微生物药物的研究与开发综述

微生物药物的研究与开发综述
微生物药物的研究与开发综述

龙源期刊网 https://www.360docs.net/doc/5b9201599.html,

微生物药物的研究与开发综述

作者:吴佳新

来源:《现代农业科技》2014年第21期

摘要在临床上,微生物药物是一类应用非常广泛的药物,在抗感染、抗肿瘤、血糖调

节、降血脂及器官移植等临床治疗中发挥着重要的作用。该文对微生物药物的发展历程、特点、资源研究及开发等方面进行了论述。

关键词药物;微生物;放线菌;基因组学;研究;研发

中图分类号 Q939.93 文献标识码 A 文章编号 1007-5739(2014)21-0284-02

在临床药物学研发中,针对中药、化学药物及生物技术药物研究较多,而微生物药物方面的研究并不多。随着微生物次级代谢产物研究的增多,有关微生物新药的开发也越来越多,而且微生物药物还具有条件温和、易工业化生产及污染小等优点,加强微生物类药物研究和开发具有现实意义。

1 微生物药物的发展历程

人类认识微生物的历史悠久,但研究微生物药物的历史并不长,尤其是对微生物次生代谢产物方面的药物研究历史更短,至今不过70年。微生物药物中的青霉素是由英国的细菌学家在1929年发现的,20世纪40年代初学者Chain与Florey将青霉素应用到了临床治疗中。随后,从微生物次生代谢产物中发现了庆大霉素、红霉素、螺旋霉素及林可霉素等药物。随着医药学的发展,人们对疾病分子基础与药物作用机制越来越了解,还能在体外构建各类药物筛选的模型,极大地提升了微生物药物研制。微生物所筛选的生理活性物质中,除了抗生素外,在抗肿瘤用药、免疫抑制剂及酶抑制剂等领域也具有很大的药物开发价值。在近70年的微生物药物研究中,科学家从土壤、动物、植物、海洋中获取微生物,还有些微生物来自高寒、高温及高压等极端环境,而人类对微生物的了解仍然较少,还不到3%,在微生物代谢的产物当中,还存在着大量待开发的药物,需要人们进一步研究与开发。

2 微生物药物的特点

微生物药物是指微生物在生命活动过程中,产生的具有生理活性的次生代谢产物及其衍生物。近些年,随着其微生物次生代谢产物生理活性的研究,微生物中靶位确切的多糖及蛋白分子等活性物质被发现[1-2]。次级代谢产物难以用化学法进行合成,即使能合成也无法有效实现工业生产,若把小分子的物质进行化学修饰之后,可获得含有使用价值更高的微生物药物。与化学药物相比,微生物药物具有以下特点:一是微生物的生长周期较短,易选育菌种,易控制,可经大规模发酵进行工业化生产;二是微生物的来源非常丰富,筛选时不用特别考虑先导

抗微生物药大总结

抗微生物药大总结 药学专业知识二·抗生素部分总结1—首选(29,TANG) 口诀1-TANG.青霉素首选 废草溶了长葡萄,白炭破气也能好。勾搭梅毒回归热,青霉素都能治疗。 口诀2-TANG. 红霉素作用百支空军都选红,衣服淋湿也勇猛。 139

口诀3-TANG.抗真菌药名称和首选奶粉浅黄色,水井一定深。 首选: 念珠菌首选氟康唑:打坐念佛。 曲霉菌首选伏立康唑:屈服。 隐球菌病:隐藏两胞胎,然后氟康唑 组织胞浆菌病:组织两面性,伊曲防复发。 口诀4-TANG.抗疟药——乙胺预防伯氨传,氯喹青青发作管

药学专业知识二·抗生素部分总结2 ——典型不良反应(29,TANG) 口诀5-TANG.氨基糖苷类不良反应 耳毒肾毒肌肉毒,过敏仅次青霉素。 140 [口诀TANG——硝基咪唑呋喃唑,双双把头都染绿。 口诀6-TANG.红霉素的不良反应 红霉素类伤胃肠,心肝儿中毒耳受伤。

口诀7-TANG. 四环素类临床应用及不良反应 四环素,治四体,衣支螺立最好记。 普通细菌不能用,霍乱布鲁鼠和兔。 胃肠反应肝受伤,二重感染牙齿黄。 前庭反应光过敏,孕妇儿童徒悲伤。口诀8-TANG. 多肽类药名及不良反应 万古去甲来替考, 杆菌肽多黏菌素。 多黏阴杆余阳性, 140 脖子红了耳肾毒。

口诀9-TANG.氟喹诺酮类不良反应 沙星会把跟腱伤,不满十八不要尝。 血糖乱了心中毒,精神失常怕见光! 口诀10-TANG.氯霉素类不良反应 绿骨灰,多恐怖! 口诀11-TANG.磺胺类不良反应 磺胺最爱跟甲氧,双剑合璧作用大。141 过敏反应最常见,伤肾喝水碱来帮。 抑制骨髓肝中毒,光敏反应切莫忘。

微生物与制药综述范文

微生物制药的研究进展 姓名:李青嵘 班级:生工102 学号:

摘要 本文通过对历史文献的检索,从微生物生产维生素,微生物生产多价不饱和脂肪酸,微生物生产抗生素,微生物生产抗癌物质,微生物生产医用酶制剂等五个方面综述了微生物制药的研究进展。 关键词:微生物,制药,发酵工程 1.前言 随着生物技术的迅猛发展,在医药领域的许多方面取得了巨大的进展.,其中采用微生物制药,具有生产工艺简单,生产成本低廉,产品产量高,产品纯度高,可大规模工业化生产等优势,同样得到了巨大的发展。从传统工艺,如利用发酵工程生产抗生素、酶制剂以及B-胡萝卜素等;到现今的利用转基因技术生产干扰素、胰岛素、生长因子等几十种新药和疫苗。本文着重综述了微生物的发酵工程在医药研究和生产中应用的最近进展,主要包括生产维生素、多价不饱和脂肪酸、抗生素、抗癌物质医用酶制剂等五个方面。 2.研究内容 2.1.微生物生产维生素 维生素是六大生命要素之一, 为整个生命活动所必需。β-胡萝卜素、VC、VE是目前应用最为广泛,效果最为显著的三种维生素,它们的作用分别是:β-胡萝卜素是强力抗氧化剂, 有抑制癌细胞增殖和提高机体免疫力等作用。V C 和V E 均是抗氧化剂, 前者可阻止、破坏自由基形成,还具有激活免疫系统细胞的活力,刺激机体产生干扰素以抵御外来侵染因子。至于VE可产生抗体,增强机体免疫力。目前,上述的“三素”以实现了微生物工业化生产。 目前,β-胡萝卜素主要是由三孢布拉霉菌生产,在1998年,陈涛等[1]已经针对三孢布拉霉菌的特点,优化发酵工艺,在3M3的发酵罐中发酵120h,生产的β-胡萝卜素产量已达到1146.5mg/L。虽然,传统的工艺生产β-胡萝卜素的产量高,生产周期比较短,但是传统的工艺复杂,成本过高,不利于大规模工业化生产。故,目前许多课题组专注于开发新的生产β-胡萝卜素的菌种或改进传统工艺。据近年所发表的期刊文献,目前,采用红酵母发酵生产β-胡萝卜素是一种工艺简单,成本低廉的方法,虽然在产量方面较传统方法的低很多,但是该方法仍具有很大的发展潜力。何海燕等[2]采用粘红酵母R3-35摇瓶发酵84h,生产的β-胡萝

