镁基复合材料制备专业技术、性能及应用发展概况(1)

镁基复合材料制备专业技术、性能及应用发展概况(1)
镁基复合材料制备专业技术、性能及应用发展概况(1)

镁基复合材料制备技术、性能及应用发展概况

————————————————————————————————作者:————————————————————————————————日期:

镁合金的发展及应用

1 / 8 镁合金的发展及应用 摘要:综述镁合金的特点及其在交通、航空航天、兵器方面的应用情况,并结合兵器零件的使用特点和性能要求,分析了镁合金在兵器装备中的应用前景, 展望 关键词:镁合金,特点,发展,应用 1 引言 镁合金的密度很小,是钢的四分之一、铝的三分之二,但镁合金的比强度却大于钢和铝,是最轻的金属结构材料。因此,镁合金在电子产品、汽车、航空航天等需要高比强度金属材料的领域具备广阔的发展前景。但是镁合金的化学活性高,在有机酸、无机酸和含盐的溶液中均会被腐蚀,且腐蚀速率较高,使得镁合金的应用受到了很大的限制。 镁合金是重要的有色轻金属材料,具有比强度、比刚度高,减振性、电磁屏 蔽和抗辐射能力强,易切削加工,易回收等一系列优点,广泛应用于航空航天、 2 镁合金的特点 (1)重量轻:镁合金的比强度要高于铝合金和钢/铁、但略低于比强度最高的纤维增强塑料;其比刚度与铝合金和钢/铁相当,但却远远高于纤维增强塑料。比强度(强度/密度之比值)、比耐力(耐力/密度之比值)则比铝、铁都要高。在实用金属结构材料中其比重最小(密度为铝的2/3,钢的1/4)。这一特性对于现代社会的手提类产品减轻重量、车辆减少能耗以及兵器装备的轻量化具有非常重要的意义。 (2)高的阻尼和吸震、减震性能:镁合金具有极好的吸收能量的能力,可吸收震动和噪音,保证设备能安静工作。镁合金的阻尼性比铝合金大数十倍,减震效果很显著,采用镁合金取代铝合金制作计算机硬盘的底座,可以大幅度减轻重量(约降低70%),大大增加硬盘的稳定性,非常有利于计算机的硬盘向高速、大容量的方向发展。 (3)良好的抗冲击和抗压缩能力:其抗冲击能力是塑料的20倍;当镁合金

09192230材料现代制备技术

09192230材料现代制备技术 Modern Technology for Material Preparation 预修课程:物理化学 面向对象:材料科学与工程专业学生 课程简介: 本课程讲述各种材料合成与制备的原理、方法和技术。针对现代信息社会对材料发展的需求,着重介绍各种新型制备技术的基本概念、制备原理、特征,以及其在各类材料制备中的应用。涉及材料包括超微粒子等零维材料,纤维、纳米线棒等一维材料,薄膜和块体材料(晶态和非晶态材料)。 教学大纲: 一、教学目的与基本要求: 教学目的:材料制备技术是材料科学不可或缺的组成部分。现代科学技术的发展对材料提出了各种各样的新要求,进而推动了材料制备技术的发展。本课程旨在介绍各种材料的合成与制备的原理、方法和技术,使学生掌握各类新型材料的制备方法。 基本要求:通过《材料现代制备技术》的学习,使学生了解各种无机材料的制备原理,初步掌握零维、一维纳米材料,纤维,薄膜,以及三维材料的各种制备方法和技术。 二、主要内容及学时分配: 1. 绪论 材料现代制备方法特点1学时 溶胶凝胶技术3学时 等离子体技术2学时 激光技术概论2学时 2. 零维材料的制备 超微粒子的形成机理和制备4学时 3. 一维材料的制备 纳米棒、线、管的形成机理和制备方法2学时 纤维材料的制备2学时 4. 二维材料的制备

薄膜的物理气相沉积法制备原理和应用4学时 化学气相沉积法制备原理和应用3学时 三束技术与薄膜制备2学时 液相法薄膜制备(浸渍提拉法成膜,旋转涂膜,LB膜,自组装膜)3学时 5. 三维材料的制备 非晶态材料的形成机理及制备方法2学时 晶体生长机理及制备2学时 推荐教材或主要参考书: 《材料现代制备技术》,自编讲义 参考书:郑昌琼,冉均国主编《新型无机材料》,科学出版社,2003 C.N.R. Rao, F.L. Deepak, Gautam Gundiah, A. Govindaraj,Inorganicnanowires,Progress in Solid State Chemistry 31 (2003)

