含字母系数的一元二次方程

含字母系数的一元二次方程
含字母系数的一元二次方程

(6)含字母系数的一元一次方程

班别______姓名________

一、性质:一般地,当

(1)a ≠0?方程ax=b 有且只有一解;

(2)a=0且b=0?方程ax=b 有无数多个解;

(3)a=0且b ≠0?方程无解。

二、例题

例1 解关于x 的方程(m-1)x – 1=3x + 4

解:整理,得 (m – 4)x=5,当m ≠4时,x=

45-m ;当m=4时,原方程无解。 例2 解关于y 的方程(k 2+2k+3)y + 4=3(y+2)+k

解:整理,得(k 2

+2k )y=2 + k ∴ k (k+2)y=2+k

当k=-2时,方程有无数多个解;

当k ≠-2时,得ky=1

∴当k ≠-2且k ≠0时,方程的解为y=k

1 当k=0时,原方程无解

当k=-2时,方程有无数多个解。

例3 b (b ≠0)为何值时,关于x 的方程(b+1)x=2bx –3b 2

的解为负数。 解:整理,得(1 - b )x= –3b 2 当b ≠1时,方程有解x = b

b --132

,由于b ≠0分子(–3b 2)为负,只需分母为正,即b ﹤1时,方程的解为负数。

例4 某施工队第一组原有96人现调出16人到第二组,调整人数后,第一组人数是第二组人数的k (k 是不等于1的正整数)倍还多6人,问第二组原有多少人。

解:设第二组原有x 人。调整后,第一组有96 – 16 = 80(人),第二组有x+16(人)。根据题意,得

80=k (x+16)+6

整理,得 kx=74 – 16k

k 是不等于1的正整数,∴x=k

k 1674-

因为x 为所求人数,必须为正整数,而k 是不等于1人正整数,故74 – 16K 也是正整数,k 只能取2、3、4。代入计算得k 为3、4均不适合。

∴当k=2时,得第二组原有x=2

21674?-=21(人) 评注 : 对含字母系数的一元一次方程中的字母系数要讨论,如果是应用问题,还得根..................................据实际意义,对字母系数的取值范围进行取舍....................

。 三、练习

1、选择题:设关于x 的方程a (x - a )+b (x+b )=0有无穷多个解,则( )

(A )a+b=0 (B )a-b=0 (C )ab=0 (D )

0=b a 2、填空:若方程249x+8

a ∣x ︱-1=0解小于零,则a 的取值范围是________. 3、解下列关于x 的方程:

(1)x+b a b ax +=; (2)=+n x m m

n x -;

(3)x=b a a b a bx -++; (4)(=-x m

n n m )m n n m +

4、k 为何值时,方程(m – 3)(m - 4)x=(m – 3)(m+2)的解是负数?

5、解关于x 的方程m+122++=+m x m mx

含参数的一元二次方程的整数解问题

数学思维的教育 第二十六讲含参数的一元二次方程的整数根问 题 1

对于一元二次方程ax2+ bx+ c=O(a ≠0)的实根情况,可以用判别式Δ =b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 本讲 结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 2 2 (m-1)χ -6(3m-1)x + 72= 0 有两个不相等的正整数根. 2 2 解法1首先,m-1 ≠ 0, m≠± 1. Δ =36(m-3) > 0 ,所以m≠ 3 .用求根公式可得 6 12 Xl = ----------- 7J X i W -------------- 7- m —1 IIl + 1 由于X1, X2是正整数,所以 m1=1, 2, 3, 6, m+1=1, 2, 3, 4, 6, 12, 解得m=2 这时X1=6, X2=4. 2 解法2首先,m-1 ≠ 0, m≠± 1.设两个不相等的正整数根为χ1, χ2,则由根与系数的 关系知 6(3m T) 72 m - I m - 1 所以m-1=2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72,即卩 2 m=3, 4, 5, 7, 9, 10, 13, 19, 25, 37, 73, 只有m=4, 9, 25才有可能,即m=±2, ± 3 , ± 5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2已知关于X的方程 2 2 2 2 a X -(3a -8a)X + 2 a -13a +15=0 2

最新人教版七年级数学下册帮你解含字母系数的方程组

帮你解含字母系数的方程组 在解与二元一次方程组有关问题时,经常会遇到含字母系数的方程组,解此类题的一般思路是根据条件采用代入求值的方法求得最后结果.常见的有以下几种类型: 一、代入求值型 例1.已知关于x 、y 的二元一次方程组{ 35ax by ax by +=-=, 的解是 { 21x y ==, .求a b +的 值。 解析:由二元一次方程组解的定义,将 { 21x y ==, 代入方程组得 { 2325a b a b +=-=,,再解关于a 和b 的二元一次方程组,得{ 21a b ==-, 。所以a b += 1. 二、添加(赋予)条件型 例 2.若关于x 、y 的二元一次方程组 { 2527x y k x y k +=-=,① ,②的解满足方程 1 253 x y -=,那么k 的值为 。 解析:观察方程组发现可利用加减消元法把其中的一个字母消去, 由①+②得,412x k =,即3x k =③;由①-②得,22y k =-,即y k =-④,将③④ 分别代入方程1253x y -=,得132()53k k ?-?-=,解得5 3 k =。 例3.如果方程组{ 35223x y k x y k +==+,① +②的解x ,y 的和为2,求k 的值及方程 组的解。 解析:由①-②得22x y +=③, 将2x y +=与③联立方程组 { 2, 22x y x y +=+=,