抗微生物药物概论

抗微生物药物概论 化学治疗(化疗)——是指针对所有病原体的药物治疗,病原体包括微生物、寄生虫及肿瘤细胞。

抗微生物药物概论 一、抗微生物药的常用术语 1.抗菌谱:指抗菌药物的抗菌范围,包括广谱抗菌药和窄谱抗菌药; 2.抑菌药:抑制细菌生长繁殖能力的抗菌药物; 3.杀菌药:抑制细菌生长繁殖且有杀灭细菌作用的抗菌药物。 4.化疗指数(CI) 化疗药物安全性评价的指标——化疗指数高表明药物的毒性低、疗效高,使用药物安全度大。 化疗指数=LD50/ED50或LD5/ED95 注意:化疗指数高者并不是绝对安全,如青霉素几乎无毒性,但可引起过敏性休克。 5.抗菌活性:抗菌药物抑制或杀灭微生物的能力。 评价抗菌活性的指标: ——最低抑菌浓度(MIC) ——最低杀菌浓度(MBC) 6.抗生素后效应(PAE):指细菌与抗生素短暂接触,当抗生素浓度下降,低于MIC或消失后,细菌生长仍受到持续抑制的效应。 二、抗菌药物的作用机制

三、抗菌药物分类 抗生素 ●β–内酰胺类 ●大环内酯类 ●林可霉素类 ●多肽类 ●氨基糖苷类 ●四环素类 ●氯霉素类 ●其他… 人工合成抗菌药 ◆喹诺酮类 ◆磺胺类 四、细菌耐药性(抗药性) ——系细菌与药物多次接触后,对药物敏感性下降甚至消失。 (一)细菌耐药性种类 1.固有耐药性 2.获得耐药性 1.固有耐药性 ——是指细菌对某些抗菌药物的天然不敏感,也称天然耐药性。 原因:固有耐药性是由细菌种属特性决定的,如:革兰阴性菌具有外膜通透性屏障,决定了这类细菌对多种药物不敏感。 2.获得耐药性 ——是指由于细菌DNA的改变导致其获得了耐药性的表型。 获得耐药性发生有三种因素。 ①染色体突变; ②质粒介导的耐药性; ③转座因子介导的耐药性。 (二)多药耐药性(MDR) 是指对一种药物具有耐药性的同时,对其他结构不同,作用靶点不同的抗菌药物也具有耐药性。

抗微生物药物概论

抗微生物药物概论 第七篇化学治疗药 抗微生物药物概论 喹诺酮类、磺胺类及其它合成抗菌药物 β-内酰胺类抗生素 大环内酯类、林可霉素及其它抗生素 氨基糖苷类与多粘菌素类抗生素 四环素类及氯霉素类 抗真菌药与抗病毒药 抗结核病药和抗麻风病药 抗疟药 抗阿米巴病药及抗滴虫病药 抗血吸虫和抗丝虫病药 抗肠道蠕虫病药 抗肿瘤药 抗微生物药物概论 化学治疗(化疗)——是指针对所有病原体的药物治疗,病原体包括微生物、寄生虫、甚至肿瘤细胞。 一、抗微生物药的常用术语 1.抗菌谱:指抗菌药物的抗菌范围,包括广谱抗菌药和窄谱抗菌药。 2.抑菌药:抑制细菌生长繁殖能力的抗菌药物。 3.杀菌药:抑制细菌生长繁殖且有杀灭细菌作用的抗菌药物。 4.化疗指数(CI)

化疗药物安全性评价的指标——化疗指数高表明药物的毒性低、疗效高,使用药物安全度大。 化疗指数=LD50/ ED50或 LD5/ ED95 注意:化疗指数高者并不是绝对安全,如青霉素几乎无毒性,但可引起过敏性休克。 5.抗菌活性:抗菌药物抑制或杀灭微生物的能力。 评价抗菌活性的指标: ——最低抑菌浓度(MIC) ——最低杀菌浓度(MBC) 6.抗生素后效应(PAE):指细菌与抗生素短暂接触,当抗生素浓度下降,低于MIC或消失后,细菌生长仍受到持续抑制的效应。 二、抗菌药物的作用机制 三、抗菌药物分类 抗生素 β–内酰胺类 大环内酯类 林可霉素类 多肽类 氨基糖苷类 四环素类 氯霉素类 其他… 人工合成抗菌药

喹诺酮类 磺胺类 四、细菌耐药性(抗药性) ——系细菌与药物多次接触后,对药物敏感性下降甚至消失。 (一)细菌耐药性种类 1.固有耐药性 2.获得耐药性 1.固有耐药性 ——是指细菌对某些抗菌药物的天然不敏感,也称天然耐药性。 原因:固有耐药性是由细菌种属特性决定的,如:革兰阴性菌具有外膜通透性屏障,决定了这类细菌对多种药物不敏感。 2.获得耐药性 ——是指由于细菌DNA的改变导致其获得了耐药性的表型。 获得耐药性发生有三种因素。 ①染色体突变; ②质粒介导的耐药性; ③转座因子介导的耐药性。 (二)多药耐药性(MDR) 是指对一种药物具有耐药性的同时,对其他结构不同,作用靶点不同的抗菌药物也具有耐药性。 多药耐药性是导致抗感染药物治疗失败的重要原因之一,2010年出现的“超级细菌”也是多药耐药性的一种。 细菌的多药耐药性主要与内酰胺酶的变异有关。 (三)细菌耐药性产生的机制 1.药物不能到达其靶位 ①细菌降低外膜的通透性 ——药物不能进入细胞内 ②加强主动排出系统 ——降低药物在菌体内浓度 2.菌体内靶位结构的改变 3.细菌所产生的酶使药物失活(产生灭活酶) 4.代谢拮抗物形成增多 五、抗生素的合理应用 (一)抗菌药临床应用的基本原则 1.诊断为细菌感染者,方有指征使用抗菌药物 2.尽早查明病原菌,根据病原种类及药敏试验结果选用抗菌药物 3.按照药物的抗菌特点及其体内过程特点选择用药 4.制定合理的给药方案