镁基复合材料的性能及应用

镁基复合材料的性能及应用 罗文昌2013121532 摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。本文将综述镁基复合材料的不同制备方法及其对复合材料组织、结构、性能的影响,并提出镁基复合材料的研究和发展方向。 关键词:镁基复合材料;基体镁合金;性能;应用;发展 1.引言 现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。复合材料是将两种或两种以上不同性能、不同形态的组分材料通过复合手段组合而成的一种多相材料。近年来,金属基复合材料在许多领域得到了应用。目前金属基复合材料的制备方法已有很多,并在铁基、镁基、铜基、铝基、钛基等金属基复合材料中取得了比较大的成功。镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。根据镁基复合材料的特点,结合原有的金属基复合材料的制备工艺,材料工作者尝试了多种新的适合制备镁基复合材料的方法与工艺,对研制、开发镁基复合材料起到了很好的促进作用。 2.镁基复合材料的组织与性能 相对于传统金属材料和铝基复合材料,有关镁基复合材料的组织与性能的研究目前虽然已经取得了一定的成果,但还不够全面深入,力学性能数据分散性也比较大,仍处于探索性研究阶段。材料工作者对镁基复合材料的耐磨性能和疲劳断裂机理进行了研究,并围绕镁基复合材料的力学性能及物理性能做了一些工作。力学性能主要集中于复合材料的拉伸与压缩性能,时效特性,以及低温与高温超塑性等方面;物理性能有阻尼性能和储氢性能等研究内容。储氢镁基复合材料一般采用球磨法制备。高能球磨后,颗粒活化,镁颗粒与增强相颗粒以及颗粒内部的大量相界、微观缺陷的存在是材料具有优异氢化性能的主要原因。通过机械合金化工艺可以制备出具有优良储氢性能的复合材料,典型体系:Mg—Mg2Ni,而且若在研磨过程中辅以某些有机添加剂对提高材料的储氢性能有很大帮助,但较高的脱氢温度以及相对较慢的吸放氢速度限制了镁基合金实际应用。另外非晶态镁基复合材料的优良性能更是引起了人们的普遍兴趣。在实际应用中,由于镁基复合材料过硬的性能,镁基复合材料在在各领域中被广泛应用。镁基复合材料组织特征为增强体分布在基体合金中,同时引入了大量的界面以及高密度位错缠结,其晶粒度较基体合金也小,无论是高密度位错引起的位错强化,还是细化晶粒的作用都将提高和改善复合材料的拉伸强度和刚度等力学性能。另外,挤压变形、固溶时效以及其它一些工艺的运用和调整都将有利于进一步提高镁基复合材料力学性能镁基复合材料具有良好的阻尼性能(减振性能)、电磁屏蔽性能和储氢特性,是良好的功能材料,还具备密度小、贮氢容量高、资源丰富等优点。镁基贮氢复合材料正被日益重视,主要制备方法有多元合金化、机械合金化、多元复合等。 3.镁基复合材料的应用 从近期发展看,镁基复合材料并没有大规模地应用于常规结构件中,但它们在航空航天和汽车电子工业中的众多构件方面有着广阔的应用前景。 美国TEXTRON、DOW 化学公司用SiC /Mg复合材料制造螺旋桨、导弹尾翼、内部加强的汽

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

镁基复合材料的制备

书山有路勤为径,学海无涯苦作舟 镁基复合材料的制备 镁及镁合金虽具有密度低、比强度大、比刚度高和抗冲击性强等诸多优点。但是也有一些固有缺点,如硬度、刚度、耐磨性、燃点较低、不是一种良好的结构材料,使其应用受到相当大的制约。若向镁基体中添加陶瓷颗粒或碳纤维制成复合材料,则可以在很大程度上改善镁的力学性能,提高耐热和抗蠕变性能,降低热膨胀系数等。可作为复合材料增强相的颗粒有:氧化物、碳化物、氮化物、陶瓷、石墨和碳纤维等。制备镁基复合材料的工艺主要是:铸造法、粉末冶金法、喷射沉积法。铸造法 铸造法是制备镁合金复合材料的基本工艺,可分为搅拌混合法、压力浸渗法、无压浸渗法和真空渗法等。 搅拌铸造法(Stiring Casting) 此法是利用高速旋转搅拌器浆叶搅动金属熔体,使其剧烈流动,形成以搅拌旋转轴为中心的漩涡,将增强颗粒加入漩涡中,依靠漩涡负压抽吸作用使颗粒进入熔体中,经过一段时间搅拌,颗粒便均匀分布于熔体内。此法简便,成本低,可以制备含有Sic、Al2O3、SiO2、云母或石墨等增强相的镁基复化材料。不过也有一些难以克服的缺点:在搅拌过程中会混入气体与夹杂物,增强相会偏析与固结,组织粗大,基体与增强相之间会发生有害的界面反应,增强相体积分数也受到一定限制,产品性能低,性价比无明显优势。用此法生产镁基复合材料时应采取严密的安全措施。 液态浸渗法(Liquid infiltration process) 用此法制备镁基复合材料时,须先将增强材料与黏接剂混合制成预制坯,用惰性气体或机械设备作用压力媒体将镁熔体压入预制件间隙中,凝固后即成为复合材料,按具体工艺不同又可分为压力浸渗法、无压、浸渗法和真空浸渗

镁合金压铸技术的几个主要问题

镁合金压铸技术的几个主要问题及其使用前景 1前言 镁合金材料1808年面世, 1886年始用于工业生产。镁合金压铸技术从1916年成功地将镁合金用于压铸件算起,至今也经历了八十余年的发展。人类在认识和驾驭镁合金及其制品的生产技术方面,经历了漫长的探索历程。从1927年推出高强度MgAl9Zn1开始,镁合金的工业使用获得了实质性的进展。1936年德国大众汽车公司开始用压铸镁合金生产“甲壳虫”汽车的发动机传动系统零件,1946年单车使用镁合金量达18kg左右。美国在1948~1962年间用热室压铸机生产的汽车用镁合金压铸件达数百万件。尽管如此,过去镁合金作为结构材料主要用于航空领域,在其它领域,世界上镁的主要用途是生产铝合金,其次用于钢的脱硫和球墨铸铁生产。 近年来, 由于人们对产品轻量化的要求日益迫切,镁合金性能的不断改善及压铸技术的显著进步,压铸镁合金的用量显著增长。特别是人类对汽车提出了进一步减轻重量、降低燃耗和排放、提高驾驶安全性和舒适性的要求, 镁合金压铸技术正飞速发展。此外,镁合金压铸件已逐步扩大到其他领域,如手提电脑外壳,手提电锯机壳,鱼钩自动收线匣,录像机壳,移动电话机壳,航空器上的通信设备和雷达机壳,以及一些家用电器具等。 镁主要由含镁矿石提炼。我国辽宁省大石桥市一带的菱镁矿储量占世界储量的60%以上,矿石品位高达40%以上。我国生产的镁砂和镁砂制品大量用于出口。充分利用我国丰富的镁砂资源进行深度开发,结合我国汽车、计算机、通讯、航天、电子等新兴产业的发展,促进镁合金压铸件的生产和使用,是摆在我国铸造工作者面前的一项任务。 2、压铸镁合金的研究 镁合金的密度小于2g/cm3,是目前最轻的金属结构材料,其比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;其比刚度和铝合金和钢相当,远高于纤维增强塑料;其耐腐蚀性比低碳钢好得多,已超过压铸铝合金A380;其减振性、磁屏蔽性远优于铝合金[1];鉴于镁合金的动力学粘度低,相同流体状态(雷诺指数相等)下的充型速度远大于铝合金,加之镁合金熔点、比热容和相变潜热均比铝合金低,故其熔化耗能少,凝固速度快,镁合

