PVA聚合工艺流程

PVA聚合工艺流程
PVA聚合工艺流程

第一章醋酸乙烯的溶液聚合工艺流程醋酸乙烯溶液聚合的工艺流程如图51所示。

首先把一定量的甲醇加入引发剂配制槽1中,开动搅拌器,再把称量好的偶氮二异丁腈徐徐投入,继续搅拌,待完全溶解后,取样分析偶氮二异丁腈的浓度。如果浓度达不到 1.2%,再补加甲醇或偶氮二异丁腈,浓度合格后,放入引发剂贮槽2中。为了防止高温下偶氮二异丁腈的分解,贮槽2的夹套通入-7℃的冷冻盐水保冷。引发剂溶液用双柱塞计量泵3连续加入预热器4。

图51 醋酸乙烯溶液聚合工艺流程图

1—引发剂配制槽2—引发剂贮槽3—定量泵4—预热器5—第一聚合釜6、8—尾气冷凝器9—第二聚合釜7、10—泵11—脱单体塔12—第二精馏塔

溶剂甲醇用泵也连续加入预热器4,其量用仪表自动调节。

单体醋酸乙烯经过流量自动调节后,也连续加入预热器4中。

预热器4为立式,内有五层泡罩式塔板,并且带有夹套。开车时,夹套内通水蒸汽,把三种物料加热到60℃,然后流入第一聚合釜5。正常运转中,夹套内蒸汽停止。聚合过程中产生的热量,把甲醇蒸发。甲醇蒸汽从聚合釜上升至预热器4中,在此与物料直接接触,甲醇冷凝放出热量把物料加热。在预热器中没有

冷凝的甲醇蒸汽继续上升至尾气冷凝器6中,用地下水冷却,甲醇冷凝液回流至

1

聚合釜5中,未凝气通过氮封(或液封)排至大气。

年产一万吨的聚乙烯醇聚合装置,聚合釜为两个系列(也可以为一个系列,聚合釜大,这里不再重复介绍),每个系列有两台串联的聚合釜。第一聚合釜5直径1.8米,筒体部分高4米,全容积10米3。聚合釜带有上下两段夹套。下段夹套开车时通水蒸汽或热水升温,正常运转时,可停止通蒸汽或热水。上段夹套在正常运转中通冷却水,把聚合釜上面空间的甲醇、醋酸乙烯蒸汽部分冷凝下来。第一聚合釜带有搅拌器,它由两根直径300毫米的不锈钢管和横梁组成。两根立管的中心距聚合釜的中心距离不等,一个为400毫米,另一个为744毫米。搅拌器转动时,由于两根立管的回转半径不同,一根管走大圆,另一根管走小圆,这样可使物料搅拌均匀,传热效果好,温度分布均匀。回转半径大的立管还起刮壁的作用,防止聚合物粘壁。搅拌器设有下轴承,保证搅拌器在转动中稳定。搅拌器的转速为每分钟8转。聚合釜的材质为1Cr18Ni9Ti不锈钢。第一聚合釜5的液面一般控制在2.7米高,上面还有1.3米高的空间。当釜内发生爆聚时,物料呈沸腾状态,这部分空间起缓冲作用,防止物料通过上升管流至预热器中。聚合釜上设有安全板(爆破膜),为椭圆形铝板,有十字形刻痕、耐压 1.5~2公斤/厘米2。当聚合过程发生爆聚,釜压上升,达到一定压力时,安全板破裂,将压力泄出,可以保护聚合釜的安全。

物料在第一聚合釜5中进行引发(诱导期约为20分钟)和初聚合,聚合率约20%。

在聚合釜内,除了醋酸乙烯的聚合反应外,还进行下列副反应:

VAC+CH3OH—→CH3COOCH3+CH3CHO

VAC+H2O—→CH3COOH+CH3CHO

副反应所生成的乙醛,能够从回流液中分析出来。在第一聚合釜的回流液中,开车初期为0.1%左右,正常运转时为0.03~0.06%左右;第二聚合釜的回流液中,开车初期乙醛含量约0.25%左右,正常盍中约为0.08~0.1%左右。开车初期乙醛含量大,因为新的不锈钢表面有杂质,促使了乙醛的生成。经过一段时间的运转,不锈钢表面钝化,乙醛生成量下降。

2

物料在第一聚合釜的平均停留时间110分钟。从第一聚合釜底部出来的物料,用齿轮泵7打入第二聚合釜9。在泵7出口设有至第一聚合釜5的旁通管,并装有调节阀,来调节第一聚合釜的液面。为了减少回流物料与新物料的混合,也可以把此旁通管接至泵7入口。

第二聚合釜的结构与第一聚合釜相似,筒体部分高6米,全容积15米3,搅拌器转速每分钟5.2转。液面控制3.9米高,物料平均停留时间160分钟,醋酸乙烯的聚合率达50%左右。聚合热也靠甲醇和醋酸乙烯的蒸发带出,蒸汽在尾气冷凝器8中用地下水冷凝,凝液再回流至第二聚合釜9中。

总聚合率可以通过改变聚合时间和引发剂用量来调节。引发剂量每次改变不应太大,一般为2升/小时。

从第二聚合釜底部出来的物料为聚醋酸乙烯的甲醇溶液,还含有未聚合的醋酸乙烯单体,用齿轮泵10连续打入第一精馏塔11中。泵10出口同样设有旁通管和调节阀,用来调节第二聚合釜的液面。