解得 { 2,0x y ==, 将x ,y 的值代入②得k =4. 解此类题首先要观察方程组的特征,采取加减或代入的方法进行消元,使之变形为二元一次方程组,从而求得最后结果。 三、同解型 例4.已知关于x 、 y 的二元一次方程组{ 5, 27ax by ax by +=+=与方程组 { 237324 x y x y +=-=,的解相同,求a 和b 的值。 解析:观察第二个方程组可发现能直接解得x 、y 的值,解得 { 2, 1x y ==,将其 代入第一个方程组得 { 25, 47a b a b +=+=,解得 { 1,3a b ==。 例5. 已知关于x 、y 的二元一次方程组{ 3, 5x y mx ny +=-=与方程组{ 8,1nx my x y -=-=同 解,求m n +的值。 解析:因为两个方程组的解相同,所以可构造新的方程组 { 3, 1x y x y +=-=,解得 { 2, 1x y ==,代入 { 4,5mx ny nx my -=-=得 { 6, 7m n ==故m n +=13.

(三)二次函数图象与字母系数的关系(含答案)

题型(三) 二次函数图象与字母系数的关系 1.(2017贵州安顺第10题)二次函数y =ax 2 +bx +c (≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2 <0; ②3b +2c <0;③4a +c <2b ;④m (am +b )+b <a (m ≠1),其中结论正确的个数是( B ) A .1 B .2 C .3 D .4 2,(2017贵州黔东南州第9题)如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,给出下列结论: ①b 2 =4ac ;②abc >0;③a >c ;④4a ﹣2b +c >0,其中正确的个数有( C ) A .1个 B .2个 C .3个 D .4个 3.(2017山东烟台第11题)二次函数)0(2 ≠++=a c bx ax y 的图象如图所示,对称轴是直线1=x ,下列结论: ①0;③0<++c b a ;④03<+c a . 其中正确的是( C ) A .①④ B .②④ C. ①②③ D .①②③④ 4.(2017四川宜宾第8题)如图,抛物线y 1=1 2 (x +1)2+1与y 2=a (x ﹣4)2﹣3交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.则下列结论: ①a = 2 3 ;②AC =AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2 其中正确结论的个数是( B )

A .1个 B .2个 C .3个 D .4个 5.(2017山东日照第12题)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为 (4,0),其部分图象如图所示,下列结论: ①抛物线过原点; ②4a +b +c =0; ③a ﹣b +c <0; ④抛物线的顶点坐标为(2,b ); ⑤当x <2时,y 随x 增大而增大. 其中结论正确的是( C ) A .①②③ B .③④⑤ C .①②④ D .①④⑤ 6.(2017山东菏泽第8题)一次函数b ax y +=和反比例函数x c y =在同一个平面直角坐标系中的图象如图所示,则二次函数c bx ax y ++=2 的图c 象可能是( C )

字母系数方程及分式方程

含字母系数的方程和分式方程 编制人:何刚强 审核:刘 云 吕 敏 组名: 姓名: 学习目标:(1)会解简单的字母系数的分式方程。 (2) 能应用分式方程的解法进行简单的公式变形。 学习重点:建立数学模型,会解含官母系数的分式方程。 学习难点: 明确解含哪一个字母(未知数)的分式方程。 一.自主学习: (一)、文本解读 阅读课本P30面例4,并尝试完成课本P33面第6题。 (二)、独立尝试: 从龟兔赛跑中,我们再一次感受了一类重要的关系式:路程= ,这类关系式在 生活中应用非常广泛。 问题1: 自从上次龟兔赛跑乌龟大胜兔子以后,它就成了动物界的体育明星,可是偏偏有一只蚂蚁不服 气,于是它给乌龟下了一封战书。 乌龟先生: 我与你进行比赛,兔子先生做裁判,从小柳树开始跑到相距12米的大柳树下,比赛枪声响 后,先到者是冠军。 -----蚂蚁 但比赛结束后,蚂蚁并没有取胜,已知乌龟的速度是蚂蚁的1.2倍,提前一分钟跑到终点,请你 算算它们各自的速度。 解:设蚂蚁的速度为x 米/分,则乌龟的速度为 ,根据题意列方程为: 问题2:从2004年5月起某列车平均提速v 千米/时,用相同的时间,列车提速前行驶s 千米,提速后比提速前多行驶80千米,提速后列车的平均速度为多少? 分析:本题的基本关系是: ,根据关系式: 来列方程。 思考:解含有字母已知数的一元一次方程要注意哪些问题? (1) (2) (3) 二、学以致用: 1. 若)0(≠n ,在弧长公式里,用l ,n 表示R 的式子是( ) A .180l n R π= B .l n R π180= C .πn l R 180= D .l l n R 180π= 2、已知R N V I -= ,则N = . 3、一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足: 111 u v f +=,若f=6厘米,v=8厘米,则物距u= 4、已知关于x 的方程mx+n=m(2x+n)(m ≠0)则x= 5、在梯形面积公式S=(a+b)h 中, (S ,a ,h 都是正数),则b 等于 6、已知公式: 12 111 R R R =+(其中R 1、R 2为正数)用R 1、R 2表示R. 7、(1)公式x h 2=x a a -中,(a>0,h>0),求x. (2)已知公式12(0).1S S U u t t -=≠-,求 三、拓展提升: 解方程(1)2a x x b b a +--= (2) 2(3)33x m m x x =-≠-- 四、小结反思: 这课你学到了什么?还有什么疑惑? 五、学案整理:

含参数的一元二次方程的整数解问题

第二十六讲含参数的一元二次方程的整数根问 题

对于一元二次方程ax2+ bx + c=O(a丸)的实根情况,可以用判别式A=b 2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性 质?本讲结合例题来讲解一些主要的方法? 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x + 72 = 0 有两个不相等的正整数根. 解法1首先,m2-1丸,m工± . A=36(m-3) 2> 0,所以m工3.用求根公式可得 6 12 由于x i, X2是正整数,所以 m-仁1 , 2 , 3, 6, m+1=1 , 2, 3, 4, 6, 12, 解得m=2 .这时X1=6 , x2=4 . 解法2首先,m2-1丸,m工± .设两个不相等的正整数根为X1, X2,则由根与系数的关系知 m2= 3 , 4 , 5 , 7 , 9 ,10 ,13, 19,25 , 37 , 73 ,

只有m2=4 , 9, 25才有可能,即m= ±2, ±3, ±5. 经检验,只有m=2时方程才有两个不同的正整数根 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2已知关于x的方程 a2x2-(3a 2-8a)x + 2a2-13a + 15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a^O,所以 (3a2 - Sa) ±- 8a)2 - 4a2(2a r-13a + 15) B = 2? (3a2 -8a) ±(a2+ 2a) = 2? , 所以 3a2 -Sa 4-(? 4-2a) 3 ”—W -------------- 弘'-亦+ 5 Sj=------ 否------ =l_; 所以只要a是3或5的约数即可,即a=1 , 3, 5 .

含字母系数的方程(组)的解法

含字母系数的方程(组)的解法 ? 知识梳理 说明:本讲内容如果没有特别说明,在含有字母系数的方程(组)或不等式(组)中,一般用a 、b 、c 等表示已知数,用x 、y 、z 表示未知数。 回顾上次课的预习思考内容 ? 形如ax b =的方程的解的情况讨论: ◆ 当0a ≠时,方程有唯一解,为b x a =(等式基本性质) ◆ 当0,0a b ==时,即00x ?=,方程有无数个解,即解为一切数 ◆ 当0,0a b =≠时,方程无解 ? 二元一次方程组111222 a x b y c a x b y c +=??+=?的解的可能性: ◆ 当1112 a b b b ≠时,方程组有唯一的解; ◆ 当111122 a b c b b c =≠,方程组无解; ◆ 当 111122a b c b b c ==时,方程组有无数多个解 练习: 1.关于x 的方程53ax x =-无解,则a = ; 2.关于x 的方程2354mx x n -=-无解,则m ,n ; 3.已知二元一次方程组3221ax y x y +=??-=? 无解,则a 的值是( ) A .a =-2 B .a =6 C .a =2 D .a =-6 参考答案:1、5; 2、5324 m n =≠、; 3、D ? 题型分析 例题1:解关于x 的方程(1)32m x x -=+ 教法说明:首先回顾下等式的基本性质:等式的两边同乘以(除以)同一个不为零的数,等

式的性质不变 参考答案: 试一试:解关于x 的方程23ax b x -=- 例题2:解关于x 、y 的二元一次方程组 2(1)(20)3(2)mx y n m n nx y m +=?+≠?-=? 教法说明:解关于字母系数的二元一次方程组通常用加减消元比较简便 参考答案: 试一试:解关于x 、y 的方程组:1(0,0)2ax by a b bx ay -=?≠≠? +=? 参考答案: 例题3:若方程组223 x y m x y +=-??-=?的解x 与y 均为正数,求m 的取值范围. 教法说明:要求学生会解简单的含字母系数的二元一次方程组,将本方程组中字母m 的看成是常数 参考答案: 解:解方程组得1383m x m y +?=???-?=?? 因为x 与y 均为正数,即00x y >??>? 所以103803 m m +?>???-?>??. 解不等式组得, 8m > 所以m 的取值范围是8m >. 试一试:已知关于x y 、的二元一次方程组26322x y m x y m +=??-=?的解满足二元一次方程 435 x y -=,求m 的值。 参考答案: 解:解方程组得22x m y m =??=?

