻精馏塔再沸器进蒸汽疏水升温,待物料汽化到脱轻塔顶冷凝到回流罐有一定液位时,开启脱轻塔回流泵,进行全回流1h;

D.全回流后,开启脱轻精馏塔顶采出调节阀,调节回流比,采出原料中的轻组分;开启脱轻精馏塔底出料泵,向成品精馏塔进料;

E.待成品精馏塔内有足够打起回流的物料时,成品精馏塔再沸器进蒸汽疏水升温,待物料汽化到成品精馏塔顶冷凝到回流罐有一定液位时,开启成品精馏塔回流泵,进行全回流1h;

F.全回流后,开启成品精馏塔底出料泵,采出原料中的重组分;开启成品精馏塔顶采出调节阀,调节回流比,采出一次精馏2,3-二甲基吡啶;

S3:二次精馏:重复S2操作进行二次精馏,成品精馏塔顶采出高纯度2,3-二甲基吡啶。

作为优化,所述的S2的步骤D中脱轻精馏塔回流比为20:1~25:1,S2的步骤F中成品精馏塔回流比为15:1~20:1,所述的S3中二次精馏脱轻精馏塔回流比为100:1,成品精馏塔回流比为17:2。

作为优化,所述的S2中成品精馏塔塔顶采出2,3-二甲基吡啶浓度为92±1wt%,所述的S3中成品精馏塔塔顶采出2,3-二甲基吡啶浓度为99.5±0.1wt%。

作为优化,所述的脱轻精馏塔和成品精馏塔均为填料塔,采用波纹网填料。

作为优化,所述的步骤S1中,所述的吡啶生产工艺副产高沸物采用气相色谱分析,所述的2,3-二甲基吡啶含量占比为20±5wt%。

作为优化,所述的步骤C中,待脱轻精馏塔内液位达到1200mm时,脱轻精馏塔再沸器进蒸汽疏水升温,待物料汽化到脱轻塔顶冷凝到回流罐有300mm液位时,开启脱轻塔回流泵。

作为优化,所述的步骤E中,待成品精馏塔内液位达到1200mm时,成品精馏塔再沸器进蒸汽疏水升温,待物料汽化到成品精馏塔顶冷凝到回流罐有300mm液位时,开启成品精馏塔回流泵。

作为优化,所述的S2的步骤D中脱轻精馏塔回流比为25:1,S2的步骤F中成品精馏塔回流比为20:1,所述的S3中二次精馏脱轻精馏塔回流比为100:1,成品精馏塔回流比为17:2。

本方案的整体有益效果是:一种2,3-二甲基吡啶的采用减压精馏的方式能够有效改变组分的相对挥发度,使与2,3-二甲基吡啶沸点相近的组分更容易被分离出来有效解决了沸点相近物料难以高效分离的问题,且减压精馏能够使组分沸点降低,减少能耗;采用的波纹网填料比表面积和空隙都很大,传质效率高,分离效果好;且进行两次精馏能够将2,3-二甲基吡啶浓度提高到99.5±0.1wt%,收率达到80%,整体提纯工艺完全利用蒸馏的方法,全密闭生产工艺,安全环保,产量高,值得推广。

具体实施方式

实施例1:

一种2,3-二甲基吡啶的提纯工艺,包括以下步骤:

S1:自原料罐中取吡啶副产高沸物300ml,送至化验室分析进行气相色谱分析,测得原料中含有2,3-二甲基吡啶25wt%。

S2:一次精馏具体步骤如下:

A.脱轻精馏塔和成品精馏塔检查密闭性能,抽负压,抽负压至-80KPa,维持稳定30min;

B.开启原料泵向脱轻精馏塔内进料,进料量为800kg/h;

C.待脱轻精馏塔内有足够打起回流的物料时,脱轻精馏塔再沸器进蒸汽疏水升温,待物料汽化到脱轻塔顶冷凝到回流罐有一定液位时,开启脱轻塔回流泵,进行全回流1h,回流流量为6000kg/h;

D.全回流后,开启脱轻精馏塔顶采出调节阀调节回流比为25:1采出原料中的轻组分;开启脱轻精馏塔底出料泵向成品精馏塔进料,进料量为560kg/h;

E.待成品精馏塔内有足够打起回流的物料时,成品精馏塔再沸器进蒸汽疏水升温,待物料汽化到成品精馏塔顶冷凝到回流罐有一定液位时,开启成品精馏塔回流泵,进行全回流1h,回流流量为4000kg/h;

F.全回流后,开启成品精馏塔底出料泵采出原料中的重组分采出量为300kg;开启成品精馏塔顶采出调节阀调节回流比为20:1采出2,3-二甲基吡啶采出量为200kg/h;

取各塔顶塔底采出送样分析,一次精馏后成品精馏塔塔顶采出2,3-二甲基吡啶浓度为92.31wt%,采出物料存入中间罐;

S3:重复上述操作进行二次精馏,二次精馏脱轻精馏塔进料流量为600kg/h;塔顶回流流量为4000kg/h,回流比为100:1,塔底出料为550kg/h;成品精馏塔塔顶回流流量为

4000kg/h,采出流量为450kg/h,回流比为17:2,塔底采出为100kg/h。

实施例2:

一种2,3-二甲基吡啶的提纯工艺,包括以下步骤:

S1:自原料罐中取吡啶副产高沸物300ml,送至化验室分析进行气相色谱分析,测得原料中含有2,3-二甲基吡啶20wt%。

S2:一次精馏具体步骤如下:

A.脱轻精馏塔和成品精馏塔检查密闭性能,抽负压,抽负压至-80KPa,维持稳定30min;

B.开启原料泵向脱轻精馏塔内进料,进料量为800kg/h;

C.待脱轻精馏塔内有足够打起回流的物料时,脱轻精馏塔再沸器进蒸汽疏水升温,待物料汽化到脱轻塔顶冷凝到回流罐有一定液位时,开启脱轻塔回流泵,进行全回流1h,回流流量为6000kg/h;

D.全回流后,开启脱轻精馏塔顶采出调节阀调节回流比为25:1采出原料中的轻组分;开启脱轻精馏塔底出料泵向成品精馏塔进料,进料量为560kg/h;