为了降低第二聚合釜至第一精馏塔管道中物料的粘度,降低第一精馏塔内物料的粘度,泵10出口的管道上连续加入一定量的稀释甲醇。

第一精馏塔11也叫脱单体塔,直径2.1米,40块泡罩塔板,加料板在30块。该塔的作用是把未聚合的醋酸乙烯单体从塔顶脱出,使塔釜的聚醋酸乙烯甲醇溶液中含的醋酸乙烯单体尽量少,因为醋酸乙烯在后面的醇解过程中能与甲醇反应生成乙醛,而乙醛在碱的作用下能够缩合,缩乙醛渗杂在聚乙烯醇中使它发黄。工艺要求醋酸乙烯的吹出率大于99.68%。因为该塔直径较大,物料粘稠,所以采用径向溢流结构,这样可以减少塔的阻力和降低液面梯度。该塔顶部还加入工艺水,它不仅有利于醋酸乙烯的吹出,还可以控制塔底聚醋酸乙烯甲醇溶液中的含水量,工艺水加入量一般为聚醋酸乙烯量的0.1倍左右。该塔的热源为塔底吹入的甲醇蒸汽。在开车初期,由塔底再沸器加热使甲醇汽化。正常运转时,可由回收工段甲醇精馏塔顶的甲醇蒸汽不经冷凝直接吹入,这样可节省大量水蒸汽和冷却水。

第一精馏塔塔顶馏出物为醋酸乙烯,甲醇和水的共沸物其组成如表73所示。

3

第一精馏塔的馏出液加入第二精馏塔12。塔顶加入第三组份水,改变醋酸乙烯和甲醇的相对挥发度,破坏了共沸组成,以达到分离的目的。第三组份这里采用水,从图52可看出,加入水后醋酸乙烯的气液平衡曲线向上弯曲,水愈多,向上弯曲愈大,分离也就愈容易。使用水作为萃取溶剂,选择性好,不与甲醇和醋酸乙烯起化学反应,无腐蚀性,无毒性,价格便宜;使用水的另一优点是它能与醋酸乙烯形成共沸物,冷凝冷却后,水和醋酸乙烯能够分层,相互溶解度小(见图53)很容易把水和醋酸乙烯分开。萃取水加入量为醋酸乙烯量的1.1倍(重),分子分率为0.23%左右。

表73 第一精馏塔馏出液组成

表74 第一精馏塔操作条件

第二精馏塔12塔顶蒸出的醋酸乙烯和水,在冷凝器内冷凝冷却后,进入分层器13。分层器为卧式,带夹套,通-7℃的冷冻盐水,使物料保持在5℃左右,以降低醋酸乙烯和水的相互溶解度。上层为醋酸乙烯,含水小于1%,还含有1.7%左右的醋酸甲酯、0.5%左右的乙醛,送往蒸馏工段,除去醋酸甲酯、乙醛等杂质4

后,再用于聚合。下层为水,含醋酸乙烯2~3%,用泵全部打回流,做为萃取水的一部分。

图52 醋酸乙烯—甲醇汽液平衡图

图53 醋酸乙烯—水的相互溶解度

因为萃取水的温度约30℃,而塔顶的温度要维持65℃,必须有一部分蒸汽在塔顶冷凝下来,使水温从30℃升至65℃,冷凝下来的这一部分液体叫做内回流,内回流比约为0.41,所以在正常操作时,不需要外回流。

二塔釜液为35%左右的甲醇水溶液,送往回收工段第三精馏塔,与回收工段的甲醇水溶液合并后进行精馏。

表75为第二精馏塔的操作条件。

5

尼龙6聚合工艺

尼龙6聚合工艺

PA6聚合生产技术 本文叙述了国外PA6聚合生产工艺与设备,介绍了几种常用的聚合方法及特点,并进行了对比。德国Zimmer公司,Kart Fischer公司,瑞士 Inventa 公司,意大利Noy公司,德国Aqufil公司等的工艺技术设计合理,所生产的产品质量较好,分子量分布均匀。其设备特点是在聚合管内广泛采用静态混合器或整流器。萃取塔采用狭缝式结构,干燥塔采用热氮气干燥,聚合过程采用DCS集散系统控制,生产过程全部连续化。 关健词:PA6聚合先进工艺比较 1938年,德国的P Schlack发明了已内酰胺聚合制取聚已内酰胺(PA6)和生产纤维的技术,并于1941年投入工业化生产。迄今,已内酰胺聚合工艺在长达半个多世纪的生产过程中,经历了从小容量到大容量,从间歇聚合到连续聚合,设备结构不断改进、完善,工艺技术日趋合理、成熟。本文就国外几个有代表性的公司所设计的PA6聚合工艺及设备的特点作一综合性的介绍。

1、PA6聚合方法 随着新技术的发展,PA6生产装置(包括切片萃取、干燥和废料回收)已进入大型化、连续化,自动化的高科技之列。PA6聚合技术有代表性的公司有德国Zimmer公司,Kart Fischer公司,Didier公司,Aqufil公司,瑞士 Inventa公司,意大利Noy公司,以及日本东丽、龙尼吉卡公司等。其聚合工艺根据产品用途不同而有几种不同的方法,表1列出了德国吉玛公司有关VK管能力、单耗、质量指标及切片用途等参数。 表1Zimmer公司PA6聚合工艺参数