镁基储氢材料

镁系储氢合金综述 摘要:镁与镁基合金具有储氢量大,质量小,资源丰富,价格低廉等优点,受到人们的广泛关注。本文介绍了镁系储氢合金的工艺、性能、应用及发展。 关键词:储氢材料,镁基合金,储氢性能,材料复合,镁基化合物 前言氢能是最清洁且储量丰富的能源,储氢材料的发展及应用对环境保护和能源开发有着重要的意义。镁基储氢合金是最有潜力的金属氢化物储氢材料,近年来已引起世界各国的广泛关注。镁及其合金作为储氢材料,具有以下几个特点:(1)储氢容量很高,MgH2的含氢量达到7.6(wt)% ,而Mg2NiH4的含氢量也达到3.6(wt)%;(2)镁是地壳中含量为第六位的金属元素,价格低廉,资源丰富;(3)吸放氢平台好;(4)无污这些缺点严重阻碍了镁染。但镁及其合金作为储氢材料也存在三个缺点:(1)吸放氢速度较慢,反应动力学性能差;(2)氢化物较稳定,释氢需要较高的温度;(3)镁及其合金的表面容易形成一层致密的氧化膜。以上基储氢合金的实用化进程。近年来,镁基复合储氢材料的研究取得了明显突破,本文简要介绍镁基复合储氢材料吸放氢性能的改善。 1 镁基储氢材料体系 最早开始研究镁基储氢材料的是美国布鲁克-海文国家实验室, Reilly和Wiswall在1968年首先以镁和镍混合熔炼而成Mg2Ni合金。后来随着机械合金化制备方法的出现,揭开了大规模研究镁基储氢材料的序幕。据不完全统计,到目前为止人们研究了近1 000多种重要的镁基储氢材料,几乎包括了元素周期表中所有稳定金属元素和一些放射性元素与镁组成的储氢材料。通过研究,发现这些镁基储氢材料可以分为单质镁储氢材料、镁基储氢合金和镁基储氢复合材料三大类。 1.1 单质镁储氢材料 镁可直接与氢反应,在300~400℃和较高的氢压下,反应生成MgH2: Mg+H2=MgH2 , △H=-74.6 kJ/mol 。 MgH2理论氢含量可达7.6%,具有金红石结构,性能较稳定,在287℃时的分解压为101. 3 kPa。因为纯镁的吸放氢反应动力学性能差,吸放氢温度高,所以纯镁很少被用来储存氢气。随着材料合成手段的不断发展,特别是机械合金化制备工艺的日益成熟,研究人员对单质镁储氢材料进行了新的研究。 1.2 镁基储氢合金 到目前为止,人们已对300多种重要的镁基储氢合金材料进行了研究。其中最具有代表性的是Mg-Ni系储氢合金,许多研究者围绕这一系列合金开展了大量的研究工作。在制备方法上,主要研究了熔炼法、粉末烧结法、扩散法、机械合金化法和氢化燃烧合成法等,并且对镁基储氢合金采用表面处理和热处理来进一步提高其动力学性能和循环寿命。 1.2.1 Mg-Ni系储氢合金 在Mg与Ni形成的合金体系中存在2种金属间化合物Mg2Ni和MgNi2,其中MgNi2不与氢气发生反应。Mg2Ni在一定条件下(1.4MPa、约200℃)与氢反应生成Mg2NiH4,反应方程式如下: Mg2Ni+2H2=Mg2NiH4,△H=-64.5 kJ/mol 。 反应生成的氢化物中氢含量为3.6%,其离解压为0.1MPa、离解温度为253℃。Mg2Ni理论电化学容量为999 mA·h·g- 1,但其形成的氢化物在室温下较稳定而不易脱氢。且与强碱性电解液(6 mol·L-1的KOH)接触后,合金表面易形成Mg(OH)2,阻止了电解液与合金表面的氢交换、氢转移和氢向合金体内扩散,致使Mg2Ni的实际电化学容量、循环寿命差。 1.2.2 镁与其它元素组成的镁基储氢合金 除了Mg-Ni系储氢合金以外,研究者们研究得比较多的还有Mg-Al系以及Mg-La系储氢合

