ansys与fluent区别

ansys与fluent区别
ansys与fluent区别

流动传热的问题建议用fluent,纯导热问题用ansys。因为ansys的热分析模块只能处理纯传热问题,不计算流场。ansys的强项在于处理固体问题,流体有关的问题不是它的擅长,是fluent的擅长。

所以楼主的问题属于固壁传热问题,原来的ansys就可以较好的解决。

另外,虽然说ansys先后收购了CFX和fluent这两个软件,但是ansys仅是指ansys本身的软件,不包括上面的两个。个人看法:暂时不会出新的混合了上述三种的所谓的新ansys,因为从算法上讲,ansys用的是有限元算法,而fluent和CFX用的是有限体积法,所以暂时无法整合到一起。

两者最根本的区别在于求解方法的不同,Fluent用的是有限容积法,而Ansys用的是有限元法。

如果是用来算固体的稳态或者非稳态传热,比如固体的热传导,耦合热应力,ansys好很多。) Y4 |( E& D$ a7 z! g1 t. m5 o- v

如果是有流场、自然对流等的情况下,fluen好些。

; N! p$ `/ X, e/ d5 _三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江主要是应用的场合不同,要是用过这两个软件就知道了。

( d1 I7 O0 j7 f D7 P& M) T7 j三维网技术论坛但平心而论,ansys的热分析功能强大不少。

有限容积法

其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

编辑本段五部分

有限容积法(FVM)是计算流体力学(CFD)和计算传热学(NHT)中应用最广泛的数值离散方法。它通常包括如下五个部分: 1. 网格生成 2. 对流项的离散化 3. 边界条件的离散化 4. 压力速度耦合 5. 离散方程的求解对以上五个部分的处理将直接影响到最准结果的

有限元法

将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。

ANSYS FLUENT 介绍

想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。今天,全球数以千计的公司得益于FLUENT的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD软件。 FLUENT因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT受到企业的青睐。 网格技术,数值技术,并行计算 计算网格是任何CFD计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。这些网格可以使用FLUENT的前处理软件GAMBIT自动生成,也可以选择在ICEM CFD工具中生成。 在目前的CFD市场, FLUENT以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux或Unix平台,而且既适用单机的多处理器又适用网络联接的多台机器。动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU的计算负载。

湍流和噪声模型 FLUENT的湍流模型一直处于商业CFD软件的前沿,它提供的丰富的湍流模型中有经常使用到的湍流模型、针对强旋流和各相异性流的雷诺应力模型等,随着计算机能力的显著提高,FLUENT已经将大涡模拟(LES)纳入其标准模块,并且开发了更加高效的分离涡模型(DES),FLUENT提供的壁面函数和加强壁面处理的方法可以很好地处理壁面附近的流动问题。 气动声学在很多工业领域中倍受关注,模拟起来却相当困难,如今,使用FLUENT可以有多种方法计算由非稳态压力脉动引起的噪音,瞬态大涡模拟(LES)预测的表面压力可以使用FLUENT内嵌的快速傅立叶变换(FFT)工具转换成频谱。Fflow-Williams&Hawkings声学模型可以用于模拟从非流线型实体到旋转风机 叶片等各式各样的噪声源的传播,宽带噪声源模型允许在稳态结果的基础上进行模拟,这是一个快速评估设计是否需要改进的非常实用的工具。

语音识别技术的发展与未来

语音识别技术的发展与未来 与机器进行语音交流,让它听明白你在说什么。语音识别技术将人类这一曾经的梦想变成了现实。语音识别就好比“机器的听觉系统”,该技术让机器通过识别和理解,把语音信号转变为相应的文本或命令。 在1952年的贝尔研究所,Davis等人研制了世界上第一个能识别10个英文数字发音的实验系统。1960年英国的Denes等人研制了第一个计算机语音识别系统。 大规模的语音识别研究始于上世纪70年代以后,并在小词汇量、孤立词的识别方面取得了实质性的进展。上世纪80年代以后,语音识别研究的重点逐渐转向大词汇量、非特定人连续语音识别。 同时,语音识别在研究思路上也发生了重大变化,由传统的基于标准模板匹配的技术思路开始转向基于统计模型的技术思路。此外,业内有专家再次提出了将神经网络技术引入语音识别问题的技术思路。 上世纪90年代以后,在语音识别的系统框架方面并没有什么重大突破。但是,在语音识别技术的应用及产品化方面出现了很大的进展。比如,DARPA是在上世界70年代由美国国防部远景研究计划局资助的一项计划,旨在支持语言理解系统的研究开发工作。进入上世纪90年代,DARPA计划仍在持续进行中,其研究重点已转向识别装置中的自然语言处理部分,识别任务设定为“航空旅行信息检索”。 我国的语音识别研究起始于1958年,由中国科学院声学所利用电子管电路识别10个元音。由于当时条件的限制,中国的语音识别研究工作一直处于缓慢发展的阶段。直至1973年,中国科学院声学所开始了计算机语音识别。 进入上世纪80年代以来,随着计算机应用技术在我国逐渐普及和应用以及数字信号技术的进一步发展,国内许多单位具备了研究语音技术的基本条件。与此同时,国际上语音识别技术在经过了多年的沉寂之后重又成为研究的热点。在这种形式下,国内许多单位纷纷投入到