E.待成品精馏塔内有足够打起回流的物料时,成品精馏塔再沸器进蒸汽疏水升温,待物料汽化到成品精馏塔顶冷凝到回流罐有一定液位时,开启成品精馏塔回流泵,进行全回流1h,回流流量为4000kg/h;

F.全回流后,开启成品精馏塔底出料泵采出原料中的重组分采出量为300kg;开启成品精馏塔顶采出调节阀调节回流比为20:1采出2,3-二甲基吡啶采出量为200kg/h;

取各塔顶塔底采出送样分析,一次精馏后成品精馏塔塔顶采出2,3-二甲基吡啶浓度为92.12wt%,采出物料存入中间罐;

S3:重复上述操作进行二次精馏,二次精馏脱轻精馏塔进料流量为600kg/h;塔顶回流流量为4000kg/h,回流比为100:1,塔底出料为550kg/h;成品精馏塔塔顶回流流量为

4000kg/h,采出流量为450kg/h,回流比为17:2,塔底采出为100kg/h。

实施例3:

一种2,3-二甲基吡啶的提纯工艺,包括以下步骤:

S1:自原料罐中取吡啶副产高沸物300ml,送至化验室分析进行气相色谱分析,测得原料中含有2,3-二甲基吡啶19.5wt%。

S2:一次精馏具体步骤如下:

A.脱轻精馏塔和成品精馏塔检查密闭性能,抽负压,抽负压至-80KPa,维持稳定30min;

B.开启原料泵向脱轻精馏塔内进料,进料量为800kg/h;

C.待脱轻精馏塔内有足够打起回流的物料时,脱轻精馏塔再沸器进蒸汽疏水升温,待物料汽化到脱轻塔顶冷凝到回流罐有一定液位时,开启脱轻塔回流泵,进行全回流1h,回流流量为6000kg/h;

D.全回流后,开启脱轻精馏塔顶采出调节阀调节回流比为25:1采出原料中的轻组分;开启脱轻精馏塔底出料泵向成品精馏塔进料,进料量为560kg/h;

E.待成品精馏塔内有足够打起回流的物料时,成品精馏塔再沸器进蒸汽疏水升温,待物料汽化到成品精馏塔顶冷凝到回流罐有一定液位时,开启成品精馏塔回流泵,进行全回流1h,回流流量为4000kg/h;

F.全回流后,开启成品精馏塔底出料泵采出原料中的重组分采出量为300kg;开启成品精馏塔顶采出调节阀调节回流比为20:1采出2,3-二甲基吡啶采出量为200kg/h;

取各塔顶塔底采出送样分析,一次精馏后成品精馏塔塔顶采出2,3-二甲基吡啶浓度为91.86wt%,采出物料存入中间罐;

S3:重复上述操作进行二次精馏,二次精馏脱轻精馏塔进料流量为600kg/h;塔顶回流流量为4000kg/h,回流比为100:1,塔底出料为550kg/h;成品精馏塔塔顶回流流量为

4000kg/h,采出流量为450kg/h,回流比为17:2,塔底采出为100kg/h。

对比例1:

本对比例的2,3-二甲基吡啶的提纯分离工艺与实施例1基本相同,其不同之处仅在于本对比例不包含S3步骤。

对比例2:

本对比例的2,3-二甲基吡啶的提纯分离工艺与实施例1基本相同,其不同之处仅在于本对比例中,所述一次精馏的步骤D中脱轻精馏塔回流比为30:1,步骤F中成品精馏塔回流比为25:1。

对比例3:

本对比例的2,3-二甲基吡啶的提纯分离工艺与实施例1基本相同,其不同之处仅在于本对比例中,所述二次精馏的步骤D中脱轻精馏塔回流比为30:1,步骤F中成品精馏塔回流比为25:1。

取各实施例和对比例中一次精馏、二次精馏后成品精馏塔塔顶采出2,3-二甲基吡啶送样分析,数据表1所示。

表1

实施例一次精馏浓度二次精馏浓度

实施例192.31wt%99.58wt%

实施例292.12wt%99.52wt%

实施例391.86wt%99.47wt%

对比例186.35wt%/

对比例282.12wt%87.24wt%

对比例389.56wt%91.32wt%

由上表可以看出,采用本技术的减压精馏并且进行二次精馏的方式,能够大大提高2,3二甲基吡啶的提纯浓度,同时可以看出改变本技术的一次精馏和二次精馏中的的任一步骤的相关回流比均会明显降低提纯率,特别是通过一次精馏的方式对提纯率影响更大。本技术通过两次精馏工艺及工艺中回流比等参数的协同配合作用下,大大提高了2,3二甲基吡啶的提纯率和收率。

上述具体实施方式仅是本技术的具体个案,本技术的专利保护范围包括但不限于上述具体实施方式的产品形态和式样,任何符合本技术权利要求书的一种2,3-二甲基吡啶的提纯工艺且任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应落入本技术的专利保护范围。

二甲醚的生产工艺

二甲醚及生产工艺 摘要:综述了二甲醚的性质、用途、生产方法及使用二甲醚时候的注意事项。 关键词:二甲醚化工产品合成气一步法甲醇液相法甲醇气相法 一、产品说明 1、二甲醚的基本概况 二甲醚别名:甲醚 英文名称:methyl ether;dimethyl ether;DME CAS编号:115-10-6 分子式:C2H6O 结构式:CH3—O—CH3 二甲醚又称甲醚,简称DME。二甲醚在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点-14 1.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射

剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 2 生产原理 2.1 生产方法简介 目前国外二甲醚生产方法主要有合成气一步法和甲醇法。甲醇法又分为甲醇气相法和甲醇液相法。合成气一步法的工业化技术尚未成熟,理由是: ①现有的技术未经装置检验; ②即使按现有技术,其生产成本也高于甲醇气相法 2.2 反应方程式 合成气一步法以合成气(CO + H2 )为原料,合 成甲醇反应和甲醇脱水反应在一个反应器中完成, 同时伴随CO的变换反应。其反应式如下。 2CO + 4H2 = 2CH3OH CO +H2O =CO2 +H2 2CH3OH =CH3OCH3 +H2O 总反应: 3CO + 3H2 =H3COCH3 +CO2 甲醇液相法: 甲醇脱水反应在液相、常压或微正压、130 ~130 ℃下进行。其化学反应式如下: 2CH3OH =H3COCH3 +H2O 甲醇气相法:

吡啶

吡啶 汉语拼音:bǐdìng 英文名称:pyridine 中文名称2:氮(杂)苯 CAS No.:110-86-1 分子式:C5H5N 分子量:79.10 吡啶是含有一个氮杂原子的六元杂环化合物。可以看做苯分子中的一个(CH)被N取代的化合物,故又称氮苯。 吡啶及其同系物存在于骨焦油、煤焦油、煤气、页岩油、石油中。 [编辑本段]物理性质 外观与性状:无色或微黄色液体,有恶臭。 熔点(℃):-41.6 沸点(℃):115.3 相对密度(水=1):0.9827 折射率:1.5067(25℃) 相对蒸气密度(空气=1):2.73 饱和蒸气压(kPa): 1.33/13.2℃ 闪点(℃):17 引燃温度(℃):482 爆炸上限%(V/V):12.4 爆炸下限%(V/V): 1.7 溶解性:溶于水、醇、醚等多数有机溶剂。 与水形成共沸混合物,沸点92~93℃。(工业上利用这个性质来纯化吡啶。) [编辑本段]化学性质 吡啶及其衍生物比苯稳定,其反应性与硝基苯类似。典型的芳香族亲电取代反应发生在3、5位上,但反应性比苯低,一般不易发生硝化、卤化、磺化等反应。吡啶是一个弱的三级胺,在乙醇溶液内能与多种酸(如苦味酸或高氯酸等)形成不溶于水的盐。工业上使用的吡啶,约含1%的2-甲基吡啶,因此可以利用成盐性质的差别,把它和它的同系物分离。吡啶还能与多种金属离子形成结晶形的络合物。吡啶比苯容易还原,如在金属钠和乙醇的作用下还原成六氢吡啶(或称哌啶)。吡啶与过氧化氢反应,易被氧化成N-氧化吡啶。 [编辑本段]用途 除作溶剂外,吡啶在工业上还可用作变性剂、助染剂,以及合成一系列产品(包括药品、消毒剂、染料、食品调味料、粘合剂、炸药等)的起始物。 吡啶还可以用做催化剂,但用量不可过多,否则影响产品质量。 [编辑本段]来源(合成方法) 吡啶可从天然煤焦油中获得,也可由乙醛和氨制得。吡啶及其衍生物也可通过多种方法合成,其中应用最广的是汉奇吡啶合成法,这是用两分子的β-羰基化合物,如乙酰乙酸乙酯与一分子乙醛缩合,产物再与一分子的乙酰乙酸乙酯和氨缩合形成二氢吡啶化合物,然后用氧化剂(如亚硝酸)脱氢,再水解失羧即得吡啶衍生物。 也可用乙炔、氨和甲醇在500℃通过催化剂制备。 [编辑本段]衍生物 吡啶的许多衍生物是重要的药物,有些是维生素或酶的重要组成部分。吡啶的衍生物异烟肼是一种抗结核病药,2-甲基-5-乙烯基吡啶是合成橡胶的原料。 中文名称:吡啶 [编辑本段]危险信息及使用注意事项(MSDS) 燃爆危险:本品易燃,具强刺激性。 危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。与氧化剂接触猛烈反应。高温时分解,释出剧毒的氮氧化物气体。与硫酸、硝酸、铬酸、发烟硫酸、氯磺酸、顺丁烯二酸酐、高氯酸银等剧烈反应,有爆炸危险。流速过快,容易产生和积聚静电。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮。 吡啶的危害:

年产20万吨甲醇制二甲醚生产工艺初步设计

太原理工大学化学化工学院 《化工设计》课程设计讲明书 年产20万吨甲醇制二甲醚生产工艺初步设计

学生学号:2009002273 学生姓名:武晓佩 专业班级:化工工艺0904 指导教师:郑家军 起止日期: 2012.11.26~2012.12.21

化工设计课程设计任务书

摘要 作为LPG和石油类的替代燃料,目前二甲醚(DME)倍受注目。DME 是具有与LPG的物理性质相类似的化学品,在燃烧时可不能产生破坏环境的气体,能廉价而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。目前生产的二甲醚差不多上由甲醇脱水制得,即先合成甲醇,然后经甲醇脱水制成二甲醚。甲醇脱水制二甲醚分为液相法和气相法两种工艺,本设计采纳气相法制备二甲醚工艺。将甲醇加热蒸发,甲醇蒸气通过γ-AL2O3催化剂床层,气相甲醇脱水制得二甲醚。气相法的工艺过程要紧由甲醇加热、蒸发、甲醇脱水、二甲醚冷凝及精馏等组成。要紧完成以下工作: 1)精馏用到的二甲醚分离塔和甲醇回收塔的塔高、塔径、塔板布置等的设计; 2)所需换热器、泵的计算及选型; 关键词:二甲醚,甲醇,工艺设计。

Abstract: As LPG and oil alternative fuel, DME has drawn attentions at present. Physical properties of DME is similar for LPG, and don’t produce combustion gas to damage the environment, so, It can be produced largely. Like methane, DME is expected to become 21st century energy resources., DME is prepared by methanol dehydration, namely, synthetic methanol first and then methanol dehydration to dimethyl etherby methanol dehydration. Methanol dehydration to DME is divided into two kinds of liquid phase and gas-phase process. This design uses a process gas of dimethyl ether prepared by dimethyl. Heating methanol to evaporation, methanol vapor through the γ-AL2O3catalyst bed, vapor methanol dehydration to dimethyl etherby. This process is made of methanol process heating, evaporation, dehydration of methanol, dimethyl ether condensation and distillation etc. Completed for the following work: 1) Distillation tower used in separation of dimethyl ether and methanol recovery , column height of tower ,diameter, arrangement of column plate etc; 2) The calculation and selection of heat exchanger, pump;

氮氧化物排放量计算

锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx=1.63B(β·n+10-6Vy·CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); B ~煤或重油消耗量(kg); β~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n≥0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3/kg); CNOx~温度型NO浓度(mg/Nm3),通常取70ppm,即93.8mg/Nm3。第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938)

GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为

18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为

北京中医药大学远程教育《有机化学Z》第2次作业与答案

北京中医药大学远程教育学院 有机化学综合复习题 一、选择题 1.下列化合物中能与多伦(Tollen)试剂发生银镜反应的是: A A. CH 3CH2CH2CHO O B. CH 3CH2C CH3 O C. CH 3CH2CH 2C CH2CH3 O D. CH 3CH2CH2CH2CH2CH2C CH3 2.下列化合物中有旋光性的是:C, D A. (CH3)2CHCH2CH2CH2CH2OH B. CH3COCH2CH3 C. CH3CH2CH(CH3) CH2OH D. CH3CHClCOOH 3.丁烷的构象中,能量最低的是: C A. 全重叠式 B. 部分重叠式 C. 对位交叉式 D. 邻位交叉式 4.下列化合物中能与水分子形成氢键的是:B, D A. CH3CH2CH2CH2CH2CH2Cl

B. CH3CH2CH2CHO C. CH3CH2CH2CH2CH2CH2CH3 D. CH3CH2CH2CH2CH2OH 5.顺反异构体的表示方法是: B A. +/- B. Z/E C. R/S D. D/L 6.下列化合物中能发生碘仿反应的是:B, C A. HCHO B. CH3CH2CH2COCH3 C. CH3CH2CH2CHOHCH3 D. CH3OH 7.与卢卡斯(lucas)试剂发生反应速度最快的是: B A. (CH3)2CHOH B. (CH3)3COH C. CH3CH(OH)CH2CH2CH3 D. CH3CH2CH2CH2OH 8.与卢卡斯(lucas)试剂发生反应速度最慢的是: D A. (CH3)2CHOH B. (CH3)3COH

多氨基多硝基吡啶氮氧化物及其配方的性能研究

多氨基多硝基吡啶氮氧化物及其配方的性能研究多氨基多硝基吡啶氮氧化物的代表化合物2,6-二氨基-3,5-二硝基吡啶氮 氧化物(ANPyO)和2,4,6-三氨基-3,5-二硝基吡啶氮氧化物(INPyO)是一类新型 的含能材料,具有感度低,成本低,稳定性好,耐热性好以及较高的爆炸性能,是潜在的高能钝感炸药候选物,在含能材料领域具有广阔的应用前景。本论文分别以三氟乙酸(CF3COOH)、二甲基亚砜(DMSO)和N,N-二甲基甲酰胺(DMF)为溶剂,采用重结晶法精制ANPyO或TNPyO,对精制后样品性能进行比较分析。结果表明:分 别用CF3COOH重结晶的ANPyO和TNPyO平均粒径最小,比表面积分别为 0.454m2·g-1和2.760m2·g-1;10℃·min-1温升速率时,热分解峰值温度分别 为370.69°C和355.9℃,表观活化能分别为279.63kJ·mol-1和303.15kJ·mol-1;机械感度最低。CF3COOH是最佳的重结晶溶剂。 结晶工艺条件对ANPyO的晶型和感度也有明显的影响。采用溶液-水悬浮- 蒸馏法,分别以氟橡胶F2311和丁腈橡胶(NBR)包覆ANPyO和TNPyO,利用傅里叶 变换红外光谱(FTIR)、扫描电子显微镜(SEM)、差示扫描量热法(DSC)、热重分析法(TG)和感度试验表征包覆前后ANPyO和TNPyO的结构和性能。试验结果表明:分别用F2311和NBR包覆后的ANPyO和TNPyO热分解峰值温度降低,分解热提高,分解深度减小;包覆后颗粒变大,红外光谱中N-H特征峰和氮杂原子的特征峰均发生偏移;机械感度均降低。包覆能改善ANPyO和TNPyO的能量和机械感度性能,其中以F2311包覆的ANPyO和TNPyO性能更优。 根据ANPyO和TNPyO及其配方分别在不同升温速率下TG的分析结果,分析讨论了它们的热分解过程,用非线性等转化率积分法和Ozawa法计算了它们的热分解活化能、指前因子等动力学参数和机理函数。ANPyO和TNPyO及其配方的热分解机理均属于n=1的随机成核和随后生长。采用绝热加速量热仪对ANPyO和TNPyO及其配方进行绝热分析。利用速率常数法计算了它们绝热分解的活化能和指前因子等动力学参数。 依据绝热分解过程的温度、压力、温升速率随时间的变化以及计算结果对它们的热安全性进行评价。采用热重-微商热重分析(TG-DTG)、热重与质谱联用(TG-MS)和原位热裂解快速扫描傅里叶变换红外等技术研究了ANPyO的热分解全过程,并通过跟踪测试热分解过程中气相和凝聚相产物及其变化情况提出了