*不包括回收的已内酰胺 -

1.1常压连续聚合法 该方法用于生产PA6民用丝。NOY公司特点:采用大型VK管(○1440mm×1690mm)连续聚合,聚合温度260℃,时间20h。热水逆流萃取切片中残余单体及低聚物、氮气气流干燥、DCS集散系统控制,单体回收采用萃取水连续三效蒸发浓缩,间断蒸馏浓缩液工艺。具有生产连续化、产量高、质量好、占地面积少的特点。是当前世界普遍采用的生产民用丝PA6切片的典型工艺。 1.2二段聚合法 该法由前聚合与后聚合二个聚合管组成,主要用于生产高粘度的工业帘子布用丝。二段聚合法又分为前聚合高压、后聚合常压;前聚合加压、后聚合减压;前、后聚合均为常压三种方法。在三种方法中从聚合时间及产物中含单体和低聚体量等比较则以加压、减压聚合法最好(但设备投资大,操作费用最高),高压、常压次之,前、后聚合均为常压最差(但设备投资最省,操作费用最低)、巴陵石化

PMMA溶液聚合生产工艺

PMMA溶液聚合生产工艺 摘要:本文阐述了用MMA溶液聚合法生产PMMA的工艺特点以及各种添加剂的作用,对于PMMA的生产具有指导意义。 关键词:溶液聚合工艺 用MMA生产PMMA的聚合方法有本体法、悬浮法、乳液法和溶液法。前三种聚合法早已在国内外实现工业化生产,而我公司的溶液法生产模塑料则是由美国聚合物技术公司 开发的新工艺。 1 工艺简述 本溶液聚合法生产工艺包括下列几个工段 1.1 进料及添加剂制备 本工段包括三个单独的系统即单体制备和循环进料系统;第一级反映器进料、进料添加剂混合制备系统;添加剂制备系统。 1.2 聚合脱挥发和循环回收 脱气的进料单体和循环液经过连续计量和过滤进入第 一级反映器。在第一级反映器中部分聚合的物料用第泵连续输送到第二级反应器。脱挥发器是在真空下操作,用以脱除

熔融粘稠聚合物中的未反应单体和溶剂。脱除的溶剂和未反应的单体经进化冷凝,然后循环回到进料脱器系统进而进入第一级反应器。 用聚合物挤压泵将聚合物从脱挥发器中经过静态混合器送入精制线。 1.3 精制 经过脱挥发后熔融的聚合物经聚合物挤压泵从脱挥发室中泵出,由尾线添加剂计量泵将尾线添加剂注入到熔融的聚合物中。 熔融的聚合物从模头送到造粒系统,颗粒在一个振动的三网分离器中分出等级,将粉尘和较大的颗粒除掉,追终产品颗粒被输送到颗粒运输和储存工段。 1.4 导热油系统 导热油系统为装置提供所需的全部热量。 2 溶液聚合法生产工艺特点 ①原料及能量消耗少,生产成本低。 ②生产稳定性和安全性好。 ③公司的溶剂聚合工艺通过控制进料比例和使用高浓度溶剂,有效地控制了反应速度并能及时移出反映热,提高了该工艺的安全程度。 ④通过选择组分和操作条件,保证了在容器壁上或输送管线中不会有聚合物积存。

甲基丙烯酸甲酯的悬浮聚合实验报告

甲基丙烯酸甲酯的悬浮聚合实验报告 实验十四甲基丙烯酸甲酯的悬浮聚合一、实验目的 1.掌握高分子悬浮聚合的原理和特点。2.掌握通过悬浮聚合法制备聚甲基丙烯酸甲酯的操作过程。二、实验原理悬浮聚合是将溶有引发剂的单体在强烈搅拌和分散剂的作用下,以液滴状悬浮在水中而进行的聚合反应方法。悬浮聚合的体系组成主要包括谁难溶性的单体、油溶性引发剂、水和分散剂四个基本成分。聚合反应在单体液滴中进行,从单个的单体液滴来看,其组成及聚合机理与本体聚合相同,因此又常称小珠本体聚合。若所生成的聚合物溶于单体,则得到的产物通常为透明、圆滑的小圆珠;若所生成的聚合物不溶于单体,则通常得到的是不透明、不规整的小粒子。悬浮聚合反应的优点是由于有水作为分散介质,因而导热容易,聚合反应易控制,单体小液滴在聚合反应后转变为固体小珠,产物易分离处理,不需要额外的造粒工艺,缺点是聚合物包含的少量分散剂难以除去,可能影响到聚合物的透明性、老化性能等,此外,聚合反应用水的后处理也是必须考虑的问题。三、主要仪器与试剂(1)仪器装有搅拌器、冷凝管、温度计的三颈瓶(1 套),恒温水浴(1 套),量筒(10mL、100 mL 各1 支),抽滤装置计(1 套),。(2)试剂甲基丙烯酸甲酯(MMA,10mL),蒸馏水(60mL),过氧化苯甲酰(BPO,0.07g),1%聚乙烯醇水溶液(20mL)。第2 页共3 页四、流程图、实验步骤及现象(1)流程图搅拌加热