材料制备方法

陶瓷基复合材料的制备 摘要:现代陶瓷材料具有耐高温、耐磨损、耐腐蚀及重量轻等许多优良的性能。但是,陶瓷材料同时也具有致命的缺点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。 因此,陶瓷材料的韧性化问题便成了近年来陶瓷工作者们研究的一个重点问题。现在这方面的研究已取得了初步进展,探索出了若干种韧化陶瓷的途径。其中,往陶瓷材料中加入起增韧作用的第二相而制成陶瓷基复合材料即是一种重要方法。 一.基体与增强体 1.1基体 陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物而不是单质,所以它的结构远比金属合金复杂得多。现代陶瓷材料的研究,最早是从对硅酸盐材料的研究开始的,随后又逐步扩大到了其他的无机非金属材料。 目前被人们研究最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。 1.2增强体 陶瓷基复合材料中的增强体,通常也称为增韧体。从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。 纤维:在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻璃纤维、硼纤维等; 晶须为具有一定长径比(直径0.3~1μm,长0~100 μm) 的小单晶体。晶须的特点是没有微裂纹、位错、孔洞和表面损伤等一类缺陷,因此其强度接近理论强度。 颗粒:从几何尺寸上看,颗粒在各个方向上的长度是大致相同的,一般为几个微米。颗粒的增韧效果虽不如纤维和晶须。但是,如果颗粒种类、粒径、含量及基体材料选择适当仍会有一定的韧化效果,同时还会带来高温强度,高温蠕变

性能的改善。所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究. 二.纤维增强陶瓷基复合材料 在陶瓷材料中,加入第二相纤维制成复合材料是改善陶瓷材料韧性的重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。 2.1单向排布长纤维复合材料 单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大优于其横向性能。 在实际构件中,主要是使用其纵向性能。在单向排布纤维增韧陶瓷基复合材料中,当裂纹扩展遇到纤维时会受阻,这时,如果要使裂纹进一步扩展就必须提高外加应力。 2.2多向排布纤维复合材料 单向排布纤维增韧陶瓷只是在纤维排列方向上的纵向性能较为优越,而其横向性能显著低于纵向性能,所以只适用于单轴应力的场合。而许多陶瓷构件则要求在二维及三维方向上均具有优良的性能,这就要进一步研究多向排布纤维增韧陶瓷基复合材料。 二维多向排布纤维增韧复合材料的纤维的排布方式有两种:一种是将纤维编织成纤维布,浸渍浆料后,根据需要的厚度将单层或若干层进行热压烧结成型。这种材料在纤维排布平面的二维方向上性能优越,而在垂直于纤维排布面方向上的性能较差。一般应用在对二维方向上有较高性能要求的构件上。 另一种是纤维分层单向排布,层间纤维成一定角度。这种三维多向编织结构还可以通过调节纤维束的根数和股数,相邻束间的间距,织物的体积密度以及纤维的总体积分数等参数进行设计以满足性能要求。 2.3制备方法 目前采用的纤维增强陶瓷基复合材料的成型主法主要有以下几种: 1.泥浆烧铸法 这种方法是在陶瓷泥浆中分散纤维。然后浇铸在石膏模型中。这种方法比较古老,不受制品形状的限制。但对提高产品性能的效果显著,成本低,工艺

高中必修一化学镁铝铁知识归纳

高中化学镁铝铁知识归纳【知识网络】 一、镁及其化合物 相关化学方程式 2Mg+O2=2MgO 3Mg+N2Mg3N2 Mg+Cl2MgCl2 Mg+2H+=Mg2++H2↑ Mg+2H2O Mg(OH)2+H2↑ 2Mg+CO22MgO+C MgO+H2O=Mg(OH)2 MgO+2HCl=MgCl2+H2O MgCl2(熔融) Mg+Cl2↑

Mg2++CO32-=MgCO3↓ MgCO3+2H+=Mg2++CO2↑+H2O MgCO3+CO2+H2O=Mg(HCO3)2 MgCO3+H2O Mg(OH)2+CO2↑ Mg(OH)2MgO+H2O Mg3N2+6H2O=3Mg(OH)2↓+2NH3↑二、铝及其化合物 相关化学方程式 4Al+3O2=2Al2O3 3S+2Al Al2S3 2Al+3Cl22AlCl3 2Al+6HCl=2AlCl3+3H2↑ 2Al+6H2O 2Al(OH)3+3H2↑

2Al+Fe2O3Al2O3+2Fe 2Al+2NaOH+2H2O=2NaAlO2+3H2↑Al2O3+6HCl=2AlCl3+3H2O Al2O3+2NaOH=2NaAlO2+2H2O Al3++3H2O=Al(OH)3+3H+ Al3++3NH3·H2O=Al(OH)3↓+3NH4+ Al3++3OH-=Al(OH)3↓ Al3++4OH-=AlO2-+2H2O Al2S3+6H2O=2Al(OH)3↓+3H2S↑Al(OH)3+3H+=Al3++3H2O Al(OH)3+OH-=AlO2-+2H2O AlO2-+CO2+2H2O=Al(OH)3↓+HCO3-AlO2-+H++H2O=Al(OH)3↓ AlO2-+4H+=Al3++2H2O 3AlO2-+Al3++6H2O=4Al(OH)3↓三、铁及其化合物