液相甲醇合成二甲醚工艺流程

液相甲醇合成二甲醚工艺流程 作者/来源:日期:2008-4-18 1、甲醇罐区 原料甲醇由甲醇罐区用泵经管道送至生产区甲醇储槽贮存,然后由甲醇输送泵经流量计计量后送往二甲醚反应工序作为反应物料。 2、二甲醚反应 由甲醇计量泵计量后经反应预热器加热至60℃左右后,由二甲醚反应釜底部进入温度为150℃左右的液相催化剂中,在催化剂的作用下脱水生成二甲醚。该反应为微放热反应,为保证反应的连续进行,需用加热泵循环打酸,混酸在釜外的反应加热器中与低压蒸汽间接换热获得热量。从反应釜顶部出来的气体为二甲醚、水蒸汽和少部分甲醇混合气,温度150℃左右,气体经过甲醇冷凝器降温至55℃,气液混合物进入净化槽中进行气液分离。气相二甲醚经过甲醇冷凝器进一步冷凝,其中含有甲醇,进入分离槽再进行气液分离,净化槽中的甲醇、二甲醚水溶液(二甲醚为溶解其中)同时也溢流至分离槽。在分离槽中气相二甲醚送往二甲醚压缩工段,液相的甲醇水溶液则由塔前甲醇泵送往精馏塔,并经塔前预热器预热到60℃左右。 在精馏塔塔底重沸器中,甲醇、二甲醚水溶液在低压蒸汽的加热下变为气相进入精馏塔中,经过逐段分离,甲醇、二甲醚气体由塔顶进入塔顶冷凝器中,甲醇冷凝为液体进入液封槽,二甲醚气体则由液封槽顶部并入二甲醚管道送往二甲醚压缩工段。甲醇液体由回流泵加压后一部分经计量后送到塔顶作回流液,其余部分由甲醇冷却器冷却至38℃左右循环送至甲醇中间槽进一步反应。塔底的残液通过液位调节排至废水槽,经废水泵排入污水系统。 反应式为: CH3OH+H2SO4—→CH3HSO4+H2O CH3OH+H3PO4—→CH3H2PO4+H2O CH3OH+ CH3HSO4—→CH3OCH3+H2SO4 CH3OH +CH3H2PO4—→CH3OCH3+ H3PO4 反应温度控制在135-155℃左右,甲醇单程转化率约88%左右。 其具体工艺流程见附图。 3、二甲醚压缩工段 从二甲醚反应工段来的二甲醚气体先进入二甲醚冷却器降温至-10℃左右,然后进入二甲醚气液分离器分离出少量的甲醇残液,残液溢流至甲醇回流槽,由回流泵送至二甲醚反应工段的分离槽中进行精馏回收。气相二甲醚冷却所用的冷媒为压缩后的液相二甲醚,液相二甲醚在二甲醚冷却器壳程中常压下蒸发为气相,将产品二甲醚冷却至-10℃左右,二甲醚则经制冷二甲醚气液分离器分离后进入制冷二甲醚压缩机压缩至1.0MPa 左右,进入制冷二甲醚冷凝器,与循环冷却水换热降温至40℃左右,液相流入制冷二甲醚储罐,形成一个制冷循环。 经冷却分离后的产品二甲醚进入二甲醚压缩机经两级压缩加压至1.0MPa,然后进入二甲醚冷凝器与循环冷却水换热后降温至40℃时冷凝为液相,二甲醚液体由二甲醚冷却器继续冷却至10℃左右送往二甲醚罐区贮存。 4、二甲醚罐区 由压缩工段送来的二甲醚成品储存在二甲醚球罐内。

二甲醚生产流程

二甲醚的生产方法最早是由高压甲醇生产中的副产品 精馏后制得,随着低压合成甲醇技术的广泛应用,副反应大大减少,二甲醚的工业生产技术很快发展到甲醇脱水或合成气直接合成工艺。甲醇脱水法包括液相甲醇法和气相甲醇法,前者的反应在液相中进行,甲醇经浓硫酸脱水而制得,但因该法存在装置规模小、设备易腐蚀、环境污染、操作条件恶劣等问题,逐步被淘汰。近年来,二甲醚的需求量增长较大,各国又相继开发投资省、操作条件好、无污染的新工艺,主要包括二步法和一步法。 二步法先由合成气制取甲醇,然后将甲醇在催化剂下脱水制取二甲醚。以前主要采用硫酸作催化剂,现在大多采用由γ-Al2O3/SiO2制成的ZSM-5分子筛作催化剂,性能优良,选择性好,故能制备出高纯的二甲醚,还能避免污染。 一步法由合成气直接制取二甲醚,包括合成气进入反应器内同时完成甲醇合成与甲醇脱水两个反应和水-煤气变换反应,产物为甲醇与二甲醚的混合物,混合物经蒸馏分离得二甲醚,未反应的甲醇返回反应器。一步法多采用双功能催化剂,一般由两类催化剂混合而成,其中一类为合成甲醇催化剂,另一类为甲醇脱水催化剂。合成甲醇催化剂包括Cu-Zn-Al (O)基催化剂,如BASF、S3-85和I-CI-512等。甲醇脱水催化剂有氧化铝、多孔SiO2-Al2O3、Y型分子筛、ZSM-5分子筛、丝光沸石等。一步法根据反应器类型分为固定床和浆

态床两种。 一步法制二甲醚的反应可分为以下几步: CO+H2—>CH3OH -ΔH=90.7kJ/mol (1) 2CH3OH—>CH3OCH3+H2O -ΔH=23.5kJ/mol (2) CO+H2O—>CO2+H2 -ΔH=41.2kJ/mol (3) 总反应式:3CO+3H2—>CH3OCH3+CO2 -ΔH=246.1kJ/mo l (4) 一步法与二步法相比较,各有优势。一步法中CO的转化率远高于二步法,但在一步法中,由于三个反应必须同时发生,且三个反应均为放热反应,这就要求所用的催化剂有很好的耐热性,在高温下具有高选择性。一步法生产的二甲醚一般用作醇醚燃料,若想生产高纯度,还需进一步分离提纯。二步法的转化率虽然不如一步法高,但是它具有生产工艺成熟,装置适应性广,后处理简单等特点,既可直接建在甲醇生产厂,也可建在其它公用设施好的非甲醇生产厂。与一步法相比,二步法合成流程稍长,但两类催化剂装在不同反应器,互不干扰。从目前的技术发展趋势来看,一步法具有流程短、设备效率高、操作压力低和CO单程转化率高等特点,使得设备投资费用和操作费用大大减少,合成二甲醚的生产成本较两步法大幅度降低。因此,一步法经济上更加合理,市场上更具竞争力,总体上来说更具技术优势。 根据反应过程的相态和工艺特点来分,合成气一步法制二甲

甲醚生产工艺

二甲醚及生产工艺 1、二甲醚的基本概况 二甲醚别名:甲醚 英文名称:methyl ether;dimethyl ether;DME CAS编号:115-10-6 分子式:C2H6O 结构式:CH3—O—CH3 二甲醚又称甲醚,简称DME。二甲醚在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点 -141.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 2 生产原理 生产方法简介

目前国内外二甲醚生产方法主要有合成气一步法和甲醇法。甲醇法又分为甲醇气相法和甲醇液相法。合成气一步法的工业化技术尚未成熟,理由是: ①现有的技术未经装置检验; ②即使按现有技术,其生产成本也高于甲醇气相法 反应方程式 合成气一步法以合成气(CO + H2 )为原料,合 成甲醇反应和甲醇脱水反应在一个反应器中完成, 同时伴随CO的变换反应。其反应式如下。 2CO + 4H2 = 2CH3OH CO +H2O =CO2 +H2 2CH3OH =CH3OCH3 +H2O 总反应: 3CO + 3H2 =H3COCH3 +CO2 甲醇液相法: 甲醇脱水反应在液相、常压或微正压、130 ~130 ℃下进行。其化学反应式如下: 2CH3OH =H3COCH3 +H2O 甲醇气相法: 催化剂为ZSM分子筛、磷酸铝或γ2Al2O3。 甲醇脱水反应的化学反应式如下。 主反应: 2CH3OH =H3COCH3 +H2O