含字母系数的一元一次方程(篇二)

含字母系数的一元一次方程 教学目标 1.使学生正确认识含有字母系数的一元一次方程. 2.使学生掌握含有字母系数的一元一次方程的解法. 3.使学生会进行简单的公式变形. 4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣. 教学重点: (1)含有字母系数的一元一次方程的解法. (2)公式变形. 教学难点: (1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系. (2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形. 教学方法 启发式教学和讨论式教学相结合 教学手段 多媒体 教学过程 (一)复习提问

提出问题: 1.什么是一元一次方程? 在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1. 2.解一元一次方程的步骤是什么? 答:(1)去分母、去括号. (2)移项——未知项移到等号一边常数项移到等号另一边. 注意:移项要变号. (3)合并同类项——提未知数. (4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程. (二)引入新课 提出问题:一个数的a倍(a≠0)等于b,求这个数. 引导学生列出方程:ax=b(a≠0). 让学生讨论: (1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数) (2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程.) 强调指出:ax=b(a≠0)这个一元一次方程与我们以

前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项. (三)新课 1.含有字母系数的一元一次方程的定义 ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程. 2.含有字母系数的一元一次方程的解法 教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程: ax=b(a≠0). 由学生讨论这个解法的思路对不对,解的过程对不对? 在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系. 含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同.(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤.)

含有参数的一元二次方程专题

1 含参一元二次方程专题复习 一、基础知识梳理 ㈠、一元二次方程根的定义:能使一元二次方程左右两边相等的未知数的值叫做一元二次方程根或解. ㈡、24b ac ?=-叫作一元二次方程的判别式: ⑴0?> 方程有两个不相等的实数根12b x a -+= ,22b x a --=; ⑵0?=方程有两个相等的实数根122b x x a ==- ; ⑶0?<方程没有实数根. ㈢、韦达定理:一元二次方程20ax bx c ++=(0a ≠)的两个根1x 、2x , 则122b x x a +=-;12c x x a =g . 二、基本技能习得 ㈠、分析系数对方程的影响,对方程要深入理解,并灵活应用; ㈡、要分清楚题目条件是“一元二次方程”还是“方程”; ㈢、注意隐含条件,如三角形、等腰三角形等,表示方程的根为正数,而且还有相等的根. 三、基本思想导航 注重数学思想方法渗透,如方程思想、转化思想、数形结合思想、分类思想. ㈠、方程思想,在例3中利用勾股定理建立方程,再实际操作中使用配方法和韦达定理解决问题。例3第2小问,求解中利用等腰三角形的两腰相等建立方程,使问题得到解决; ㈡、转化思想:例2中在求12||A x x =-最值时,通过平方,把问题绝对值去掉转化成二次函数的最值问题,利用配方法求解; ㈢、数形结合思想:在例3中,解题过程中充分利用几何图形的代数表现形式,从而实现了几何和代数的沟通; ㈣、分类思想:要分清楚题目条件是“一元二次方程”还是“方程”,如果是“方程”要分“一元一次方程”和“一元二次方程”;根的判别是都要分类,认清楚是“有实数根”(0?≥)还是“不相等的实数根” (0?>)如例1、例3和例4. 在解题的过程中不是单一的数学思想方法的运用,而是综合使用数学思想方

一元二次方程组教案

5.1.认识二元一次方程组 教学目标: 1.知识与技能:通过实例了解一元二次方程,一元二次方程组及其解的概念,会判断一组数是不是一个二元一次方程组的解。 2教学思考:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型。. 3解决问题:培养学生能够使用数学知识解决生活实际问题的能力,同时发展学生的观察、归纳、概括的能力。 4.情感态度与价值观:激发学生的求知欲,培养他们勇于探索的精神。 教学重难点: 重点:对二元一次方程,二元一次方程组及其解的理解。 难点:二元一次方程,二元一次方程组及其解的个数。 课时安排: 一课时 教学设计 教学准备 幻灯片 教学流程 (一)复习: 1.一元一次方程的定义. 例:下例哪些方程式一元一次方程? 2(1)35(2)16(3) 32(4)6(5) 3x x y x x xy x π=+==+==+ 注 : 一元:一个未知数 一次:含有未知数的项的次数都是1次 整式:分母中不含字母 2.方程的解:使方程两边相等的未知数的值叫做方程的解 例:x=5是方程3x+5=20的解吗?为什么? 3.方程2x+y=8是一元一次方程吗?若不是,那又什么呢? (二)新课讲授 1、老牛与小马 分析:审题 A :数量问题 B : 2= -小马老牛 C :设老牛驮了x 个包裹, 小马驮了 y 个包裹。 )(小马 老牛121-=+