镁基储氢材料

镁系储氢合金综述 08材控薛凯琳 摘要:镁与镁基合金具有储氢量大,质量小,资源丰富,价格低廉等优点,受到人们的广泛关注。本文介绍了镁系储氢合金的工艺、性能、应用及发展。 关键词:储氢材料,镁基合金,储氢性能,材料复合,镁基化合物 前言氢能是最清洁且储量丰富的能源,储氢材料的发展及应用对环境保护和能源开发有着重要的意义。镁基储氢合金是最有潜力的金属氢化物储氢材料,近年来已引起世界各国的广泛关注。镁及其合金作为储氢材料,具有以下几个特点:(1)储氢容量很高,MgH2的含氢量达到7.6(wt)% ,而Mg2NiH4的含氢量也达到3.6(wt)%;(2)镁是地壳中含量为第六位的金属元素,价格低廉,资源丰富;(3)吸放氢平台好;(4)无污这些缺点严重阻碍了镁染。但镁及其合金作为储氢材料也存在三个缺点:(1)吸放氢速度较慢,反应动力学性能差;(2)氢化物较稳定,释氢需要较高的温度;(3)镁及其合金的表面容易形成一层致密的氧化膜。以上基储氢合金的实用化进程。近年来,镁基复合储氢材料的研究取得了明显突破,本文简要介绍镁基复合储氢材料吸放氢性能的改善。 1 镁基储氢材料体系 最早开始研究镁基储氢材料的是美国布鲁克-海文国家实验室, Reilly和Wiswall在1968年首先以镁和镍混合熔炼而成Mg2Ni合金。后来随着机械合金化制备方法的出现,揭开了大规模研究镁基储氢材料的序幕。据不完全统计,到目前为止人们研究了近1 000多种重要的镁基储氢材料,几乎包括了元素周期表中所有稳定金属元素和一些放射性元素与镁组成的储氢材料。通过研究,发现这些镁基储氢材料可以分为单质镁储氢材料、镁基储氢合金和镁基储氢复合材料三大类。 1.1 单质镁储氢材料 镁可直接与氢反应,在300~400℃和较高的氢压下,反应生成MgH2: Mg+H2=MgH2 , △H=-74.6 kJ/mol 。 MgH2理论氢含量可达7.6%,具有金红石结构,性能较稳定,在287℃时的分解压为101. 3 kPa。因为纯镁的吸放氢反应动力学性能差,吸放氢温度高,所以纯镁很少被用来储存氢气。随着材料合成手段的不断发展,特别是机械合金化制备工艺的日益成熟,研究人员对单质镁储氢材料进行了新的研究。 1.2 镁基储氢合金 到目前为止,人们已对300多种重要的镁基储氢合金材料进行了研究。其中最具有代表性的是Mg-Ni系储氢合金,许多研究者围绕这一系列合金开展了大量的研究工作。在制备方法上,主要研究了熔炼法、粉末烧结法、扩散法、机械合金化法和氢化燃烧合成法等,并且对镁基储氢合金采用表面处理和热处理来进一步提高其动力学性能和循环寿命。 1.2.1 Mg-Ni系储氢合金 在Mg与Ni形成的合金体系中存在2种金属间化合物Mg2Ni和MgNi2,其中MgNi2不与氢气发生反应。Mg2Ni在一定条件下(1.4MPa、约200℃)与氢反应生成Mg2NiH4,反应方程式如下: Mg2Ni+2H2=Mg2NiH4,△H=-64.5 kJ/mol 。 反应生成的氢化物中氢含量为3.6%,其离解压为0.1MPa、离解温度为253℃。Mg2Ni理论电化学容量为999 mA·h·g- 1,但其形成的氢化物在室温下较稳定而不易脱氢。且与强碱性电解液(6 mol·L-1的KOH)接触后,合金表面易形成Mg(OH)2,阻止了电解液与合金表面的氢交换、氢转移和氢向合金体内扩散,致使Mg2Ni的实际电化学容量、循环寿命差。 1.2.2 镁与其它元素组成的镁基储氢合金 除了Mg-Ni系储氢合金以外,研究者们研究得比较多的还有Mg-Al系以及Mg-La系储氢合

第一章 工程材料与制造技术简论

第一章工程材料与制造技术简论 本章教学学时:2 本章内容主要是为了拓宽学生的知识面,所涉及内容十分丰富。从横向看,内容包括工程材料、材料成型、机械加工、计算机技术、自动化技术、工业管理等系列知识;从纵向看,内容则包括了材料与制造技术的发展历程和相关学科发展对制造技术的积极渗透。可以说本章是工科低年级同学进入本课程学习,也是进入专业学习的起点。建议同学在学习中能跳出本课程,站在技术和社会发展的高度,理解该课程的基础地位和重要性。 本章教学方式:课堂讲课及学生自学 主要内容: 一、工程材料发展简述 世界各国对材料传统的分类:金属材料、无机非金属材料(陶瓷)、有机高分子材料和复合材料四大类。 这四类工程材料不同历史阶段所具有的相对重要性急发债趋势见图1-1。 图1-1 工程材料发展历史虽时间推移的相对重要性示意图(时间是非线性的) (一)金属材料的发展史 (二)金属材料的发展现状及趋势 1.高纯材料以超高纯铁为例,在高纯状态,纯铁不仅有优异的软磁性能,良