药物综述范文

最近几年来,头孢菌素类抗生素不断问世,但是第一、二、三和四代头孢菌素的抗菌作用与特点亦各异,为了使临床更好和更合理的使用头孢菌素类抗生素,本文重点介绍了头孢呋辛的一些临床应用情况。 头孢呋辛(cefuroxime)为第二代头孢菌素,临床上常使用的片剂是头孢呋辛酯(cefuroxime axetil),注射剂为头孢呋辛钠(cefuroxime sodium)。头孢呋辛对大多数革兰阳性和阴性菌以及部分厌氧菌疗效显著,甚至对耐甲氧西林的产酶株也有一定的效果。同时药物不良反应较低,不仅在临床用于抗感染的治疗,而且在术后抗感染治疗和手术预防感染中疗效非常明显。 1.作用机制与抗菌谱 头孢呋辛作为头孢类抗菌素,主要以共价键的形式结合于细菌转肽酶和羧肽酶,从而通过抑制细胞壁合成,引起细菌细胞壁破损缺陷,导致细菌的死亡。由于它优先抑制青霉素结合蛋白-3(PBP3),在细胞增殖期抑制交联壁的生成,所以它对繁殖期细菌更为有效。 头孢呋辛钠是水溶性的、静脉滴注给药,其7位侧链上接甲肟基,这一特殊的化学结构大大增强了β-内酰胺环母核对酶的稳定性,扩大了抗菌谱,增强了抗菌活性。头孢呋辛酯是头孢呋辛口服有效的前体药物(1-醋酸乙酯),口服后被胃肠道吸收,经肠粘膜或血中非特异性酯酶水解后释放出头孢呋辛而发挥其抗菌作用。 头孢呋辛对革兰阳性菌及绝大多数革兰阴性菌有较强的抗菌活性。它对金黄色葡萄球菌(包括耐青霉素者)、表皮葡萄球菌、流感杆菌、化脓性链球菌、大肠杆菌、梭状芽胞杆菌、奇异变形杆菌、伤寒杆菌、痢疾杆菌、沙门菌、奈瑟球菌属(包括产β-内酰胺酶者)、克雷白菌属、肠杆菌属、志贺菌及百日咳杆菌等,有很强的抗菌作用。对普通变形杆菌、脆弱拟杆菌有中等强度抗菌作用,但对绿脓杆菌无效。 头孢呋辛酯体外抗菌活性的研究显示[1],头孢呋辛酯对甲氧西林敏感的金葡菌、表葡菌、肺炎球菌、化脓性链球菌、草绿色链球菌、莫氏卡他球菌及大肠杆菌和痢疾志贺氏菌等,敏感率均在90%以上;对于甲氧西林耐药的金葡菌和链球菌,以及肠球菌、阴沟肠杆菌、变形杆菌和不动杆菌等其MIC90值多介于32~128mg.L-1之间,见表1。 2.药代动力学特征 头孢呋辛具有良好的药代动力学特征,体内吸收良好,组织分布广泛。张婴元[2]等人报道:8名健康志愿者,年龄20~43岁,平均体重55.81kg,每日分3次给药每次头孢呋辛钠0.75g,分别采用肌肉注射;静脉推注(5%葡萄糖溶液40ml稀释后10min内注完);静脉滴注0.75g(溶于5%葡萄糖溶液100ml于30min内滴注完)。每次给药后分别于不同时间采取血、尿标本,采用微生物琼脂弥散法测定血、尿药物浓度。血药数据经计算机拟合,进行药代动力学参数计算。结果表明:头孢呋辛钠静注及静滴0.75g后血药峰浓度分别为32.14,89.06和63.11mg.L-1。肌注峰浓度于给药后20~45min内到达,平均达峰时间为0.47h,静注与静滴即刻可达峰值浓度。肌注、静注和静滴的消除半衰期(T1/2β)分别为1.48,1.05和1.19h。肌注吸收迅速而完全,生物利用度达98.89%。实验证实各种给药途径的表观分布容积(Vd)为0.34~0.37L.kg-1,资料显示该药可分布于胸水、关节腔液、胆汁、痰液、骨组织,在脑膜炎时可进入脑脊液中,并可分布于房水中。头孢呋辛钠以肌注、静注及静滴给药后,大部份药物以原形自药中排泄,24h内分别排出给药量的91.61%,96.30%和97.66%。肌注后尿中排出较静脉给药略微缓慢,尿峰浓度可达2,000mg.L-1左右,8h后仍可超过50mg.L-1。 8名化脓性脑膜炎新生儿静滴头孢呋辛钠25mg.kg-1后,2h后取50ml脑脊液测定,达峰浓度75.22±12.97mg.L-1,12h后达峰浓度6.95±1.70mg.L-1,消除半衰期3.70±0.37h,表观分布容积0.34±0.05L.kg-1,消除率0.079±0.016kg.h.L-1,脑脊液浓度为4.95±2.8mg.L-1,为同期血药浓度的11±6.1%,表明了头孢呋辛钠在新生儿体内维持有效浓度时间较长,脑

抗微生物药物概述

抗微生物药物概论 [基本内容] 化疗、抗菌药物、抗菌谱、抗菌活性、抑菌药、杀菌药、化疗指数和抗菌后效应等概念。抗菌药物的作用机制。细菌耐药性及其产生机制。抗微生物药物的合理应用。 [基本要求] 掌握:抗菌谱、抗菌活性、抑菌药、杀菌药、化疗指数及抗菌后效应的概念;抗菌药物的作用机制。 了解:细菌的耐药性和抗微生物药物的合理应用。 一、基本概念 化学治疗(简称化疗): 是指用化学药物抑制或杀灭机体内的病原微生物(包括病毒、支原体、衣原体、立克次体、细菌、螺旋体、真菌)、寄生虫及恶性肿瘤细胞,消除或缓解由它们所引起的疾病。所用的药物简称化疗药物。 抗菌药物: 由生物包括微生物(如细菌、真菌、放线菌)、植物和动物在内,在其生命活动过程中所产生的,能在低微浓度下有选择地抑制或影响其他生物功能的有机物质---抗生素及由人工半合成、全合成的一类化学药物的总称。 抗菌谱:每种药物抑制或杀灭病原菌的范围,分为广谱抗菌药和窄谱抗菌药。 抗菌活性:抗菌药物抑制或杀灭病原菌的能力。 抑菌药:仅有抑制病原菌生长、繁殖而无杀灭作用的药物。 最低抑菌浓度(MIC):抑制培养基内细菌生长的最低浓度。 杀菌药:不仅能抑制而且能杀灭病原菌的药物。 最低杀菌浓度(MBC):杀灭培养基内细菌(即杀死99.9%供试微生物)的最低浓度。化疗指数: 评价药物的安全性,通常用某药的动物半数致死量(LD50)与该药对动物的半数有效量(ED50)的比值来表示。 抗菌后效应(PAE): 当抗菌药物和细菌接触一定时间后,药物浓度逐渐下降,低于最小抑菌浓度或药物全部排出以后,仍然对细菌的生长繁殖继续有抑制作用,此种现象称为抗菌后效应。