40mL水调节搅拌速度升温至(78±2)℃,反应约1.5h 升温至70℃2mL1%聚乙烯醇水溶液反应20mL水两次洗涤盛单体的容器所得液体预先已溶解引发剂的甲基丙烯酸甲酯10mL 抽滤洗涤、风干称重珠状物滤液聚合物(2)实验装置图(3)实验步骤及现象实验步骤实验现象 1. 在装有搅拌器、冷凝管、温度计的三颈瓶中,依次加入2mL 1%的聚乙烯醇水溶液、40mL 水,搅拌加热(注意温度不要超过70℃)。加入预先已溶解引发剂的甲基丙烯酸甲酯 l0mL,再用剩余的20mL 水分两次洗涤盛单体的容器,并倒人三颈瓶内,加料完毕后升温至70℃。搅拌加热开始后,不久溶液渐渐变浊,出现油状小液滴。第3 页共3 页 2. 小心调节搅拌速度,观察单体液滴大小,调至合适液滴大小后,保持搅拌速度恒定,将反应温度升至(78±2)℃。反应约1.5h 后,用滴管吸取少量珠状物,冷却后观察是否变硬。若变硬,可减慢或停止搅拌,若珠状物全部沉积,可在缓慢搅拌下升温至85℃继续反应1h,以使单体反应完全。珠状物为硬的白色小珠;减慢搅拌速度,珠状物出现全部沉积现象;在缓慢搅拌下升温至85℃,溶液中珠状物无粘结现象。3. 停止反应,将产物抽滤,聚合物珠粒用水反复洗涤几次后,置于表面皿中自然风干,观察聚合物珠粒形状,称重,计算产率。产物抽滤抽滤后大部分为白色珠状物,形状较小较均匀。五、讨论悬浮聚合是将单体以微

16700吨年PVC悬浮聚合工艺设计讲解

16700吨/年PVC悬浮聚合工艺设计 摘要 【本设计是悬浮法生产聚氯乙烯(年产16700万吨)的工艺初步设计。该设计包括设计说明书和设计图纸两部分。设计说明书主要包括聚氯乙烯概述、制聚氯乙烯工艺方案的选择论证、悬浮法制聚氯乙烯的流程说明、工艺流程中助剂的选择及相关设备的选型等内容,对悬浮法的工艺流程有一个较为详细的描述。设计图纸则包括工艺流程图。】 关键词:悬浮法; 聚氯乙烯; 工艺流程说明

Design of 16700 tons PVC suspension polymerization process ABSTRACT 【The design for the 16700 tons of PVC polymerization process design throughout the design file is composed by two parts of the design specification and design drawings. In the design manual, a brief introduction of PVC production status, development trends, performance, and the main purposes highlighted by suspension polymerization as the polymerization process production methods. In the design process, according to the requirements of the design task book to conduct a more detailed material balance and heat balance and the the polymerizer calculation process calculation and selection of equipment, a simple techno-economic evaluation of the entire device . Drawing of the design drawings, design drawings including process flow diagram of the polymerization reactor assembly drawing】 KEYWORDS:PVC,suspension polymerization process,production process

悬浮聚合

苯乙烯的珠状聚合 一、实验目的 1. 了解悬浮聚合的反应原理及配方中各组分的作用。 2. 了解珠状聚合实验操作及聚合工艺的特点。 3. 通过实验,了解苯乙烯单体在聚合反应上的特性。 二、实验原理 悬浮聚合是指在较强的机械搅拌下,借悬浮剂的作用,将溶有引发剂的单体分散在另一与单体不溶的介质中(一般为水)所进行的聚合。根据聚合物在单体中溶解与否,可得透明状聚合物或不透明不规整的颗粒状聚合物。像苯乙烯、甲基丙烯酸酯,其悬浮聚合物多是透明珠状物,故又称珠状聚合;而聚氯乙烯因不溶于其单体中,故为不透明、不规整的乳白色小颗粒(称为颗粒状聚合)。 悬浮聚合实质上是单体小液滴内的本体聚合,在每一个单体小液滴内单体的聚合过程与本体聚合是相类似的,但由于单体在体系中被分散成细小的液滴,因此,悬浮聚合又具有它自己的特点。由于单体以小液滴形式分散在水中,散热表面积大,水的比热大,因而解决了散热问题,保证了反应温度的均一性,有利于反应的控制。悬浮聚合的另一优点是由于采用悬浮稳定剂,所以最后得到易分离、易清洗、纯度高的颗粒状聚合产物,便于直接成型加工。 可作为悬浮剂的有两类物质:一类是可以溶于水的高分子化合物,如聚乙烯醇、明胶、聚甲基丙烯酸钠等。另一类是不溶于水的无机盐粉末,如硅藻土、钙镁的碳酸盐、硫酸盐和磷酸盐等。悬浮剂的性能和用量对聚合物颗粒大小和分布有很大影响。一般来讲,悬浮剂用量越大,所得聚合物颗粒越细,如果悬浮剂为水溶性高分子化合物,悬浮剂相对分子质量越小,所得的树脂颗粒就越大,因此悬浮剂相对分子质量的不均一会造成树脂颗粒分布变宽。如果是固体悬浮剂,用量一定时,悬浮剂粒度越细,所得树脂的粒度也越小,因此,悬浮剂粒度的不均匀也会导致树脂颗粒大小的不均匀。 为了得到颗粒度合格的珠状聚合物,除加入悬浮剂外,严格控制搅拌速度是一个相当关键的问题。随着聚合转化率的增加,小液滴变得很粘,如果搅拌速度太慢,则珠状不规则,且颗粒易发生粘结现象。但搅拌太快时,又易使颗粒太细,因此,悬浮聚合产品的粒度分布的控制是悬浮聚合中的一个很重要的问题。掌握悬浮聚合的一般原理后,本实验仅对苯乙烯单体及其在珠状聚合中的一些特点作一简述。苯乙烯是一个比较活泼的单体,易起氧化和聚合反应。在贮存过程中,如不添加阻聚剂即会引起自聚。但是,苯乙烯的游离基并不活泼,因此,在苯乙烯聚合过程中副反应较少,不容易有链支化及其它歧化反应发生。链终止方式据实验证明是双基结合。另外,苯乙烯在聚合过程中凝胶效应并不特别显著,在本体及悬浮聚合中,仅在转化率由50%~70%时,有一些自动加速现象。因此,苯乙烯的聚合速度比较缓慢,例如与甲基丙烯酸甲酯相比较,在用同量的引发剂时,其所需的聚合时间比甲基丙烯酸甲酯多好几倍。