想一想 2x y -= 12(1)x y +=- 上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1 二元一次方程定义:含有两个未知数,并且所含未知数的项的次数都是 1 的整式方程叫做二元一次方程. 判断点:1、未知数几个? 2个 判断点:2、含未知数项的次数是几次? 1次 判断点:3、整式 分母中不含未知数 练一练: 1.请判断下列各方程中,哪些是二元一次 方程,哪些不是?并说明理由. ()()()()21390; 232120; (3)20 1(4)315347; 62100. x y x y xy y x y a b x +-=-+=+=-=-=+= 2.如果方程12231m m n x y -+-=是二元一次方程,那么m =___________,n =______________ . 做一做 6,2x y ==适合方程 8x y +=吗?5,3x y ==呢? 4,4x y ==呢?你还能找到其他 x,y 的值适合方程8x y += 吗? 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解 例如: 6,2x y ==是方程8x y +=的一个解,记作6,2.x y =??=? 练一练: 1.在下列四组数值中,哪些是二元一次方程 31x y -=的解? (A ) 2,3.x y =??=? (B ) 4,1.x y =??=? (C )10,3.x y =??=? (D )5,2.x y =-??=-?

二次函数图象与字母系数的关系

二次函数图象与字母系数的关系 教学目标: 1.准确掌握二次函数图象与字母系数a,b,c 以及ac b 42-的符号之间的关系. 2.能通过二次函数的图象确定字母a,b,c 的值及ac b 42-的符号. 教学重点:准确掌握二次函数图象与字母系数a,b,c 以及ac b 42-的符号之间的关系. 教学难点:准确掌握二次函数图象与字母系数a,b,c 以及ac b 42-的符号之间的关系. 教学过程:一、知识构架 知识点:二次函数图象与字母系数a,b,c 以及ac b 42 -的符号之间的关系 (1)a 的符号:由抛物线的开口方向确定 开口向上 a>0 开口向下 a<0 (2)c 的符号:由抛物线与y 轴的交点位置确定 交点在y 轴正半轴 c>0 交点在y 轴负半轴 c<0 交点在坐标原点 c=0 (3)b 的符号:由对称轴的位置及a 的符号确定 对称轴在y 轴左侧 a,b 同号 对称轴在y 轴右侧 a,b 异号 对称轴在y 轴 b=0 (4)ac b 42 -的符号:由抛物线与x 轴的交点个数确定 与x 轴有两个交点 042>-ac b 与x 轴有一个交点 042=-ac b 与x 轴无交点 042<-ac b (5)a+b+c 的符号:因为x=1时,y=a+b+c,所以 a+b+c 的符号由x=1时,对应的y 值确定 a-b+c 的符号:因为x=-1时,y=a-b+c,所以a-b+c 的符号由x=-1时,对应的y 值确定。 抛物线上几个特殊点的坐标所决定的代数式的正负:(1,a+b+c ), (-1,a-b+c ), (2,4a+2b+c ), (-2,4a-2b+c ), (6) 判断2a+b 与2a-b 的正负经常由对称轴与±1的关系确定 二、典型例题 例1 (1) 已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的 位置如图所示,则下列结论中,正确的是( ) A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >0 (2)已知抛物线y=ax 2+bx+c 的图象如图所示,则下列结论:①abc >0;②a+b+c=2; ③a <;④b >1.其中正确的结论是( ) A .①② B .②③ C .③④ D .②④ 例2 二次函数)0(2≠++=a c bx ax y 的图象如图所示,则一次函数 b ax y +=与反比例函数x c y = 在同一平面直角坐标系中的大致图象为( ) 练习:1.如图001是二次函数)0(2≠++=a c bx ax y 的图象,下列判断: ?0b ?0>c ④0<++c b a ⑤02<+b a ,正确的 (填序号) 2.如图002是二次函数)0(2≠++=a c bx ax y 的图象,下列判断: ?042>-ac b ?1>c ?02<-b a ④0<++c b a ⑤)1()(-≠-<+m b a b am m 其中错误的有 (填序号) 3.二次函数)0(2≠++=a c bx ax y 的图象如图所示,则函数x a y =与c bx y +=在同一直角坐标系内的大致图象是( ) 三、课堂小结:谈谈你的收获 四、课下作业 1.如图003是二次函数)0(2≠++=a c bx ax y 的图象一部分,则以下正确的有?a b 2>; ②02=++c bx ax 的两根分别为-3和1;?02<+-c b a ④0=++c b a ⑤08>+c a 其中正确的有 (填序号)