微生物药物的研究与开发综述

龙源期刊网 https://www.360docs.net/doc/5b9201599.html, 微生物药物的研究与开发综述 作者:吴佳新 来源:《现代农业科技》2014年第21期 摘要在临床上,微生物药物是一类应用非常广泛的药物,在抗感染、抗肿瘤、血糖调 节、降血脂及器官移植等临床治疗中发挥着重要的作用。该文对微生物药物的发展历程、特点、资源研究及开发等方面进行了论述。 关键词药物;微生物;放线菌;基因组学;研究;研发 中图分类号 Q939.93 文献标识码 A 文章编号 1007-5739(2014)21-0284-02 在临床药物学研发中,针对中药、化学药物及生物技术药物研究较多,而微生物药物方面的研究并不多。随着微生物次级代谢产物研究的增多,有关微生物新药的开发也越来越多,而且微生物药物还具有条件温和、易工业化生产及污染小等优点,加强微生物类药物研究和开发具有现实意义。 1 微生物药物的发展历程 人类认识微生物的历史悠久,但研究微生物药物的历史并不长,尤其是对微生物次生代谢产物方面的药物研究历史更短,至今不过70年。微生物药物中的青霉素是由英国的细菌学家在1929年发现的,20世纪40年代初学者Chain与Florey将青霉素应用到了临床治疗中。随后,从微生物次生代谢产物中发现了庆大霉素、红霉素、螺旋霉素及林可霉素等药物。随着医药学的发展,人们对疾病分子基础与药物作用机制越来越了解,还能在体外构建各类药物筛选的模型,极大地提升了微生物药物研制。微生物所筛选的生理活性物质中,除了抗生素外,在抗肿瘤用药、免疫抑制剂及酶抑制剂等领域也具有很大的药物开发价值。在近70年的微生物药物研究中,科学家从土壤、动物、植物、海洋中获取微生物,还有些微生物来自高寒、高温及高压等极端环境,而人类对微生物的了解仍然较少,还不到3%,在微生物代谢的产物当中,还存在着大量待开发的药物,需要人们进一步研究与开发。 2 微生物药物的特点 微生物药物是指微生物在生命活动过程中,产生的具有生理活性的次生代谢产物及其衍生物。近些年,随着其微生物次生代谢产物生理活性的研究,微生物中靶位确切的多糖及蛋白分子等活性物质被发现[1-2]。次级代谢产物难以用化学法进行合成,即使能合成也无法有效实现工业生产,若把小分子的物质进行化学修饰之后,可获得含有使用价值更高的微生物药物。与化学药物相比,微生物药物具有以下特点:一是微生物的生长周期较短,易选育菌种,易控制,可经大规模发酵进行工业化生产;二是微生物的来源非常丰富,筛选时不用特别考虑先导

Gut综述用药需谨慎-药物与肠道微生物群之间的相互作用

人体肠道微生物群是一个复杂的生态系统,可以调节宿主与环境的相互作用。肠道微生物与常用非抗生素药物之间的相互作用是复杂的和双向的:肠道微生物群的组成可以受到药物的影响,但反之亦然,肠道微生物群也可以通过酶促改变药物的结构并改变其生物利用度、生物活性或毒性(药物微生物学)来影响个人对药物的反应。在癌症治疗中,肠道微生物群也可以间接影响个体对免疫治疗的反应。了解微生物群是如何代谢药物和降低治疗效果的,将开启调节肠道微生物群以改善治疗的可能性。 一、肠道微生物与药物 许多常用的非抗生素药物会改变微生物群的组成和功能。还有数据表明,肠道微生物群可以通过酶促改变药物的结构并改变其生物利用度、生物活性或毒性,直接影响个人对特定药物的反应--这一现象现在被称为药用微生物(图1)。肠道微生物群可以通过影响宿主的一般免疫状态来间接影响个体在癌症治疗中对免疫治疗的反应。

图1 肠道微生物群和常用非抗生素药物之间不同相互作用的示意图概述 1.1 影响肠道微生物菌群的内因和外因 基于人类队列的分析表明,肠道生态系统的动态性质反映了宿主与生活方式、饮食、生态和其他因素的复杂相互作用。数以百计的内在和环境因素影响着健康人的肠道菌群,包括饮食、药物、吸烟、生活方式、宿主遗传和疾病。在所有的环境因素中,常用药物在肠道生态系统中起着特别重要的作用。 1.2 人群肠道菌群组成与常用药物的相关性研究

人类队列研究报告了特定药物的使用与改变的微生物组成和功能特征之间的关联。荷兰LifeLines- DEEP队列研究报告了42种常用药物中的19种与微生物的相关性。除了抗生素,许多人类靶向的非抗生素药物都与微生物组成的变化有关。与微生物群相关的药物包括PPI、降脂他汀类药物、泻药、二甲双胍、β-受体阻滞剂和ACE抑制剂,以及选择性5-羟色胺再摄取抑制剂抗抑郁药,在比利时佛兰芒队列和TwinsUK队列中也观察到了类似的关联(表1)。 二、影响肠道菌群的常用药物 2.1质子泵抑制剂(PPI) PPIs是世界上最常用的药物之一,用于治疗胃酸相关疾病,以及预防非甾体丙氨酸炎性药物引起的胃十二指肠病和出血。尽管药物不良反应(ADR)的相对风险很低,但全球PPI使用者的高数量意味着ADR患者的绝对数量可能仍然很高。来自荷兰的大规模基于人群的研究表明,PPI是与肠道微生物群多样性减少和分类变化最相关的药物。这项分析表明使用PPI的人高达20%的细菌分类群的相对丰度发生了改变(或减少或增加)。在一项分析1827对双胞胎粪便样本的16S 数据的研究中,也观察到了类似的结果,表明微生物多样性较低,肠道共生体的丰度也较低。 总体而言,PPI使用者粪便样本的分类变化显示,肠道共生菌数量减少,口腔细菌数量增加。另一项使用了宏基因组测序的研究表明,PPI与24个分类群和133条路径显著相关。预测的功能变化包括脂肪酸和脂质生物合成的增加,发酵烟酰胺腺嘌呤二核苷酸(NAD)的代谢,L-精氨酸的生物合成和嘌呤脱氧核糖核苷的降解。PPIs引起的胃酸降低被认为是观察到的微生物变化的原因,因为它使口腔