悬浮聚合的生产工艺

悬浮聚合的生产工艺 一、悬浮聚合的概念 悬浮聚合是指溶有引发剂的单体,借助悬浮剂的悬浮作用和机械搅拌,使单体以小液滴的形式分散在介质水中的聚合过程。溶有引发剂的一个单体小液滴,就相当于本体聚合的一个小单元,因此,悬浮聚合也称为小本体聚合。悬浮聚合中的主要组分是单体、引发剂、悬浮剂介质(水)。 二.悬浮聚合的分类 悬浮聚合可根据单体对聚合物溶解与否,将其分为均相悬浮聚合和非均相悬浮聚合。 1、均相悬浮聚合 如果聚合物溶于其单体中,则聚合物是透明的小珠,该种悬浮聚合称为均相悬浮聚合或称珠状聚合。如苯乙烯的悬浮聚合和甲基丙烯酸的悬浮聚合等为均相悬浮聚合。 2、非均相悬浮聚合 如果聚合物不溶于其单体中,聚合物将以不透明的小颗粒沉淀下来,该种悬浮聚合称为非均相悬浮聚合或称沉淀聚合。如氯乙烯、偏二氯乙烯、三氟氯乙烯和四氟乙烯的悬浮聚合等为非均相悬浮聚合。 三、悬浮聚合法的主要特点 (1)以水为介质,成本低; (2)反应过程中反应体系粘度变化不大,反应热容易排除;

(3)颗粒大小可以控制在一个较小范围内; (4)所得树脂纯度较溶液聚合、乳液聚合高; (5)悬浮聚合产物易于分离、洗涤、干燥; (6)悬浮聚合过程采用间歇法进行生产,尚未实现连续化。 四、悬浮聚合的应用 悬浮聚合自30年代工业化以来,已成为聚合物生产的重要聚合方法。目前其产量占聚合物总产量1/5~1/4。采用悬浮聚合进行生产最大的聚合物品种是聚氯乙烯,其在所有塑料品种中占第二位。其他用悬浮聚合法生产的聚合物品种还有:可发性聚苯乙烯(EPS)、苯乙烯—丙烯腈共聚物(SA树脂)、聚甲基丙烯酸甲酯(PMMA)及其共聚物、聚偏二氯乙烯(PVDC)、聚四氟乙烯PTFE)、聚三氟氯乙烯(PCTFE)等。 五、悬浮聚合的组分 悬浮聚合的组分主要是单体、引发剂、悬浮剂和介质(水)。有时为了改进产品质量和工艺操作还加入一些辅助物料,如相对分子质量调节剂、表面活性剂以及水相阻聚剂等。 1、单体:单体纯度高,聚合速率快,产品质量好,生产 容易控制。因此,要求对单体进行精制,使其纯度达 到要求才聚合。杂质对聚合速度和产品质量可能产生 下列影响。 (1)、杂质的阻聚作用和缓聚作用 有些杂质是自由基聚合的阻聚剂或缓聚剂,使聚合反

乳液聚合合成及生产工艺.

乳液聚合 班级:高分0942 姓名:冯会科学号:200910211239 乳液聚合(emulsion polymerization)是在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。乳液聚合是高分子合成过程中常用的一种合成方法。 乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的0.2%~0.5%,引发剂为单体的0.1%~0.3%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。 乳液聚合的发展 自由基聚合反应是聚合物生产中应用最为广泛的方法之一,乳液聚合则是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要有单体、水、乳化剂和引发剂四种基本组分构成。 乳液聚合技术萌生于上世纪早期,一般公认最早见于文献的是德国Bayer公司的H.Hofmann的一篇关于异戊二烯单体水乳液的聚合专利。30年代见于工业生产,40年代Harkins定性地阐明了在水中溶解度很低的单体乳液聚合机理。后来,Smith和Ewart,建立了定量的理论,提出了乳液聚合的三种情况及乳液聚合过程的三个阶段,即乳胶粒生成阶段(阶段I)、乳胶粒长大阶段(阶段II)及乳液聚合完成阶段(阶段III),这一理论被视为乳液聚合的经典理论。此后乳液聚合成为研究热点。 随着乳液聚合理论的发展,乳液聚合技术也在不断的发展和创新。关于常规乳液聚合目前研究主要集中在:多组分乳液聚合体系的研究、合成高固含量的乳胶、反应型乳化剂的使用等方面。另外,在传统乳液聚合工艺的基础上,目前国内外已开发出无皂乳液聚合、细乳液聚合、反相乳液聚合、分散聚合和微乳液聚合等新的聚合工艺。从本质上来说,这些新的聚合技术与乳液聚合有着共同的特征,即都是分隔体系的聚合反应,有着共同的一些优点。 乳液聚合—聚合机理