好的耐腐蚀性能,残余电阻率高,而且以高纯铁为基础进行合金研制,预计在高真空容器、极低温材料、核反应堆材料等方面的应用将十分引人注目。 2.高强度及超高强度金属材料超高强度是当代材料科学家为减轻重量、节省资源而追求的设计目标,这在航空、航天、原子能、深海潜艇等领域有极大的需求。提高材料强度,严格讲,一是指提高抵抗塑性变形的能力,二是提高材料抵抗破坏的能力。提高抵抗塑性变形的能力通常叫强化,提高材料抵抗破坏的能力叫韧化,两者同时提高,则称强韧化。通常典型超高强材料包括超高强度钢、高强度铝合金、高强度钛合金等。 3.超易切削钢和超高易切削钢金属材料通常要求机械加工,据统计,切削加工费用大约占总成本的75%。若改成超高易切削钢,实验表明刀具寿命可提高30倍,因此零件成本会大幅度下降,甚至可减少一半。其社会效益和经济效益极其显著。 4.硬质合金与金属陶瓷金属陶瓷最早是为耐磨材料而设计,它是金属材料与陶瓷的复合材料。 5.高温合金与难熔合金 很大程度上 6.纤维增强金属基复合材料该类复合材料的比强度极高,其强度σ c 。目前可供选择的纤维较多,如硼纤维,碳纤维、碳化硅纤取决于增强体纤维强度σ f 维、玻璃纤维、氧化铝纤维等。纤维的选择原则是:比重小,弹性模量E大,强度σ f 高。金属复合材料的发展目标是:制备出各种比强度、比弹性模量高的材料。 7.共晶合金定向凝固材料该材料属新型复合材料,是共晶合金在特殊工艺条件下制备出来的复合材料,其性能特点是在超高温情况下呈现更高强度。它是通过温度梯度定向凝固,使共晶各相在本身的相上连续长大而成的复合材料,这种复合也叫原生复合。共晶合金定向凝固材料可广泛用于涡轮叶片等耐热材料,也可以用于偏光材料。 8.快速冷凝金属非晶及微晶材料快速冷凝技术是本世纪下半叶以来材料制备技术中的重大突破,由此产生了一系列非平衡态的金属合金。快速冷凝可以导致非晶和微晶材料。 典型非晶和微晶金属材料: (1)金属玻璃;(2)金属微晶材料 9.有序金属间化合物金属间化合物是新一代高温结构材料,这类化合物与正常价化合物之间的区别在于,金属间化合物的晶体结构中,其构成元素的原子以整数比构成化合物,不是按照化学价的概念,而是按照金属键或部分共价键结合,由于原子在晶体中作长程有序排列,因而也称有序金属间化合物。 10.纳米金属材料纳米金属是泛指颗粒径小于100纳米(nm)的金属材料,大于100纳米的金属颗粒称为粉末,小于2纳米的金属颗粒则称为原子簇,纳米金属颗粒具有一些明显不同于块状金属和一般粉末金属的属性。

现代材料制备技术-考试复习资料

注浆成形:将陶瓷原料制备出具有一定流动性的称之为泥浆的浆料。经陈腐、调节添加剂等方法使浆料性能稳定在利于注浆成型的范围。将泥浆注人石膏质多孔模型中,由于石膏的毛细孔吸水作用,将泥浆中部分水分吸人模型壁中,致使泥浆从靠近石膏模型面的部分开始逐渐固化而形成具有一定保型性能的陶瓷坯层。最后将余浆排出,经离型脱模后干燥便得到陶瓷坯体。作为一种主要的成型方法,传统的注浆成型仍在日用瓷和卫生瓷等生产中发挥着重要作用。 反应烧结:反应烧结法是通过多孔坯件同气相或液相发生化学反应,使坯件质量增加、孔隙减小,并烧结成具有一定强度和尺寸精度的成品的一种烧结工艺。 溶胶一凝胶法:溶胶一凝胶法是指将一种或多种固相以微小的胶体颗粒形式均匀地分散在液相介质中,形成稳定的胶体溶液,使不同的颗粒在溶胶中达到分子水平的混合,然后通过适当的加热或调整PH等方法改变胶体溶液的稳定性,使之发生胶凝作用转变成凝胶,凝胶经适当的温度煅烧,在煅烧过程中各物相相互反应生成所需制备的粉体。 反应烧结:反应烧结法是通过多孔坯件同气相或液相发生化学反应,使坯件质量增加、孔隙减小,并烧结成具有一定强度和尺寸精度的成品的一种烧结工艺。 凝胶注浆:陶瓷浆料原位凝固成型是20世纪90年代迅速发展起来的新的胶态成型技术。其成型原理不同于依赖多孔模吸浆的传统注浆成型,而是通过浆料内部的化学反应形成大分子网络结构或陶瓷颗粒网络结构,从而使注模后的陶瓷浆料快速凝固为陶瓷坯体。 简述粉体液相合成过程中防止团聚的办法。 一是在体系中加人有机大分子,使其吸附在颗粒表面,形成空间阻挡层,阻止颗粒之间互相碰撞团聚。常用的有机大分子是聚丙烯酰胺、聚乙二醇等。二是用表面张力小的液体如乙醇、丙酮等有机液体做溶剂,可减轻团聚。另外,可采用冷冻干燥办法,使液相凝固成固体,通过减压,使溶剂升华排除,也可防止团聚。 机械化学法的基本原理及其特点。 机械化学法的基本原理是通过对反应体系施加机械能诱导其发生扩散及化学反应等一系列化学和物理化学过程,从而达到合成新品种粉体的目的。一般的机械粉碎中物料并不发生化学反应,只是物料的几何形态、粒度、比表面积发生变化,物质本身性质并不变化。 机械化学与常规化学比较,具有以下基本特征:机械力作用可以产生一些热能难于或无法进行的化学反应;有些物质的机械化学反应与热化学反应有不同的反应机理;与热化学相比机械化学受周围环境的影响要小得多;机械化学反应可沿常规条件下热力学不可能发生的方向进行。 陶瓷制备工艺中,部分陶瓷原料预先煅烧的主要目的是什么? a)去除原料中易挥发的杂质、化学结合和物理吸附的水分。气体、有机物等,从而提高原料的纯度; b)使原料颗粒致密化及结晶长大,这样可以减小在以后烧结中的收缩,提高产品的合格率: C)完成同质异晶的晶型转变,形成稳定的结晶相,如γAl2O3锻烧成a-AI2O3。 预烧工艺的关键是预烧温度、预烧气氛及外加剂的选择。常用原料的预烧目的与预烧条件列于表45。