微生物学 SIV综述

Active Report: SIV疫苗研究进展与HIV疫苗展望 王仲承0930******* 【摘要】 获得性免疫缺陷综合症(Acquired Immune Deficiency Syndrome,AIDS)是一种由人类免疫缺陷病毒(Human Immunodeficiency Virus, HIV)导致的至今无有效疗法的致命性传染病,自它被人类确认以来,已经导致6500万人被感染,其中约250万人死亡。HIV是一种能攻击人体免疫系统的慢病毒。它把人体免疫系统中最重要的T4淋巴组织作为攻击目标,大量破坏T4淋巴组织,产生高致命性的内衰竭。这种病毒在地域内终生传染,破坏人的免疫平衡,而导致各种疾病及癌症得以在人体内生存,最终导致艾滋病,患者常因多种复合并发症而死。一直以来,科学家致力于通过研制一款可靠疫苗来阻止或延缓这场“世纪瘟疫”的蔓延。而SIV病毒作为学术界公认的HIV病毒“先祖”,对其可靠疫苗的研究也是今年生物学医学的研究热点。本文意在总结近年来SIV疫苗研究进展和对HIV疫苗未来研究的展望。 【关键词】 AIDS;HIV; SIV;病毒学; 微生物学; 免疫学; 疫苗 【正文】 1 HIV背景介绍 1.1 艾滋病与HIV病毒简介 艾滋病,即获得性免疫缺陷综合症(又译:后天性免疫缺陷症候群),英语缩写AIDS(Acquired Immune Deficiency Syndrome),是一种人畜共患疾病,由人体注射感染了“人类免疫缺陷病毒”(HIV, Human Immunodeficiency Virus)(又称艾滋病病毒)所导致的传染病。。HIV 是一种能攻击人体免疫系统的病毒。它把人体免疫系统中最重要的T4淋巴组织作为攻击目标,大量破坏T4淋巴组织,产生高致命性的内衰竭。这种病毒在地域内终生传染,破坏人的免疫平衡,使人体成为各种疾病的载体。HIV本身并不会引发任何疾病,而是当免疫系统被HIV破坏后,人体由于抵抗能力过低,丧失复制免疫细胞的机会,并感染其它的疾病导致各种疾病复合感染而死亡。HIV分为两型:HIV-1型和HIV-2型,HIV-1的致病性较HIV-2强,而且已经在全球各个国家蔓延。而HIV-2的毒性较弱一些,仅限于在非洲西海岸传播。艾滋病病毒在人体内的潜伏期平均为9年至10年,在发展成艾滋病病人以前,病人外表看上去正常,他们可以没有任何症状地生活和工作很多年,超长的潜伏期使得艾滋病作为一种传染病具备了极强的扩散性。发病后的艾滋病病人因抵抗能力极度下降会出现多种感染,如带状疱疹、口腔霉菌感染、肺结核,特殊病原微生物引起的肠炎、肺炎、脑炎,念珠菌,肺囊虫等多种病原体引起的严重感染等,后期常常发生恶性肿瘤,直至因长期消耗,全身衰竭而死亡。

微生物综述

微生物在环境治理方面的应用现状及展望 周江维 (浙江理工大学材料与纺织学院,09包装工程(1)班,杭州310018) 摘要:在我们生活的这个星球上,微生物可以说是无处不在。人类与微生物相处了相当长的一段时间,然而并没有真正重视微生物,直到17世纪显微镜的出现让人类真正观察到了微生物。随着人类观察手段的不断进步,越来越多的微生物走入人类的视野,人类对微生物的认识也不断深化。人类对微生物的深入了解,使得我们能够很好的利用微生物有利的一面避免有害的一面,环境问题作为现代社会一个很突出的问题越来越受到人们的重视,微生物为环境治理带来了新的希望。微生物在环保方面的大有作为离不开对它们进一步的研究,弄清微生物治理环境的原理是进一步利用它们的前提。 关键词:微生物环境治理污染修复现状可持续发展 1、微生物修复技术 1.1 微生物修复的原理 生物修复包括微生物修复、植物修复、菌根修复等,其中微生物修复在众多领域中得到了广泛的应用。微生物修复是指微生物将土壤、地下水和海洋中的有害物质“就地”降解成二氧化碳和水,转化为无毒、无害物质的方法。实际上,大多数环境中都存在着天然微生物降解净化有毒有害污染物质的过程,只是自然条件下的微生物净化速度比较慢,因此能够被广泛应用到环境保护中。微生物修复大多都是在人为的条件下进行的,通过提供氧气,添加各类营养物质,接种经过驯化培养的高效菌株等强化修复过程,迅速去除污染物质,这就是微生物修复的基本原理。 微生物修复技术是指通过微生物的作用清除土壤和水体中的污染物,或是使污染物无害化的过程。它包括自然和人为控制条件下的污染物降级或无害化的过程。 在自然修复的过程(natural attenuation)中,利用土著微生物(indigenous microorganism)的降解能力,但需要以下条件: (1) 有充分和稳定的地下水流; (2) 有微生物可利用的营养物质; (3) 有缓冲pH的能力; (3) 有使代谢能够进行的电子受体。 如果缺少一项条件,将会影响微生物修复的速率和程度。 对于外来化合物,如果污染新近发生,很少会有土著微生物能降解它们,所以需要加入有降解能力的外源微生物(exogenous microorganism)。人为修复工程一般采用有降解能力的外源微生物,用工程化手段来加速生物修复的进程,这种在受控条件下进行的生物修复又称强化生物修复(enhanced bioremediation)或工程化的生物修复(engineered bioremediation)。工程化的生物修复一般采用下列手段来加强修复的速率: (1) 生物刺激(biostimulation)技术,满足土著微生物生长所需要的条件,诸如提供电子受体、供体氧以及营养物等; (2) 生物强化(bioaugmentation)技术需要不断地想污染环境投入外源微生物、酶、其他生长基质或氮、磷无机盐。 1.2 微生物修复技术的分类

微生物综述

微生物学综述 微生物的定义 微生物是包括细菌、病毒、真菌以及一些小型的原生动物、显微藻类等在内的一大类生物群体,它个体微小,却与人类生活关系密切。涵盖了有益有害的众多种类,广泛涉及健康、食品、医药、工农业、环保等诸多领域。 微生物的特点 1.体积小,比表面积大。 2.吸收多,转化快。 3.生长旺,繁殖速。 4.适应性强,易变异。 5.分布广,种类多。 微生物工程的应用范围 ⑴医药工业,⑵食品工业,⑶能源工业,⑷化学工业,⑸农业:改造植物基因;生物固氮;工程杀虫菌生物农药;微生物饲料。⑹环境保护等方面。 微生物对发酵也有重大影响。微生物发酵即是指利用微生物,在适宜的条件下,将原料经过特定的代谢途径转化为人类所需要的产物的过程。微生物发酵生产水平主要取决于菌种本身的遗传特性和培养条件。酒类,醋酱,油,酸奶,面包面包,各类罐头,各种果汁,啤酒,饮料等,都是由发酵产生。微生物发酵又分为:微生物菌体发酵,微生物酶发酵,微生物代谢产物发酵,微生物的转化发酵。 著名科学家的成就 巴斯德 微生物学家巴斯德,为微生物学的建立和发展做出了卓越的贡献。主要集中在下列三个方面:①巴斯德的玻瓶彻底否定了“自然发生”学说(“自生说”是一个古老学说,认为一切生物是自然发生的)。并从此建立了病原学说,推动了微生物学的发展。②免疫学——预防接种。1877年,巴斯德研究了鸡霍乱,预防了鸡霍乱病。又研究了牛、羊炭疽病和狂犬病,并首次制成狂犬疫苗,证实其免疫学说。 ③证实发酵是由微生物引起的。证实酒精发酵是由酵母菌引起的,还发现乳酸发酵、醋酸发酵和丁酸发酵都是不同细菌所引起的。 巴斯德消毒法(60~65℃作短时间加热处理,杀死有害微生物的一种消毒法)和家蚕软化病问题的解决。 柯赫 柯赫是著名的细菌学家,突出的贡献:①具体证实了炭疽病菌是炭疽病的病原菌;②发现了肺结核病的病原菌,获得了诺贝尔奖;③提出了证明某种微生物是否为某种疾病病原体的基本原则——柯赫原则。 微生物学的发展