初中数学专题训练--整式方程--含有字母系数的一元一次方程

典型例题一 例01.关于x 的方程b ax =在下列条件下写出解的情况: ①当0≠a 时,解的情况___________. ②当0=a 时,? ??≠=_______. 0._______ 0方程解情况方程解情况b b 分析 对于方程b ax =. ①当0≠a 时,方程有惟一一个解,解为a b x = ; ②当0=a 时,00,0=?=x b . 有无数个解,x 可为任意实数; 当0=a ,0≠b 时,方程无解. 说明 本题是很重要的基础知识. 典型例题二 例02.由22)(b a x b a -=+得b a x -=的条件是______. 分析 因))(()(b a b a x b a -+=+,当0≠+b a 时,.b a x -= 解答 0≠+b a . 说明 0≠+b a 是解本题的关键. 典型例题三 例03.已知d n a a n )1(1-+=,则=n ______. 分析 因d n a a n )1(1-+=,d n a a n )1(1-=-,d a a n n 1 1-=-. 故.11 +-= d a a n n 说明 公式变形实质上就是解含字母已知数的方程. 典型例题四 例04.方程 a b x b a x -=-(b a ≠)的解______. 分析 移项,得 a b b x a x -=-,

.) (a b ab a b x -=- 故 当b a =时,00=?x ,x 可为任何数; 当b a ≠时,0≠-a b ,故.ab x = 解答 .ab x = 说明 解含有字母系数的一元一次方程时,一定要注意用含有字母的式子去乘或除方程的两边时,这个式子不能为零. 因此必须讨论. 典型例题五 例05.已知关于x 的方程1)32(=-x a 的根为负数,则a 的取值范围是_____. 分析 1)32(=-x a ,因为方程有根,所以032≠-a ,a x 321 -= . 又因0<-a a 解答 3 2 >a . 说明 解字母系数方程与解数字系数方程步骤一样. 典型例题六 例06.在 c b a 1 11+=(c b a ,,都是非零实数且b a ≠)中,如果已知b a ,,则=c _______. 分析 原式两边同乘以abc ,得 ab ac bc += 移项 ab c a b =-)((※) ∵b a ≠,∴0≠-a b ∴.a b ab c -= 说明 这里c 是未知数,b a ,是已知字母系数,我们求c 实际上就是解关于c 的一元一次方程. 在中考中部分考生因为搞不清楚谁是已知字母系数,谁是未知数,所以丢掉了目标,就会产生错误. 同时也有考生在解题过程中不运用题给条件b a ≠,得到(※)式后,一步就得a b ab c -=,反映了思维的不周密及要领模糊. 本题即属于公式变形题型. 典型例题七 例07.解关于x 的方程:.k x k h h x +- =-

二元一次方程(组)含参问题

二元一次方程(组)含参问题 二元一次方程(组)中经常会出现含有参数的题目,在解决这类问题之前,我们首先要搞清楚什么是未知数?什么是参数? 二元一次方程(组)中的“元”就是未知数的意思,所谓的“二元”就是两个未知数,我们常用x 、y 、z 来表示。一般来说,初中阶段提及的整式方程或分式方程中,除了未知数以外的字母我们一般把它看作常数(即参数),我们常用m 、k 等表示。 在二元一次方程(组)中含参问题主要包括以下几种: 1.根据定义求参数 什么是一元二次方程?含两个未知数且未知项的最高次数是1的方程。即同时满足以下几个条件的方程就是二元一次方程:①含两个未知数;②未知项的最高次数是1;③等号的左边和右边都是整式。 例题1、若方程2 1 221=++-m n m y x 是二元一次方程,则mn=______. 例题2、已知关于x 、y 的二元一次方程()() ,6342232=++---n m y n m 则m=_______. 备注:除了要满足次数为1,还要满足系数不能为0. 2. 同解类问题 什么是同解?两个方程组一共含有四个一元二次方程,这四个方程的解相同。 例:已知x 、y 的方程组???-=+=-1332by ax y x 和方程组? ??=+=+3321123by ax y x 的解相同,求a 、b 值。 3.用参数表示方程组的解类问题

已知方程组?? ?=+=-k y x k y x 232的解满足x+y=2,则k=________. 4.错解类问题 遇到错解类问题怎么处理?不要讲解代入看错的方程里,代入另外一个方程中去。 例:小明和小红同解一个二元一次方程组???=+=+)2(1)1(16ay bx by ax ,小明把方程(1)抄错,求得解为???=-=3 1y x ,小红 把方程(2)抄错,求得解为? ??==23y x ,求a 、b 的值。 5. 整体思想类 在做一元二次方程组的题目前,先要观察方程组的特点,不要急于直接用参数表示未知数,看一下将两个方程相加或者相减能不能得到我们需要的结论。 例:已知方程组? ??+=++=+15252k y x k y x 的解互为相反数,求k 的值。

特殊的一元二次方程的解法—知识讲解.