高中化学 镁元素及其化合物讲义(必修1)

镁元素及其化合物 【知识归纳】 一、金属镁的理化性质 1、镁的物理性质 2、镁的化学性质 二、镁的化合物 1、氧化镁 2、氢氧化镁 典型例题 1.有关镁的下列叙述中错误的是() A.能与NH4Cl溶液作用放出氢气 B.与冷水剧烈反应,生成Mg(OH)2沉淀并放出氢气 C.在CO2中能继续燃烧,所以金属镁着火,不能用CO2去灭火 D.在通常情况下其表面有一层致密的氧化膜,所以抗腐蚀能力很强 B 2.镁粉在焰火、闪光灯中是不可缺少的原料,工业上制造镁粉是将镁蒸气在气体中冷却。下列气体中,可用来冷却镁蒸气的是() A、空气 B、二氧化碳 C、氢气 D、氩气 D 3.金属镁在二氧化碳中燃烧生成MgO和C,将一定量金属镁在含二氧化碳、氧气的混合气体中燃烧后得到的固体,加入足量盐酸中,充分反应后,将溶液蒸干,然后隔绝空气灼烧,得到的固体成分可能是 ( ) A. MgO和C B. MgO C. MgCl2和C D.Mg(OH)2 AD 4.将4.6 g金属钠投入到足量水中,得a g溶液;将4.8 g金属镁投入到足量盐酸中,得b g溶液,假设水的质量与盐酸的质量相等,则反应后两溶液的质量关系式为( ) A.a=b B.a>b C.a

a=4.6+m(H2O)-0.2=4.4+m(H2O) Mg+2HCl===MgCl2+H2↑ 24 2 4.8g 0.4g b=4.8+m(HCl)-0.4=4.4+m(HCl) 因为m(H2O)=m(HCl),所以a=b。 答案:A 5.我国有丰富的海水资源,开发和利用海水资源是当前科学研究的一项重要任务,下图是某化工厂对海水资源综合利用的示意图: 请根据以上信息回答下列问题: I.(1)写出N的化学式和B的名称:N 、B 。(2)写出反应②的化学方程式,并标出其电子转移的方向和数目: (3)写出反应③的离子方程式:, Ⅱ.粗盐中含有Ca2+、Mg2+、SO42-等杂质,精制时所用的试剂为:①盐酸②氯化钡溶液 ③氢氧化钠溶液④碳酸钠溶液,以上试剂添加的顺序可以为。 A. ②③④① B. ③④②① C. ④③②① D. ③②④① Ⅲ.提取粗盐后剩余的海水(母液)中,可用来提取Mg和Br2。 (1)若用来提取Mg,根据上述提取Mg的流程,没有涉及到的反应类型是。 A.分解反应B.化合反应C.置换反应D.复分解反应(2)若用来提取Br2,反应⑥所用的气态氧化剂的寻找货源的设想,其中合理的是。 A.从外地购买B.在当地新建生产厂 C.从本厂生产烧碱处循环D.从本厂生产镁单质处循环流程⑦将溴单质从混合物中分离出来是基于溴单质具有性。 (3)母液用来提取Mg和Br2先后顺序,甲乙两位工程师有不同观点: 甲:母液先提取Mg,后提取Br2 乙:母液先提取Br2,后提取Mg 请你判断哪个更合适? (填“甲”或“乙”), 理由是。

石墨烯增强镁基复合材料复合材料论文

摘要 碳纳米管、石墨烯具有优异的力学性能(高强度和高模量),是镁基复合材料理想的增强体。如何改善碳纳米管、石墨烯在镁基体中的分散性和提高界面结合强度,是制备高性能纳米碳/镁基复合材料的关键。采用粉末冶金和热挤压工艺制备了石墨烯(GNS)增强的AZ91镁基复合材料,测试了复合材料的力学性能,并用扫描电镜和能谱仪对复合材料断口形貌进行了观察和分析。采用粉末冶金+热挤压工艺+T4固溶处理分别制备了CNTs,MgO@CNTs(包覆MgO碳纳米管)、GNPs (石墨烯纳米片)和RGO(还原石墨烯)增强的AZ91镁基复合材料,研究了碳纳米管表面包覆MGO工艺,纳米碳材料(CNTs,Mg O@CNTs,GNPs和GO)含量对AZ91合金的组织和力学性能的影响。结果表明氧化石墨烯增强AZ91镁基复合材料的屈服强度、伸长率和显微硬度分别为225MPa,8%和70HV,比AZ91镁合金基体的分别提高了39.7%,35.4%和31.8%;而以石墨烯纳米片为增强相时复合材料的屈服强度、伸长率和显微硬度分别为192MPa,7%和60HV,比基体的仅提高了18.7%,9.9%和13.5%;通过以上两组实验对比,氧化石墨烯增强镁基复合材料无论在屈服强度抗拉强度,伸长率以及硬度上都是最好的。 关键词:碳纳米管、石墨烯纳米片、氧化石墨烯、AZ91镁合金