PVA聚合工艺流程

第一章醋酸乙烯的溶液聚合工艺流程醋酸乙烯溶液聚合的工艺流程如图51所示。 首先把一定量的甲醇加入引发剂配制槽1中,开动搅拌器,再把称量好的偶氮二异丁腈徐徐投入,继续搅拌,待完全溶解后,取样分析偶氮二异丁腈的浓度。如果浓度达不到 1.2%,再补加甲醇或偶氮二异丁腈,浓度合格后,放入引发剂贮槽2中。为了防止高温下偶氮二异丁腈的分解,贮槽2的夹套通入-7℃的冷冻盐水保冷。引发剂溶液用双柱塞计量泵3连续加入预热器4。 图51 醋酸乙烯溶液聚合工艺流程图 1—引发剂配制槽2—引发剂贮槽3—定量泵4—预热器5—第一聚合釜6、8—尾气冷凝器9—第二聚合釜7、10—泵11—脱单体塔12—第二精馏塔 溶剂甲醇用泵也连续加入预热器4,其量用仪表自动调节。 单体醋酸乙烯经过流量自动调节后,也连续加入预热器4中。 预热器4为立式,内有五层泡罩式塔板,并且带有夹套。开车时,夹套内通水蒸汽,把三种物料加热到60℃,然后流入第一聚合釜5。正常运转中,夹套内蒸汽停止。聚合过程中产生的热量,把甲醇蒸发。甲醇蒸汽从聚合釜上升至预热器4中,在此与物料直接接触,甲醇冷凝放出热量把物料加热。在预热器中没有 冷凝的甲醇蒸汽继续上升至尾气冷凝器6中,用地下水冷却,甲醇冷凝液回流至 1

聚合釜5中,未凝气通过氮封(或液封)排至大气。 年产一万吨的聚乙烯醇聚合装置,聚合釜为两个系列(也可以为一个系列,聚合釜大,这里不再重复介绍),每个系列有两台串联的聚合釜。第一聚合釜5直径1.8米,筒体部分高4米,全容积10米3。聚合釜带有上下两段夹套。下段夹套开车时通水蒸汽或热水升温,正常运转时,可停止通蒸汽或热水。上段夹套在正常运转中通冷却水,把聚合釜上面空间的甲醇、醋酸乙烯蒸汽部分冷凝下来。第一聚合釜带有搅拌器,它由两根直径300毫米的不锈钢管和横梁组成。两根立管的中心距聚合釜的中心距离不等,一个为400毫米,另一个为744毫米。搅拌器转动时,由于两根立管的回转半径不同,一根管走大圆,另一根管走小圆,这样可使物料搅拌均匀,传热效果好,温度分布均匀。回转半径大的立管还起刮壁的作用,防止聚合物粘壁。搅拌器设有下轴承,保证搅拌器在转动中稳定。搅拌器的转速为每分钟8转。聚合釜的材质为1Cr18Ni9Ti不锈钢。第一聚合釜5的液面一般控制在2.7米高,上面还有1.3米高的空间。当釜内发生爆聚时,物料呈沸腾状态,这部分空间起缓冲作用,防止物料通过上升管流至预热器中。聚合釜上设有安全板(爆破膜),为椭圆形铝板,有十字形刻痕、耐压 1.5~2公斤/厘米2。当聚合过程发生爆聚,釜压上升,达到一定压力时,安全板破裂,将压力泄出,可以保护聚合釜的安全。 物料在第一聚合釜5中进行引发(诱导期约为20分钟)和初聚合,聚合率约20%。 在聚合釜内,除了醋酸乙烯的聚合反应外,还进行下列副反应: VAC+CH3OH—→CH3COOCH3+CH3CHO VAC+H2O—→CH3COOH+CH3CHO 副反应所生成的乙醛,能够从回流液中分析出来。在第一聚合釜的回流液中,开车初期为0.1%左右,正常运转时为0.03~0.06%左右;第二聚合釜的回流液中,开车初期乙醛含量约0.25%左右,正常盍中约为0.08~0.1%左右。开车初期乙醛含量大,因为新的不锈钢表面有杂质,促使了乙醛的生成。经过一段时间的运转,不锈钢表面钝化,乙醛生成量下降。 2

尼龙66聚合过程与工艺

尼龙66聚合过程与工艺 己二酸和己二胺发生缩聚反应即可得到尼龙-66。工业上为了己二酸和己二胺以等摩尔比进行反应,一般先制成尼龙-66盐后再进行缩聚反应。在水的脱出的同时伴随着酰胺键的生成,形成线型高分子。所以体系内水的扩散速度决定了反应速度,因此在短时间内高效率地将水排出反应体系是尼龙-66制备工艺的关键所在。上述缩聚过程既可以连续进行也可以间歇进行。 在缩聚过程中,同时存在着大分子水解、胺解(胺过量时)、酸解(酸过量时)和高温裂解等使尼龙66的分子量降低的副反应。 尼龙-66盐的制备 尼龙-66盐是己二酰己二胺盐的俗称,分子式:C12H26O4N2,分子量262.35,结构式:[+H3N(CH2)6NH3+-OOC(CH2)4COO-]。 尼龙-66盐是无臭、无腐蚀、略带氨味的白色或微黄色宝石状单斜晶系结晶。室温下,干燥或溶液中的尼龙-66盐比较稳定,但温度高于200?时,会发生聚合反应。尼龙-66盐在水中的溶解度很大,且随着温度上升而增大,其溶解度cs与温度的关系可描述为:cs=-376.3286+1.9224 T-0.001149T2 尼龙-66盐在水中的溶解度 温度,K 273.16 283.16 293.16 303.16 313.06 323.16 333.16 343.16 353.16 溶解度,g/ml 37.00 43.00 47.00 50.50 52.50 54.00 56.00 58.50 61.50 (1)水溶液法 以水为溶剂,以等当量的己二胺和己二酸在水溶液中进行中和反应,得到50%的尼龙-66盐溶液。工艺流程:

1-己二酸配制槽2-己二胺配制槽3-中和反应器4-脱色罐5-过滤器 6、9、11、12-贮槽7-泵8-成品反应器10-鼓风机13-蒸发反应器 将纯己二胺用软水配成约30%的水溶液,加入反应釜中,在40~50?、常压和搅拌下慢慢加入等当量的纯己二酸,控制pH值在7.7~7.9。在反应结束后,用 0.5%~1%的活性炭净化、过滤,即可得到50%的尼龙-66盐水溶液。成盐反应为放热反应,为此必须将反应热以外循环水冷却除去,同时为防止尼龙-66盐与空气接触而被氧化,在生产系统中充以氮气保护。在真空状态下,将50%的尼龙-66盐水溶液经蒸发、脱水、浓缩、结晶、干燥,即可得到固体尼龙-66盐。一般每吨尼龙-66盐(100%)消耗己二胺(99.8%)522.64 kg,己二酸(99.7%)561.9kg。 本法的特点是不采用甲醇或乙醇等溶剂,方便易行,安全可靠,工艺流程短,成本低。但对原料中间体质量要求高,远途运输费用也较高。美国孟山都普朗克公司采用本法生产。公司、杜邦公司和法国罗纳- (2)溶剂结晶法 以甲醇或乙醇为溶剂,经中和、结晶、离心分离、洗涤,制得固体尼龙-66盐。氨基和羧基经中和后形成菱形无色结晶盐,并有热量放出。工艺流程: 1-己二酸配制槽2-己二胺配制槽3-中和反应器4-乙醇计量槽5-离心机 6-乙醇贮槽7-蒸汽泵8、11-乙醇高位槽9-乙醇回收蒸馏塔10-合格乙醇贮槽纯己二酸溶解于4倍质量的溶剂(乙醇)中,完全溶解后,移入带搅拌的中和反应器并升温到65?,慢慢加入配好的己二胺溶液,控制反应温度在75~80?。在反应终点有白色结晶析出,继续搅拌至反应完全。冷却并过滤,用乙醇洗涤数次除去杂质。最后经离心分离后尼龙-66盐的总收率可达99.5%以上。一般每吨尼龙-66盐耗己二胺0.46t,己二酸0.58t,乙醇0.3t。

万吨每年PVC悬浮聚合初步工艺设计概述(doc 66页)

《化工设计基础》课程设计题目: 2万吨/年PVC悬浮聚合初步工艺设计 专业班级: 学号: 姓名: 学院: 指导教师: 课程设计任务书 《聚合物合成工艺设计》 一、设计分组 化工方向学生共分12组 6-7人一组,设计分工:概述、工艺流程设计1人,物料衡算及热量衡算2人,聚合釜及其他设备设计与选型1-2人,安全与环保1人,绘图1人 二、设计题目 2 万吨/年PVC悬浮聚合初步工艺设计3反应釜(33m3Ⅰ型小釜) 三、设计条件 1年生产天330天/年24小时/天 2产品、原料及主要工艺条件 设计产品树脂的型号为SG-5 原料VCM 技术指标 项目内容技术指标 聚合物后处理损失率6%聚合物生成量

水油比 1.4 引发剂用量0.1%的单体质量 分散剂用量0.2%的单体质量 调节剂用量0.01%的单体质量终止剂用量0.01%的单体质量防粘釜剂用量0.1%的单体质量 反应的转化率88% 聚合中损失量1%聚合物生成量操作周期分配 3其他有关条件和要求 1)与物料衡算有关的条件 a)出料阶段 i.出料中VCM的含量(VCM与PVC的质量比)为2% b)汽提阶段 i.塔顶温度62℃,塔底温度102℃,压强为0.03MPa ii.蒸汽全部在塔内冷凝。 iii.汽提后VCM的含量为≤13.6ppm。 c)离心阶段 i.离心后湿物料的含水量约为20%。0.20kg H2O/kg干料 d)气流干燥阶段 干燥后湿物料的含水量为 0.04kg H2O/kg干料 四、设计任务 编制设计说明书、绘制工艺流程图。 1.概述 聚氯乙烯简介、氯乙烯聚合反应原理、典型工艺及工业进展。

2.工艺流程设计 聚合工艺路线的选择、工艺流程设计、工艺条件的确定等。 3.工艺计算 1)聚合工段(聚合釜、出料槽、汽提塔、离心机)的物料衡算和(聚合釜、汽提塔及其换热器)热量衡算,绘制物料流程图 2)设备的工艺计算 a 聚合釜的设计与选型 I 釜体的设计 i 反应器体积的计算 ii 釜体外形尺寸选型 II 传热装置的设计 i 传热面积的计算 III 搅拌装置的设计 b出料槽 c 汽提塔设计计算 d离心机选型 类型:卧式螺旋卸料沉降离心机 五、绘制工艺流程图 按照设计规定绘制全工段(聚合、干燥、包装)工艺流程图,3号图纸 聚合釜: 聚合釜外形尺寸的设计[42] 1. 确定封头的外形 与本设采用的聚合釜配套的封头为标准椭圆封头,由相关文献查知,应取得封头直边