微生物概述

微生物概述 (一)微生物(microorganism, microbe)的概念 微生物是指广泛存在于自然界,体形微小,具有一定形态结构,能在适宜的环境中生长繁殖以及发生遗传变异的一大类微小生物。 包括属于原核类的细菌、放线菌、支原体、立克次氏体、衣原体和蓝细菌(过去称蓝藻或蓝绿藻),属于真核类的真菌(酵母菌和霉菌)、原生动物和显微藻类,以及属于非细胞类的病毒、类病毒和朊病毒等。 (二)微生物的特点 1、种类多、分布广:现在已经知道的微生物有十万种左右;微生物在土壤中的数量最多,据统计,一克土壤中含有几千万到几百亿的微生物。 2、个体小、胃口大:每毫克大肠杆菌细胞的表面积比每毫克人细胞的表面积大30万被左右;积极活动 的大肠杆菌,每小时能消耗它体重2000倍的乳糖; 3、繁殖速、转化快:细菌一般每20~30分钟既可分裂一次;生产味精的谷氨酸短杆菌,在52小时内细 胞数目增加了32亿倍;乳酸菌每小时可产生为其体重1000~10000倍的乳酸;一种产朊假丝酵母合成蛋白质的能力是大豆的100倍,比食用公牛强10000倍; 4、适应强、变异易:一九四三年分离到的青霉素产生菌,在每毫升发酵液中只能分泌20单位左右的青 霉素,通过60多年来的不断育种,加上其他条件的改进,目前每毫升已经超过10万单位。 (三)微生物的分类: 1、按微生物的作用分:有用的(污水外理)、无害的(肠道菌丛)、有害的(引起腐烂)、危 险的(致病菌)。 2、按革兰氏染色反应分: 3、按温度分:嗜冷菌、嗜温菌(金葡球菌)、嗜热菌(芽孢杆菌) 4、按PH分:嗜酸菌(乳酸杆菌)、嗜中性菌(芽孢杆菌)、嗜硷菌(弧菌) 5、按食物来源分:自养型和异养型 6、按对氧气的需求分类:需氧菌和厌氧菌 7、按形态人结构分:主要分细菌、真菌、病毒。人们研究得最多、也较深入的主要有细菌、放线 菌、蓝细菌、枝原体、立克次氏体、古菌、真菌、显微藻类、原生动物、病毒、类病毒和朊病毒等。 现择要介绍:细菌放线菌霉菌酵母菌病毒及其产物 各类微生物简介 (一)细菌: 1、细菌是一类细胞细而短、结构简单、细胞壁坚韧,以二等分裂方式繁殖的原核微生物,分布广泛。 2、细菌菌落常表现为湿润、粘稠、光滑、较透明、易挑取、质地均匀以及菌落正反面或边缘与中 央部位颜色一致等。细菌的菌落特征因种而异。可作为鉴定细菌种的依据。 (二)放线菌 ?放线菌的形态、大小和结构 1、放线菌的形态比细菌复杂些,但仍属于单细胞。在显微镜下,放线菌呈分枝丝状,我们把这些细 丝一样的结构叫做菌丝,菌丝直径与细菌相似,小于1微米。菌丝细胞的结构与细菌基本相同。 2、根据菌丝形态和功能的不同,放线菌菌丝可分为基内菌丝、气生菌丝和孢子丝三种。链霉菌属是 放线菌中种类最多、分布最广、形态特征最典型的类群,其形态如下图所示。

微生物综述

大肠杆菌耐药机制研究进展 摘要:大肠杆菌对常用抗菌药物的耐药机制十分复杂,主要包括产生灭活抗生素的酶、改变靶位蛋白、减少药物的摄取吸收(细胞外膜通透性的改变、细菌药物外排泵)及质粒介导的耐药性等。而且大肠杆菌对抗生素的耐药问题是当前国内外研究的热点,本文将对其产生耐药性的研究进展做一综述。 关键词:大肠杆菌;耐药性;作用机制 致病性大肠杆菌是人类和动物临床上最常见的病原之一,是威胁人类和动物健康的重要致病菌。大肠杆菌具有可产生β-内酰胺酶和通过接触传播耐药基因的特征,加之在大肠杆菌疾病的防控过程中抗生素广泛盲目滥用,大肠杆菌耐药株引起的感染在临床上不但有增多趋势,而且其耐药性还通过质粒在细菌间传递耐药基因而不断蔓延与突变。使耐药形势越来越严峻。因此,大肠杆菌耐药性问题引起世界广泛关注。 1.致病性大肠杆菌对抗生素的耐药现状 自1929年弗来明发现青霉素以来,伴随着抗生素和化学抗菌剂的开发使用,各种病原菌对抗菌药物的耐药也日趋严重,而且1940年Abyaham和chain从大肠杆菌体内分离和鉴定出了一种能水解青霉素的酶,至此,人们才了解到即使未使用抗生素之前,大肠杆菌就存在着耐药性。后来科学家们发现大肠杆菌可通过耐药因子或R质粒在细菌间传递耐药性的因子。而且家畜源大肠杆菌耐药性对于一些临床常用抗生素,普遍出现耐药,如阿莫西