吡啶(MSDS)

危险化学品安全技术性能数据(MSDS) 标识中文名:吡啶英文名:Pyridine 分子式:C2H6S2相对分子质量: CAS号:110-86-1危险性类别:易燃液体化学类别: 组成与性状主要成分:含量99.5%外观与形状: 主要用途:用于制造维生素、磺胺类药、杀虫剂及塑料等。 健康 危害 健康危害:吸入有毒,口服会中毒。呼吸道刺激、皮肤刺激、严重眼刺激。 急救措施皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗10~15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮足量温水,催吐、洗胃、导泻。就医。 急性和迟发效应,主要症状:有强烈刺激性;能麻醉中枢神经系统。对眼及上呼吸道有刺激作用。高浓度吸入后,轻者有欣快或窒息感,继之出现抑郁、肌无力、呕吐;重者意识丧失、大小便失禁、强直性痉挛、血压下降。误服可致死。慢性影响:长期吸入出现头晕、头痛、失眠、步态不稳及消化道功能紊乱。可发生肝肾损害。可致多发性神经病。对皮肤有刺激性,可引起皮炎,有时有光感性皮炎。 爆炸特性与消防燃烧性:易燃,其蒸气与空气混合,能形 成爆炸性混合物。 闪点(℃):20 爆炸下限(V%):1.8爆炸上限(V%):12.4 引燃温度(℃):482最大爆炸压力(Mpa):无意义 最小点火能(Mj):无意义 危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。与氧化剂接触猛烈反应。高温时分解,释出剧毒的氮氧化物气体。与硫酸、硝酸、铬酸、发烟硫酸、氯磺酸、顺丁烯二酸酐、高氯酸银等剧烈反应,有爆炸危险。流速过快,容易产生和积聚静电。蒸气比空气重,沿地面扩散并易积存于低洼处,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。

二苯胺项目建议书

二苯胺项目建议书 一、总论 1、项目名称:山东开泰石化股份有限公司5000t/a二苯胺生产装置建设 2、项目建设单位:山东开泰石化股份有限公司 3、拟建地点:高青新区新规划场地 4、建设项目内容与规模 建设项目内容:二苯胺生产装置 建设项目规模:5000t/a 5、建设年限:一年半 6、概算投资:2800万(未含土地费用) 7、效益分析: 苯胺当前市场价:6700元/t 二苯胺当前市场价:16000元/t 生产成本:9000元/t 预计效益:7000元/tx5000t=3500万 若开工率60%,则预计效益2千万。 二、项目建设的必要性和条件 1、二苯胺简介:二苯胺又称 N-苯基苯胺,是一种精细化工原料,最初作为纤 维和含氮类炸药的稳定剂,随着二苯胺应用领域不断拓展,目前二苯胺已成为 橡胶助剂、染料和医药的重要原料;以它为原料可以合成橡胶防老剂BLE 、AM 、

DFC 等品种,其衍生物对氨基二苯胺是对苯二胺类防老剂4010NA 、4020 的基本原料;另外还可以制造多种染料和医药。 二苯胺是吩噻嗪的主要生产原料。 2、二苯胺项目建设的必要性 (一)投资少,效益好 5000t/a的生产装置,计划投资2800万元。 2014年二苯胺国内年生产量3.4万t/a,市场价1.6万-2.0万/t。全球年产量6.5万t/a。进口价格由于关税和增值税,高于国内价格,并且供量不足。苯胺连续法生产二苯胺,其生产成本,0.9万/t。拟建5000t/a的生产装置,满负荷生产,效益3000—4000万左右/a。 投资少,见效快。

(二)市场有需求 1、目前国内二苯胺生产厂家主要为江苏飞亚化学工业集团(2万t的装置, 产量3万t/年)和南通新邦化工科技有限公司(0.5万t的装置,产量0.8万t/a),辽宁庆阳化工厂(产量0.15万t/年)。根据市场分析报告和富安化工厂反映, 目前二苯胺市场无论是国内,还是全球,基本是供小于求的情况,国外二苯胺 用量最大的科聚亚公司(Chemtura)自身产量不足,其台湾生产防老剂的生产厂,还需要从国内进口。 且没有信息表明近期有拟建装置。据市场分析报告的分析,预计未来5年, 全球产能基本保持稳定。 2、进出口情况分析

2,4-二甲基吡啶

2,4-二甲基吡啶化学品安全 技术说明书 第一部分:化学品名称 化学品中文名称:2,4-二甲基吡啶 化学品英文名称:2,4-dimethylpyridine 中文名称2:2,4-卢剔啶 英文名称2:2,4-lutidine 技术说明书编码:185 CAS No.:108-47-4 分子式:C7H9N 分子量:107.2 健康危害:吸入、口服或经皮肤吸收后对身体有害。对眼睛有强烈刺激性。对皮肤、粘膜和上呼吸道有刺激性。接触后可引起咳嗽、胸痛、呼吸困难、胃肠功能紊乱。 燃爆危险:本品易燃,具强刺激性。第四部分:急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。第五部分:消防措施 危险特性:易燃,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。受热分解放出有毒的氧化氮烟气。 有害燃烧产物:一氧化碳、二氧化碳、氮氧化物。 灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。 第六部分:泄漏应急处理

应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。不要直接接触泄漏物。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。收集运至空旷的地方掩埋、蒸发、或焚烧。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿胶布防毒衣,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。包装要求密封,不可与空气接触。应与氧化剂、酸类等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。 第八部分:接触控制/个体防护 中国MAC(mg/m3):未制定标准 前苏联MAC(mg/m3):未制定标准 TLVTN:未制定标准 TLVWN:未制定标准 工程控制:密闭操作,注意通风。 呼吸系统防护:可能接触其蒸气时,应该佩戴过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,建议佩戴隔离式呼吸器。 眼睛防护:戴化学安全防护眼镜。身体防护:穿胶布防毒衣。 手防护:戴橡胶耐油手套。 其他防护:工作现场严禁吸烟。工作完毕,淋浴更衣。实行就业前和定期的体检。保持良好的卫生习惯。 第九部分:理化特性 主要成分:纯品 外观与性状:无色液体, 有胡椒气味。 熔点(℃):-60 沸点(℃):157~158 相对密度(水=1):0.93相对蒸气密度(空气=1):无资料