一元二次方程及其解法(一) 特殊的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法和因式分解法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法和因式分解法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.

2019届九年级数学下册 小专题(二)二次函数的图象与字母系数的关系练习 (新版)湘教版

小专题(二) 二次函数的图象与字母系数的关系 抛物线y=ax2+bx+c的图象与字母系数a,b,c之间的关系: (1)当a>0时,开口向上,当a<0时,开口向下; (2)若对称轴在y轴的左边,则a,b同号;若对称轴在y轴的右边,则a,b异号;若对称轴为y轴,则b=0; (3)若抛物线与y轴的正半轴相交,则c>0;若抛物线与y轴的负半轴相交,则c<0;若抛物线经过原点,则c=0; (4)当x=1时,y=ax2+bx+c=a+b+c; 当x=-1时,y=ax2+bx+c=a-b+c; 当x=2时,y=ax2+bx+c=4a+2b+c; 当x=-2时,y=ax2+bx+c=4a-2b+c;…;故要比较a+b+c与0的大小,只需看抛物线中横坐标为1的点与x轴的位置关系即可; (5)当对称轴为直线x=1时,x=-b 2a =1,所以-b=2a,此时2a+b=0;当对称轴为直线x=-1 时,x=-b 2a =-1,所以b=2a,此时2a-b=0;判断2a+b大于或小于0,看对称轴与直线x=1的位置关系;判断2a-b大于或小于0,看对称轴与直线x=-1的位置关系; (6)b2-4ac>0?抛物线与x轴有两个交点; b2-4ac=0?抛物线与x轴有一个交点; b2-4ac<0?抛物线与x轴无交点. 1.(xx·深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是(C) A.abc>0 B.2a+b<0 C.3a+c<0 D.ax2+bx+c-3=0有两个不相等的实数根

2.(xx·黔东南)如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,给出下列结论:①b 2 =4ac ;②abc>0;③a>c ;④4a-2b +c >0,其中正确的有(C) A .1个 B .2个 C .3个 D .4个 3.(xx·滨州)如图,若二次函数y =ax 2 +bx +c(a≠0)图象的对称轴为直线x =1,与y 轴交于点C ,与x 轴交于点A ,点B(-1,0),则:①二次函数的最大值为a +b +c ;②a-b +c <0;③b 2-4ac <0;④当y >0时,-1<x <3,其中正确的个数是(B) A .1 B .2 C .3 D .4 4.已知抛物线y =ax 2 +bx +c 的图象如图所示,则|a -b +c|+|2a +b|=(D) A .a +b B .a -2b C .a -b D .3a 5.(xx·达州)如图,二次函数y =ax 2 +bx +c 的图象与x 轴交于点A(-1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2.下列结论:①abc<0;②9a+3b +c >0; ③若点M(12,y 1),点N(52,y 2)是函数图象上的两点,则y 1<y 2;④-35<a <-25 .其中正确的有(D) A .1个 B .2个 C .3个 D .4个 6.(xx·乌鲁木齐)如图,抛物线y =ax 2 +bx +c 过点(-1,0),且对称轴为直线x =1,有下列结论:①abc<0;②

关于含有字母系数方程的解法 (1)

关于含有字母系数方程的解法 知识总结归纳: 含有字母系数的方程和只含有数字系数的一元一次方程的解法是相同的,但用含有字母的式子去乘以或除以方程的两边,这个式子的值不能为零。 公式变形实质上是解含有字母系数的方程 对于含字母系数的方程,通过化简,一般归结为解方程ax b =型,讨论如下: (1)当a ≠0时,此时方程ax b =为关于x 的一元一次方程,解为:x b a = (2)当a =0时,分以下两种情况: <1>若b =0,原方程变为00x =,为恒等时,此时x 可取任意数,故原方程有无数个解; <2>若b ≠0,原方程变为00x b b =≠(),这是个矛盾等式,故原方程无解。 含字母系数的分式方程主要有两类问题:(一)求方程的解,其中包括:字母给出条件和未给出条件:(二)已知方程解的情况,确定字母的条件。 下面我们一起来学习公式变形与字母系数方程 1. 求含有字母系数的一元一次方程的解 例1. 解关于x 的方程236 2ax b bx ac a b -=+≠c () 分析:将x 以外字母看作数字,类似解一元一次方程,但注意除数不为零的条件。 解:去分母得:1226ax bc bx ac -=+ 移项,得1262ax bx bc ac -=+ 2. 求含字母系数的分式方程的解 例2. 解关于x 的方程a ax b b bx a x -++=2 分析:字母未给出条件,首先挖掘隐含的条件,分情况讨论。 解:若a 、b 全不为0,去分母整理,得 对b a 22-是否为0分类讨论: (1)当b a 220-=,即a b =±时,有02?=-x ab ,方程无解。 (2)当b a 220-≠,即a b ≠±时,解之,得x ab a b = -2 若a 、b 有一个为0,方程为12x x =,无解 若a 、b 全为0,分母为0,方程无意义 检验:当x ab a b =-2时,公分母()()ax b bx a -+≠0,所以当ab a b ≠≠±0,时,x ab a b =-2是原方程的解。 说明:这种字母没给出条件的方程,首先讨论方程存在的隐含条件,这里a 、b 全不为0时,方程存在,然后在方程存在的情况下,去分母、化为一元一次方程的最简形式,再对未知数的字母系数分类讨论求解。当a 、b 中只有一个为0时,方程也存在,但无解;当a 、b 全为0时,方程不存在。最后对字母条件归纳,得出方程的解。 3. 已知字母系数的分式方程的解,确定字母的条件 例3. 如果关于x 的方程 a x a b x b +=+11有唯一解,确定a 、b 应满足的条件。 分析:显然方程存在的条件是:a ≠0且b ≠0