林、链霉素等,对某些抗生素的耐药率可达90%以上。出现大量多重耐药株,部分多重耐药株可耐10 多种抗菌药物。同时研究发现到野生动物携带了耐药大肠杆菌,说明耐药大肠杆菌已经向环境扩散,由于野生动物流动性较大,尤其是野生鸟类,又易于将耐药大肠杆菌传递给家畜,在一定程度上加速耐药大肠杆菌和耐药基因的扩散。 2.大肠杆菌的耐药机制 根据细菌耐药性的起源,可将其分为两类:一类为固有耐药,即耐药性的产生并不依赖于抗菌药物的存在,而是细菌细胞所固有的,与细菌的遗传和进化密切相关。固有耐药性是细菌稳定的遗传特性,它受细菌染色体DNA 控制并且是同属细菌的共同特征,固有耐药性包括自发基因突变导致的耐药性和细胞膜药物外输作用引起的耐药性。另一类为获得性耐药性,是指细菌在抗菌药物选择性压力存在下经过基因突变或细菌在生长过程中由于移动耐药因子的转移而获得的一种表型。其移动因子包括质粒、转座子、整合子和噬菌体。获得性耐药性主要包括移动因子和抗菌药压力作用下引起基因突变所导致的耐药性[1]。抗生素耐药可以通过各种机制产生,包括以下几个方面: 2.1产生灭活抗生素的酶 大肠杆菌可以产生酶加工修饰进入菌体内的抗生素,使抗生素失活,提高菌体的耐药性。如可以灭活β-内酰胺类药物的β-内酰胺酶、超广谱β内酰胺酶,可以使氨基糖苷类药物失活的氨基糖苷

微生物文献综述附参考文献

乳酸菌在生产中的应用及其鉴定方法 摘要:乳酸菌指发酵糖类主要产物为乳酸的一类无芽孢、革兰氏染色阳性细菌的总称。其在食品工业的应用具有悠久的历史,也是一种宝贵的微生物资源, 和我们的健康息息相关。本文介绍了乳酸菌在实际生产中的应用,以及目前研究中发现适用于乳酸菌的鉴定技术。 关键词:乳酸菌应用鉴定 Abstract: Lactic acid bacteria refer to a class of non - spore, gram positive bacteria, which is the main product of lactic acid. It have been applied in food industry for a long time and are valuable resource of microorganisms, which closely related to our health. The application of lactic acid bacteria in the practical production and the identification technology of the present research were introduced. Keywords: Lactic acid bacteria Application identification 1.前言 乳酸菌指发酵糖类主要产物为乳酸的一类无芽孢、革兰氏染色阳性细菌的总称,是一个广义范畴的概念而非正式的细菌分类学名称。乳酸菌可以分成18个属, 共有200多种。乳酸菌的功能主要有: 改善人体肠道功能, 恢复人体肠道内菌群平衡, 增强人体免疫能力, 抑制腐败菌的生长, 降低胆固醇, 抗氧化, 抗高血压, 抗肿瘤, 保藏食品, 改善食品风味等。人们要利用乳酸菌,就需要了解它们的生物学特性,因此对乳酸菌进行快速、准确的分类与鉴定在微生物学和食品科学的研究中是必需的。目前,有根据细菌的表型性特征分类的传统方法,随着分子生物学的发展,出现了一些基因型方法用来鉴定乳酸菌。 2.乳酸菌的应用 2.1改善产品风味 乳酸菌利用可发酵性糖产生酸味柔和的乳酸同时, 还产生丙酸、醋酸等有机酸, 它们在赋予产品酸味的同时, 还与乳酸发酵过程中产生的酸、醇、酮等物质相互作用, 形成新的呈味物质, 改善制品风味。因而经乳酸发酵的食品都具有其独特的风味[1]。 乳酸菌的营养作用具体有: (1)发酵后产生的乳酸可提高钙、磷、铁的利用率, 促进铁和VD 的吸收; (2)乳酸菌中乳糖酶活力高, 乳糖分解后的发酵乳更适合各种人群食用, 所产生的半乳糖, 可促进婴儿脑的迅速成长; (3)乳酸菌具有磷酸蛋白酶, 能将乳中的α- 酪蛋白分解成微细的奶酪脂肪肽和氨基酸等, 从而提高了蛋白的消化吸收率; (4)发酵乳的脂肪呈微细的脂肪球,易于消化, 且因分解了脂质, 使非脂化的脂肪酸大大增加; (5)双歧杆菌能高水平地合成多种维生素(VB1、VB1、VB6、烟酸等), 而且能分泌到胞外培养液中[2]。 2.2改善胃肠道功能 乳酸菌进入肠道后, 即在肠内进行繁殖, 抑制病原菌和有害人体健康的细菌的繁殖, 从而起到预防感染, 维持肠内菌群的平衡[3]。乳酸菌的代谢产物乳酸和醋酸对病原性微生物有拮抗作用。保加利亚乳杆菌、嗜酸乳杆菌和乳酸乳杆菌所产生的H2O2 也有明显的抑菌效果。乳酸菌还能分泌能抑制生病原菌的细菌素, 如双岐杆菌、嗜酸乳杆菌和乳酸链球菌素等对多种革兰阳性菌,包括葡萄球菌、链球菌、微球菌、分支杆菌和斯特氏菌、乳杆菌均有抑制作用。 2.3增强免疫力 乳酸杆菌在调节免疫反应中发挥重要的作用。Chuang 等[4]研究了热灭活乳酸菌对免疫功能的作用,调查了这些灭活乳酸菌刺激小鼠树突状细胞DCST细胞的反应。结果表明, 这些灭活乳酸菌能刺激细胞增殖和白细胞介素IL-10, IL-12 P70, 干扰素IFN-γ的产生, 并使T 细胞TH 分泌升高。目前, 越来越多的研究使用乳酸菌作为疫苗抗原, 杀菌剂和治疗粘膜运载工具。疫苗根据重组乳酸菌打破肠道的免疫耐受, 以引发保护性免疫反应。Beatriz 等[5]通过

微生物综述

微生物综述 HIV基因结构及其疫苗研究进展 生命科学学院 2010级 李红星学号2010010886 前言 艾滋病危及全世界, 成为本世纪难以治疗的病毒病。病原体是反转录病毒科的人免疫缺陷病毒.AIDS又叫获得性免疫缺陷综合症, 是由于机体感染后造成细胞免疫缺陷, 抗感染能力下降, 以致伴有机会感染、恶性肿瘤及神经障碍等症候群的统称. HIV感染到发病为止,大约需一年。这期间大致经过四个过程。无症状带毒者、持续性全身淋巴结肿、AIDS相关症候群最后发展成 AIDS。1983年5月法国巴氏德研究所Montagnier等从ARC患者多发性病变淋巴结分离出HIV-1,1986 年4 月Montagnier 等又分离出HIV-2 .目前, 在世界范围内流行的以HIV-1为主。由于分子生物学和生物技术的发展, 在短短的10 多年中, 已基本上搞清了HIV 结构及其大致的功能。 一HIV基因的结构 HIV属反转录病毒科慢病毒属灵长类慢病毒群,有外膜的单股、双基因组RNA。HIV粒子的形态,1型和2型完全相同。粒子是直径为110nm球型。HIV—1基因组的5‘端有帽结构,3’端有多聚腺苷酸poly(A)序列,如果去掉poly(A),基因组全长为9100碱基。基因组RNA附着于核蛋白,反转录酶和核衣壳蛋白形成圆锥型核心。核心的外侧为脂质双层组成的外膜,膜上有穿膜蛋白gp41和膜外蛋白gp120,外膜内测为基质蛋白等。