绪论 石墨烯(Graphene)是一种由碳原子以 sp2杂化方式形成的蜂窝状平面薄膜,是一种 只有一个原子层厚度的准二维材料,所以又 叫做单原子层石墨。因为具有十分良好的强 度、柔韧、导电、导热、光学特性,在物理 学、材料学、电子信息、计算机、航空航天 等领域都得到了长足的发展,作为目前发现 的最薄、强度最大、导电导热性能最强的一 种新型纳米材料,石墨烯被称为“黑金”, 是“新材料之王”,科学家甚至预言石墨烯 将“彻底改变21世纪”。 镁呈银白色,熔点649℃,质轻,密度为 1.74g/cm3,约为铜的1/4、铝的2/3;其化 学活性强,与氧的亲合力大,常用做还原剂。 粉状或细条状的镁,在空气中很易燃烧,燃烧 时发出眩目的白光。但极易溶解于有机和无机 酸中。镁能直接与氮、硫和卤素等化合。金属 镁无磁性,且有良好的热消散性。质软,熔点 较低。镁应用相当广泛,比如镁是燃烧弹和 照明弹不能缺少的组成物;镁粉是节日烟花必 需的原料。 目前,镁基复合材料大都主要是以镁化合物、铸镁或者镁合金为基体,以SiC颗粒或晶须、Al2O3颗粒或纤维、碳(石墨)纤维、镁合金、Al18B4O33颗粒或晶须、镁化合物等为增强相。 石墨烯(Graphene,GN),作为纳米碳材料的“明星”成员,它们具有极高的强度和韧性,其抗拉强度都可达到钢的100倍以上(大于50GPa),弹性模量可达到1TPa以上,远远超过纳米Si C的强度和弹性模量(420-450GPa),是迄今为止,强度和模量最高的材料之一,它们超强的力学性能可以极大地改善复合材料强度和韧性。此外,碳纳米管和石墨烯还具有超强的高温稳定性(在无氧3000℃条件下可保持很好的结构稳定性)和优异的导电和导热性能,超强的高温稳定性使它们非常有利于作为金属基复合材料的增强体。镁合金具有热稳定性高、导热性好、电磁屏蔽能力强和阻尼性能好等优点,已被广泛应用于移动电话、电脑、摄像机等电子产品中。在航空、航天方面,镁合金因密度小,比强度高可有效地减轻航

高性能稀土镁合金及其研究进展

高性能稀土镁合金及其研究进展 镁合金作为一种轻质的绿色工程材料具有很大的应用前景,被称为21世纪的“绿色工程材料”。然而,大部分镁合金的力学性能(尤其高温力学性能)较差,使其应用受到限制。因此,如何改善其力学性能成为亟待解决的问题。添加合金化元素是常用来改善镁合金力学性能的手段之一,尤其是添加稀土元素。稀土元素对镁合金具有“净化”“细化”“强化”“合金化”的四重作用。Mg-RE系合金因其优异的高温拉伸性能、抗蠕变性能及良好的塑性成形能力而备受青睐,被认为是最具有应用前景的高温高强合金体系。因此,本文主要综述近年来国内外在高性能稀土镁合金方面的研究进展,重点介绍制备高性能镁合金的制备方法、加工技术、热处理工艺、强韧化机制及目前研究中存在的问题与不足。 1.Mg-RE系合金 Mg-RE系合金是目前镁合金中最重要的高强耐热镁合金体系,尤其是含有重稀土元素(Gd、Y、Dy、Ho、Er等)的镁合金。Mg-RE系二元合金的时效硬化特性、强度与稀土添加量成正比关系,如在 Mg-Gd二元合金体系中Gd的质量百分含量若低于10%则合金的时效析出偏低或者无析出,直接导致合金的强度及耐热性能降低。为了降低稀土的添加量且不影响时效硬化特性效果,在Mg-RE二元合金的基础上添加其它合金化元素开发出了三元、四元等稀土镁合金。目前,稀土镁合金主要包括在Mg-Gd体系上形成的Mg-Gd-Y、Mg-Gd-Er、Mg-Gd-Ho、Mg-Gd-Dy等系列合金,在Mg-Y体系上形成的Mg-Y-Gd、Mg-Y-Nd、Mg-Y-Sc-Mn 等系列合金,为了细化晶粒稀土镁合金中常常加入Zr元素。 除了早期的WE54、WE43合金,Mordike等通过添加Sc及Mn等元素,开发了抗蠕变性能优于WE43合金的Mg-4Y-1Sc-1Mn(wt.%)合金;He等用普通铸造+挤压+峰值时效的方法制备了高强耐热Mg-10Gd-2Y-0.5Zr(wt.%)合金,其室温下的屈服强度、抗拉强度、延伸率分别可高达331 MPa、397 MPa、1%。最近,Li等通过轧制+时效的方法制备了Mg-14Gd-0.5Zr 合金,其屈服强度、延伸率分别可高达445 MPa、2%。Mg-RE系合金是目前最适合、最有前途的可应用在航空航天或汽车上的镁合金材料,多数单位都将此系列合金的目标性能提高到550Mpa-600Mpa,稳定使用温度在200 o C。晶粒细化、形变强化、沉淀强化是目前稀土镁合金采用的强化手段。目前的研究主要集中在沉淀强化方面。Mg-RE系合金主要的时效析出强 化相为β′′ (DO 19)、β′(cbco),其中,β′′相的化学成分为Mg 3 RE, β′相的化学成分为Mg15RE3。 β′相与基体具有半共格关系,匹配较好,大量、致密、规则析出的β′相,可有效阻止位错运动,被认为是合金强度提高的主要原因之一。 目前的研究仍有不足,主要表现在以下几个方面:(1)合金中含有大量的稀土,导致合金成本偏高;(2)合金的塑性加工性能偏差,有必要寻找改善合金塑性的新方法、新理论;(3)合金的塑性变形机制研究较少,需大研究稀土溶质原子、晶粒尺寸、晶界类型、织构等对滑移系机制的影响规律。 2.Mg-RE-Zn系合金 Mg-RE-Zn合金是现在研究的一个热点,一方面因为Kawamura于2001年用快速凝固粉/