聚合工艺流程

聚合工艺流程 1)聚合密闭进料流程 无离子水槽(V8101)内的无离子水用无离子水泵(P8103AB)经流量计计量后通过无离子水加入聚合釜(R8101A-H)。 缓冲液经配制后从缓冲液罐(V8126)用缓冲液计量泵(P8119AB),经流量计计量后通过无离子水管路加入聚合釜。 分散剂从分散剂配制槽(V8102A-C)通过分散剂泵(P8102)送至分散剂高位槽(V8106AB)内贮存。使用时用分散剂泵(P8115AB)经流量计计量后通过分散剂管路加入聚合釜。 引发剂从引发剂罐(V8124 AB)经引发剂秤重小罐(V8125)秤重,再通过引发剂计量泵(P8118AB)后通过引发剂管道加入聚合釜。 氨水通过终止剂小罐加入聚合釜。 终止剂、消泡剂分别贮存在终止剂、消泡剂罐里,使用时分别用终止剂计量泵(P8116AB)、消泡剂计量泵(P8117AB)通过终止剂、消泡剂管路加入聚合釜。 紧急终止剂备在紧急终止剂罐里,使用时打开根部阀靠位差进入聚合釜。 聚合釜涂釜结束具备进料条件,先开启搅拌,再启动密闭进料程序,无离子水、缓冲液、分散剂、引发剂依次加入聚合釜,最后氯乙烯单体通过单体输送泵(P1301AB)通过无离子水、单体分配台加入聚合釜内。在冷搅过程中,经终止剂小罐向釜内加入一定量氨水。冷搅结束通入热水,给物料升温至规定温度时,聚合过渡反应开始,释放出热量,此时停止通热水,改为通入循环水,以便移走反应热,直至聚合反应结束。当单体转化率达到85%左右时,根据釜内压力降将终止剂、消泡剂先后用终止剂泵、消泡剂泵加入聚合釜,然后借釜内余压和出料泵将生成的浆料和未反应的部分单体出到接料槽(V8109A-D)。 2)单体回收流程 出料过程和聚合釜回收结束后,接料槽(V8109A-D)内未反应的单体通过顶部的单体回收管,经过高效泡沫捕集器(V8110A-D)后,进入单体回收缓冲罐(V8111)。借水环压缩机(C8101AB)加压后进入水分离器(V8112),除掉水分后进入单体冷凝器(E8101AB)进行冷凝,冷凝下来的液态单体和未被冷凝的气态单体分别去合成单体回收槽(V1329AB)和合成气柜,分离器分离下来的水进入板式换热器与7℃水换热后进入水环压缩机(C8101AB)。 3)浆料处理流程 单体回收结束后,接料槽(V8109B-D)内的浆料用浆料泵经过滤器倒入接料槽(V8109A),再经过滤器、进塔泵、螺旋板换热器预热后送汽提塔,然后从塔底出来的浆料经螺旋板换热器降温,完成处理送往浆料槽(V8115AB)。 4)浆料的离心、干燥流程 浆料槽(V8115AB)内的浆料经离心浆料过滤器(X8103)用离心浆料泵(P8123ABC)送离心机(M8104AB),浆料经初步脱水后,通过绞笼(X8104AB)输送至气流干燥塔(T8102AB);散热器来的热风从气流干燥塔底部进入,将绞笼送来的湿物料干燥后送入旋风分离器组(V8120AC),干燥后的物料通过旋风分离器组(V8120BD)分离后,气体通过旋风分离器组排空,物料经星型加料器(X8107AC)后被二次散热器(E8104AB)来的热风加热后从底部进入旋流干燥塔(T8103AB)进一步干燥后,并在小旋风分离器内分离,气体也进入旋风分离器组排空,物料经星型加料器(X8107BD)后进入旋振筛(X8106AB)进行粗细分离,合格的物料进入小料仓(V8117AB)。

期末聚合生产工艺流程

☆乙烯高压聚合生产工艺流程 乙烯高压聚合生产工艺流程如下图所示。主要生产过程分为压缩、聚合、分离和掺合四个工段。 来自于总管的压力为1.18MPa的聚合级乙烯进入接收器(1),与来自辅助压缩机(2)的循环乙烯气混合。经一次压缩机(3)加压到29.43MPa,再与来自于低聚物分离器(4)的返回乙烯一起进入混合器(5),由泵(6)注入调节剂丙烯或丙烷。气体物料经二次压缩机(7)加压到113~196.20MPa(具体压力根据聚乙烯牌号确定),然后进入聚合釜(8),同时,由泵(9)连续向反应器内注入微量配制好的引发剂溶液,使乙烯进行高压聚合。从聚合釜出来的聚乙烯与未反应的乙烯经反应器底部减压阀减压进行冷却器(10),冷却至一定温度后进入高压分离器(11),减压至24.53~29.43MPa,分离出来的大部分未反应的乙烯与低聚物,经过低聚物分离器(4),分离出低聚物后,乙烯返回混合器(5)循环使用;低聚物在低聚物分液器(14)中回收夹带的乙烯后排出。由高压分离器(11)出来的聚乙烯物料(含少量未反应的乙烯),在低压分离器(12)中减压至49.1kPa,其中分离出来的残余乙烯进入乙烯接收器(13)。在低压分离器底部加入抗氧剂、抗静电剂等后,与熔融状态的聚乙烯一起经挤压齿轮泵(15)送至切粒机(16)进行水下切粒。切成的粒子和冷却水一起到脱水贮槽(17)脱水,再经振动筛(18)过筛后,料粒用气流送到掺合工段。 用气流送来的料粒首先经过旋风分离器(19)中,通过气固分离后,颗粒落入磁力分离器(20)以除去夹带的金属粒子,然后进入缓冲器(21)。缓冲器中料粒经过自动磅秤和三通换向阀进入三个中间贮槽(22)中的一个,取样分析,合格产品进入掺合器(23)中进行气动循环掺合;不合格产品送至等外品贮槽(24)进行掺合或贮存包装。掺合均匀后的合格产品—— 聚乙烯颗粒气流送至合格品贮槽(25)贮存,然后用磅秤称量,装袋后送入成品仓库。

相关文档
最新文档