1.HIV的结构蛋白:?包膜蛋白:含外膜蛋白和跨膜蛋白,信号肽。?核心蛋白:在细胞内合成,包括p24、pl7和pl2三种结构蛋白、RNA逆转录酶、蛋白酶和整合酶。 2.HlV基因组: HIV基因组为单股正链RNA二倍体,每条RNA链长约9.8kb,两条链的5’端借氢键形成二聚体。与其他逆转录病毒相同,HIV的基因结构从5’端到3’端依次为5’LTR-gag-pol-env-3’LTR。5’端有帽状结构m7G5ppp5GmpNp,3’端有polyA序列。除三个编码结构蛋白的基因gag、pol、env外,HIV还有 1 / 6 较其他逆转录病毒更多的调节基因(regulatory gene)和附加基因(accessory gene),其编码的的调节蛋白在病毒的整个感染及复制过程中具有非常重要的作用,目前已发现至少有7种:tat、rev、nef、vpr、vpu、vpx和vif。 (1)(长未端重复序列: HIV基因组两端的长未端重复序列(long terminal repeat, LTR)不编码病毒产物,对于病毒基因表达的起始和调节至关重要,其上有许多细胞转录因子的结合位点,可分为调节单位、核心转录单位和反式激活效应元件单位(TAR)三个不同的调控功能区。 (2)( Gag基因: 即组特异性抗原基因,编码分子量为55KD的前体蛋白(P55),由未拼接的病毒mRNA表达。P55经病毒蛋白酶切割,由N端至C端形成P17、P24、P15三种蛋白。P17称为基质蛋白(MA),附着于病毒脂质又层膜的内侧,形成毒粒的内膜,起稳定毒粒的作用。P24称及壳蛋白,形成病毒的锥形核。P15进一步被裂解为P9和P7两种核壳蛋白,与病毒的RNA结合。 (3)( Pol基因:

第三十三章 抗微生物药概述

第三十三章抗微生物药概述 一、A,型题 1.下列有关药物、机体、病原体三者之间关系的叙述,错误的是() A.药物对机体有防治作用和不良反应 B. 机体对病原体有抵抗能力 C.机体对药物有耐药性 D.药物对病原体有抑制或杀灭作用 E.病原体对药物有耐药性 2.化学治疗药的概念是() A.治疗各种疾病的化学药物 B.治疗恶性肿瘤的化学药物 C.人工合成的化学药物 D.防治病原微生物引起感染的化学药物 E.防治细菌感染、寄生虫病和恶性肿瘤的药物 3.化疗指数是指() A.ED50/LD50 B.ED90/LD10 C.LD50/ED50 D. LD90/ ED10 E.ED95/LD5 4.下列何种抗菌药物属于抑菌药() A.大环内酯类&头孢菌素类 C.多黏菌素萎 D.氨基苷类 E.青霉素类 5.对细菌耐药性的叙述,正确的是() A.细菌毒性大 B.细菌与药物多次接触后,对药物敏感性下降甚至消失 c.细菌与药物一次接触后,对药物敏感性下降 D.是药物不良反应的一种表现 E.是药物对细菌缺乏选择性 6.抗菌药物联合应用的目的在于() A.提高疗效,扩大抗菌谱 B.防止或延缓产生耐药性 C.减少药物剂量 D.降低药物的毒性及不良反应 E.以上都包括 7.抗结核病药联合应用的主要原因是() A.提高疗效B.防止或延缓耐药性产生 C.减少药物剂量D.减轻药物不良反应 E.扩大抗菌谱 二、X型题 8.下列何种情况不宜常规预防性应用抗菌药物() A.感冒患者 B.病毒感染者 C.昏迷者 D.胸腹部手术后 E.休克患者 9.细菌产生耐药性的机制包括() A.产生灭活酶B.降低细菌胞浆膜通透性 C细菌改变周围环境的pH D.细菌改变药物作用的靶位 E.细菌改变自

抗微生物药物

抗微生物药物 第一节概述 抗微生物药物主要包括抗细菌药,抗真菌药和抗病毒药三大类。抗细菌药,按其来源主要有三种:①抗生素;②半合成抗生素;完全由人工合成的抗微生物药物,这类药物一般不成为抗生素,主要包括磺胺类,喹诺酮类和硝基呋喃类。 一、作用机制 各个类别的抗细菌药作用机制有所不同,如下表: 主要抗细菌药的类别与作用机制

二、用药原则 合理应用抗生素应遵循安全有效经济的原则,严格掌握适应症,严格控制预防用药,根据不同的病原体,不同的生理情况,不同的感染部位等,有针对性的选用药物。 (一)严格掌握适应症。 应用抗生素的适应症是根据临床和细菌学可确定的细菌感染。以下几种情况不提倡使用抗生素:①无明显感染证的发热者。②确定病毒性感染,未发生继发性或混合性细菌感染者。③昏迷、脑血管意外、糖尿病,肿瘤病人,使用免疫抑制剂或接受非污染侵入性操作术者,一般不预防性使用抗生素。自身免疫病人不宜使用β-内酰胺类抗生素以及抗结核药,以免引起基础病症状的加重。 (二)严格控制预防用药。 目前临床上对抗细菌药物的预防应用往往缺乏指征,有些预防性用药适得其反,如用抗生素来预防昏迷、休克病人的肺部感染,应用后,不仅肺炎发生率为降低,相反肺炎发生时常可因致病菌高度耐药而不易被控制。所以抗生素的预防性用药应充分权衡利弊,严格控制。下列预防应用通常被认为是合理的。①对已被确认,但尚处于潜伏期的感染。②防止某些感染的复发。③防止某些不可避免的继发性感染或并发症。 (三)合理选用药物 一,根据不同的病原体,合理选用药物。 抗生素最终是作用于病原体而产生疗效的,因此医生应对致病菌的种类以及耐药情况有充分的分析,并根据其敏感程度选药,尽量避免盲目用药。通常在有条件的地区,对怀疑感染的病人应尽快采集标本,送培养并作涂片、革兰染色找菌,必要时做细菌敏感实验。根据所得信息,有针对性的选用药物。在乡村往往没有这样的条件,这就需要医生对各种致病菌的好发部位、临床表现,细菌对抗生素敏感度及耐药情况有比较深入的了解。这样才能在未获得准确检验结果的情况下,也能做出基本正确的判断与处理。 二,根据病人不同的生理情况,合理选用药物。 三,根据不同的感染部位,合理使用药物。 根据不同感染部位选用药物,具有两方面的意义:一方面不同部位的感染通常由特定的病原体引起,通过感染部位和临床表现,可以初步估计致病菌有利于选用有效的抗细菌药物;另一方面应考虑药物在体内的分布情况,药物在感染部位能否达到有效浓度。如β-内酰胺类抗生素较难穿透血-肺或血-支气管屏障,在治疗肺部感染时,需要较大剂量才能在病灶达到有效浓度。

相关文档
最新文档