国内外二甲醚场和生产工艺分析

国内外二甲醚市场和生产工艺分析 国内外二甲醚市场和生产工艺分析 目前二甲醚组成的合资公司将在澳大利亚建设140-240万吨/年的大规模二甲醚装置,定于2006年投产。 目前二甲醚的主要消费领域是作溶剂和气雾剂的推动剂,其它方面的消费不多。2002年

含吡啶环高能化合物的分子设计和理论研究

含吡啶环高能化合物的分子设计和理论研究运用量子化学密度泛函理论(DFT)等方法,对设计的系列含吡啶环分子(如硝胺类、桥连双吡啶类、吡啶并含氮杂环类等)的分子结构、电子结构、晶体结构、爆轰性能等进行了较系统的计算研究,以了解其基本性能,筛选品优化合物,为实验合成提供参考。主要内容如下:1.基于硝胺基团的高能特性和毗啶的钝感性,设计了系列含吡啶环的硝胺炸药,并对其进行了理论研究。采用PM3半经验方法和DFT方法计算了生成焓(HOF),采用等电子密度面求体积法及其静电势校正法 计算晶体密度(p)。在此基础上应用Kamlet-Jacobs(K-J)方程求得爆速(D)和爆 压(P)。 发现有些化合物具有较高密度(约1.9g/cm3)和优良的爆轰性能(D高于 9km/s,P约为39GPa),为潜在的高能量密度化合物(HEDC)。根据自然键轨道(NBO)、键解离能(BDE)和撞击感度(h50)分析了化合物的稳定性和热解机理,发现在热分解过程中N-N02键是最可能的引发键。溶剂效应能影响化合物的稳定性。最后总结了吡啶硝胺类化合物的分子设计规律。 2.根据含吡啶环炸药TNPyO(2,4,6-三硝基吡啶氮氧化物)和PYX(2,6-二苦 胺基-3,5-二硝基吡啶)的结构设计了它们的-NO2、-NH2、-N3、-NHNO2、-ONO2、-CH2C(NO2)3和-NF2衍生物,应用DFT进行了理论研究。通过等键反应计算了气态生成焓并进而预测了固态生成焓;应用分子力学(MM)方法计算了ρ;由K-J 方程估算爆热(Q)、D和P,讨论了取代基团对HOF、ρ、Q、D和P的影响;由前线轨道能量、键级、BDE和h50评价感度,并探讨了可能的热解引发机理。综合 考虑爆轰性能与稳定性两方面因素,大多数TNPyO衍生物以及部分PYX衍生物为潜在的HEDC,值得进一步研究。3.对具有不同连接基团(-H-、-O-、-NH-、-CH2、-N=N-、-N=N(O)-、-CH=N-、-CH=CH--NH-NH-和-NH-CH2-NH-)和取代基(-NH2、NO2-NF2)的系列双吡啶进行了计算研究。 设计等键反应计算气态生成焓,进而应用Politzer方法预测固态生成焓。讨论了不同连接基团对生成焓的影响规律。比较三种密度预测方法(体积法、Politzer静电势校正法以及MM预测分子堆积方法)的结果,发现分子堆积法所得晶体密度更可靠。以-O-、-NH-或-CH2-连接的双吡啶化合物的爆轰性能与直接相连的双吡啶相比没有明显提高。

全球吡啶类化合物的市场现状及前景分析

全球吡啶类化合物的市场现状及前景分析 一、综述 吡啶类化合物是一类含有氮原子的杂环芳烃,除了吡啶本身之外,吡啶类化合物包括:甲基吡啶(picolines皮考林),二甲基吡啶(卢剔啶lutidines)和三甲基吡啶(可力丁collidines)。吡啶类化合物最大的应用市场是农用化学品(主要为除草剂)和烟酰胺/烟酸。 20世纪50年代初开始吡啶的化学合成之前,煤焦油中分离是吡啶的唯一来源。如今,世界上几乎所有的吡啶都是化学合成的。本次论坛只讨论合成吡啶。 合成吡啶所用的原料有甲醛、乙醛和氨,催化剂是普通的沸石催化剂,反应温度也不高300~500℃。从表面是看,吡啶的合成应该是一件很容易的事,实际上将乙醛和甲醛环起来再在环上加上一个杂原子氮是一项技术含量很高的合成工艺。世界上能够掌握这项技术的公司为数不多,10年前有美国、日本、德国和瑞士等几家公司。目前又增加了中国台湾、中国大陆和印度等几家公司。 二、全球吡啶及其衍生物的供需情况 本报告讨论的吡啶及其衍生物主要包括吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶和2-甲基-5-乙基吡啶(MEP)。表1列出了2007年全球吡啶及其衍生物的供需情况。 表1 2007年全球吡啶及其衍生物的供需情况t a. 包括2-甲基-5-乙基吡啶(MEP)和少量的二甲基吡啶(卢剔啶)和三甲基吡啶(可力丁);

b. 包括印度尼西亚、马来西亚、新加坡和泰国。 来源:CEH 估计。 三、全球吡啶及其衍生物的消费情况 2007年全球吡啶的消费量为11.8万t/a。产能利用率为66%,这是因为吡啶产能的增速已经超过了全球的需求。在2003-2007年间,世界吡啶产能的平均增长率为8.7%,超过了全球消费的平均增长率3.5%。2003~2007年底,大约有4.5万t/a产能增加,主要都分布在中国、印度和美国。大部分亚洲产能增加都用于百草枯和烟酸/烟酰胺的强劲需求。而2003-2007 年亚洲新增吡啶需求被美国和西欧需求的降低给平衡掉了。表2列出了世界吡啶的消费情况。 表2 世界吡啶的消费情况t/% a. 包括2-甲基-5-乙基吡啶(MEP) 来源:CEH 估计。 2007年和2012年全球吡啶产品的消费情况分别如图1和图2所示。 图1 2007年全球吡啶产品的消费情况