含参数的二元一次方程组的解法

含参数的二元一次方程组的解法 二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。现选取几道题略作讲解,供同学们参考。 一、两个二元一次方程组有相同的解,求参数值。 例:已知方程 与 有相同的解, 则a 、b 的值为 。 略解:由(1)和(3)组成的方程组? ??=-=+5235y x y x 的解是 ? ??-=+=21y x 把它代入(2)得 a=14;把它代入(4)得b=2。 方法:是找每个方程组中都是已知数的方程组成新的方程组,得到的解,即是相同的解,再代入另一个方程,从而求出参数的解。 二、根据方程组解的性质,求参数的值。 例2:m 取什么整数时,方程组的解是正整数 略解:由②得x=3y 2×3y-my=6 y=m -66 因为y 是正整数,x 也是正整数所以6-m 的值为1、2、3、6;m 的值为0、3、4、5。 方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。 三、由方程组的错解问题,示参数的值。 例3:解方程组???=-=+872y cx by ax 时,本应解出???-==2 3y x 由于看错了系数c,从而得到解? ??=-=22y x 试求a+b+c 的值。 方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而,求出参数的值。8273=-?-?)(c 2-=c 把???-==23y x 和???=-=2 2y x 代入到ax+by=2中,得到一个关于a 、b 的方程组。 (1) (2) ???=+=+4535y ax y x (3) (4) ???=+=-1552by x y x ① ② ???=-=-0362y x my x

含参数的一元二次方程的整数根问题

含参数的一元二次方程的整数根问题

含参数的一元二次方程的整数根问题 本帖隐藏的内容需要回复才可以浏览 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1 首先,m2-1≠0, m≠±1.Δ=36(m-3)2>0,所以m≠3.用求 根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12,解得m=2.这时x1=6,x2=4. 解法2 首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数 的关系知

所以m2-1=2,3,4,6,8,9,12,18, 24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37, 73, 只有m2=4,9,25才有可能,即m=±2, ±3,±5. 经检验,只有m=2时方程才有两个不同 的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然 的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数 根,求a的值.

分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1, 3,5. 例3 设m是不为零的整数,关于x的二 次方程 mx2-(m-1)x+1=0 有有理根,求m的值.

含字母系数的方程的解法.doc

含字母系数的方程的解法 复习方程及方程的解的概念; 方程: 方程的解: 回顾解一元一次方程的过程 (1)2x 1 10x 3 6 1 1 如果将第(1)题中的10 换成了字母m ,如何解这道关于x 的方程 (2 )2x 1 mx 3 6 1 1 总结:关于x的方程ax b的解与a ,b 之间的关系. 知识巩固 1.判断下列说法的正误. (1)关于x 的方程3x a 0,若a0,则方程无解. () (2)关于x 的方程( a 1) x3有唯一解. () (3)若a 0,b为任意数,关于x 的方程ax b 0有无数个解. () (4)关于x 的方程ax a 的解为x 1 ()(5)若关于x的方程ax b 有唯一解,则a 0且b 0. () 2.填空. (1)已知关于x 的方程ax 3,当a ______ 0时,方程的解是正数,当 a ______ 0时,方程的解是负数,当a ______ 0时,方程无解. (2)当m ______,n ______时,关于x 的方程2m n x 3n 3有无数解.

. x x a 例1.解关于x的方程12 a x 3 2 6 随堂演练 解下列关于x的方程. (1) ax b bx (2) x 3(x 1) kx k 例2.已知关于x的方程a 3x 2 b 2x 3 8x 3b 4有无数解,求 b 的值. 思考题 1.当a , b满足什么条件时,关于x 的方程2a(x 1) 2 3(2 x b) 1 有解? 2.已知关于x 的方程9x 3 kx 14有整数解,求满足条件的整数k 的值. 3. x 1是关于x 的方程ax b 2x 2a 的解,则a ,b满足的条件是什么?

相关文档
最新文档