氮氧化物的计算方法

氮氧化物的计算方法 燃烧产生的氮氧化物根实际燃烧条件关系密切,所以要准确估算是非常困难的。如果条件允许,尽量类比具备可比性同类型项目实测数据;在无实测情况下最好查阅相关书籍或相关研究成果计算方式,根据相关条件选择相近情况公式的计算结果准确率稍高,而且符合导则要求可找到依据出处;切记别拍脑袋。以下几种方法供大家参考。 传统方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一 产生10m3烟气。致的,假设了燃烧1kg煤 GNOx=1.63×B×(N×β+0.000938) 氮氧化物排放量,kg; GNOx— B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G,B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(,),取0.85,; a—氮氧化物转化为二氧化氮的效率(%),取70%。

B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。 第四种计算方法: 采用《产排污系数手册》第十册:按燃烧1t煤来计算: 烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页) 锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx,1.63B(β?n+10,6Vy?CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); ); B ~煤或重油消耗量(kg β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n?0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3,kg); CNOx ~温度型NO浓度(mg,Nm3),通常取70ppm,即93.8mg,Nm3。 固定污染源监测质量保证与质量控制技术规范,试行,,HJ/T 373-2007, 中核定氮氧化物排放量 5.3.5 核定氮氧化物排放量

苯胺连续合成二苯胺生产技术2015.5.7-2。0

苯胺连续合成二苯胺生产技术 1 概述 二苯胺(diph enylamine;N-phenylaniline ),又称N-苯基苯胺, 结构式: 是一种用途非常广泛的化工原料。在橡胶工业中它主要用于橡胶防老剂、或橡胶防老剂的原料,如生产防老剂BLE、RT培司(4-氨基二苯胺)、硫化新兰BBF1等的原料,同时也是SO3及炸药的稳定剂,合成兽药、水果防腐剂等的原料。目前工业上由苯胺缩合生产二苯胺,采用液相、釜式、间歇反应生产所用催化剂为HCl、AlCl3、NH4BF4等卤化物。上述方法存在着副产物多,过程繁琐、设备腐蚀、收率低、污染严重等问题,且难以连续操作和大规模生产。 当前随着我国加入WTO以后经济的飞速发展,我国的轮胎工业也出现了空前的飞速发展,目前已经引进的子午轮胎生产线已有二十多套,其很多技术软件都要求使用防老剂4020以保证轮胎的质量。随着引进技术原材料国产化工作的不断推进以及国内防甲、防丁的限制使用,防老剂4020的用量将越来越大,而作为防老剂4020原料的二苯胺,扩大生产规模必将有着深远的战略意义。 当前,全世界二苯胺产量约为20万吨/年。我国2010年产量为20000吨/年,远不能满足我国经济建设发展的需要。我国生胶耗量已占世界耗胶量的第四位,随着经济建设的发展以及橡胶制品进入国际市场,势必要求大量采用高性能、低毒性的二苯胺类橡胶防老剂(如

4010NA、4020等)。另外二苯胺还可用于染料、国防等行业,因此具有很好的市场应用前景。 目前,抚顺石油化工研究院(FRIPP)开发的苯胺连续化合成二苯胺工艺技术处于国际领先水平,填补了国内空白,克服了传统工艺间歇法的许多缺点,实现了环境友好催化新工艺,并拥有多项国内外专利,专利号:ZL94107296.7,ZL95108831.9,ZL95108830.0,ZL95103700.5,US5648538。 2技术介绍 2.1连续法与间歇法技术对比 生产二苯胺有多种方法,但工业价值较好的只有苯胺合成二苯胺的技术路线。 传统的苯胺合成二苯胺的方法是以三氯化铝、HCl、BF3或NH4BF4等卤化物为催化剂在1.6~2.0MPa、300~350℃条件下釜式合成,粗产品经盐析、中和、蒸馏、结晶得产品二苯胺。该方法采用间歇操作,过程中产生大量的废酸和碱渣等,腐蚀污染严重,劳动条件恶劣,同时生产过程中苯胺单耗高,生产成本高。 FRIPP开发的合成二苯胺方法是以苯胺为原料,固定床连续合成工艺,粗产品采用连续蒸馏回收,未反应的苯胺返回反应系统进行回用,粗二苯胺经间歇蒸馏即得二苯胺产品。 固定床连续合成二苯胺工艺克服了间歇法存在的腐蚀污染严重、能耗高、苯胺单耗高等缺点,劳动环境大为改善,并可连续化大规模生产,是目前世界各国竞相发展的新工艺。

MSDS危险化学品安全技术说明书——33615--3,5-二甲基吡啶

化学品安全技术说明书 第一部分化学品及企业标识 化学品中文名:3,5-二甲基吡啶;3,5-卢剔啶 化学品英文名:3,5-dimethylpyridine;3,5-lutidine 企业名称: 生产企业地址: 邮编: 传真: 企业应急电话: 电子邮件地址: 技术说明书编码: 第二部分成分/组成信息 √纯品混合物 有害物成分浓度CAS No. 3,5-二甲基吡啶591-22-0 第三部分危险性概述 危险性类别:第3.3类高闪点液体 侵入途径:吸入、食入、经皮吸收 健康危害:本品具有刺激性,对神经系统、肝、肾有损害。接触后出现眼睛、皮肤和粘膜刺激症状。并引起头痛、眩晕、恶心、呕吐、精神迟钝、腹痛、腹泻 等。 环境危害:对环境有害。 燃爆危险:易燃,其蒸气与空气混合,能形成爆炸性混合物。 第四部分急救措施

皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮水,禁止催吐。如有不适感,就医。 第五部分消防措施 危险特性:易燃,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。受热分解放出有毒的氧化氮烟气。 有害燃烧产物:一氧化碳、氮氧化物。 灭火方法:用泡沫、干粉、二氧化碳、砂土灭火。 灭火注意事项及措施:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。 尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结 束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上 撤离。 第六部分泄漏应急处理 应急行动:消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸 器,穿防毒、防静电服。作业时使用的所有设备应接地。禁止接触或跨越 泄漏物。尽可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密 闭性空间。小量泄漏:用砂土或其它不燃材料吸收。使用洁净的无火花工 具收集吸收材料。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,减少蒸 发。喷水雾能减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用 防爆泵转移至槽车或专用收集器内。 第七部分操作处置与储存 操作注意事项:密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴化学安全防护眼 镜,穿胶布防毒衣,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸

相关文档
最新文档