语音识别方法及发展趋势分析

语音识别改进方法及难点分析 ——《模式识别》结课小论文 学院:化工与环境学院 学号:2120151177 姓名:杜妮

摘要:随着计算机技术的不断发展,人工智能程度也越来越高,作为人工智能的一部分——模式识别也在模型和算法上愈发成熟。本文根据近105年文献,分析最新声音识别的方法和应用。 关键字:模式识别声音识别方法应用 随着人工智能的迅速发展,语音识别的技术越来越成为国内外研究机构的焦点。人们致力于能使机器能够听懂人类的话语指令,并希望通过语音实现对机器的控制。语音识别的研究发展将在不远的将来极大地方便人们的生活。 语音识别大致的流程包括:特征提取、声学模型训练、语音模型训练以及识别搜索算法。作为一项人机交互的关键技术,语音识别在过去的几十年里取得了飞速的发展,人们在研究和探索过程中针对语音识别的各部流程进行了各种各样的尝试和改造,以期发现更好的方法来完成语音识别流程中的各步骤,以此来促进在不同环境下语音识别的效率和准确率。本文通过查阅近10年国内外文献,分析目前语音识别流程中的技术进展和趋势,并在文章最后给出几项语音识别在日常生活中的应用案例,从而分析语音识别之后的市场走势和实际利用价值。 一、语音识别的改进方法 (一)特征提取模块改进 特征提取就是从语音信号中提取出语音的特征序列。提取的语音特征应该能完全、准确地表达语音信号,特征提取的目的是提取语音信号中能代表语音特征的信息,减少语音识别时所要处理的数据量。语音信号的特征分析是语音信号处理的前提和基础,只有分析出可以代表语音信号本质特征的参数,才能对这些参数进行高效的语音通信,语音合成,和语音识别等处理,并且语音合成的好坏,语音识别率的高低,也都取决于语音特征提取的准确性和鲁棒性。目前,针对特定应用的中小词汇量、特定人的语音识别技术发展已较为成熟,已经能够满足通常应用的要求,并逐步投入了实用。而非特定人、大词汇量、连续语音识别仍是

基于深度学习的语音识别——文献阅读笔记

语音识别 1 《基于深度学习的语音识别应用研究》 语音识别主要作用就是把一段语音信号转换成相对应的文本信息,系统主要由声学特征提取、语言模型、声学模型和解码器等组成。训练识别的过程是从原始波形语音数据中提取的声学特征经过训练得到声学模型,与发声词典、语言模型组成网络,对新来的语音提取特征,经过声学模型表示,通过维特比解码得出识别结果。 特征 系统主要由声学特征提取、语言模型、声学模型和解码器等组成。 音识别中的特征包括:线性预测参数(LinearPredictionCoefficients,LPC)、倒谱系数(Cepstral Coefficients, CEP)、梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients, MFCC)和感知线性预测系数(Perceptual Linear Prediction, PLP)等。 声学模型 声学基元选择 词(Word)、音节(Syllable)、声韵母(Initial/Final) 以及音素(Phone) HMM声学建模 隐马尔科夫模型 声学模型训练准则 最大似然准则 语言模型 统计语言模型,通过概率来表示词序列在语言环境中出现的可能性,并不是基于语法规则的简单判断。 解码器 通过在一个由语言模型、发声词典、声学模型构成的网络空间中 搜索得分较高的状态序列,其中这里的网络空间有动态网络和静态网络,得分主要由声学模型得分和语言模型得分共同决定。 语音识别的深度学习 CNN 将语音看做二维特征输入时,第一维是时域维度,第二维是频域维度,这两维的物理意义完全不同!.

输入层、卷积核、特征图(feature map)都是一维的。 用Kaldi中特征提取工具以帧长25ms、巾贞移10ms,提取原始数据生成39维MFCC特征(12维滤波器输出值加上1维对数能量,以及其一阶差分和二阶差分)。分布满足a, =0及德尔塔=1,这么做可以直接避免训练样本分布的重新估计。 总结 通过深度神经网络提取语音特征的方法、深度神经网络提取声韵母属性的方法和深度学习搭建声学模型的方法的语音识别系统与MFCC特征下GMM-HMM 搭建的系统就词识别率的结果比较可以看出,深度学习网络替换GMM模型做状态输出的系统识别错误率最低,深度神经网络提取声韵母属性的方法的效果次之,深度神经网络提取语音特征效果比深度神经网络提取声韵母属性效果差,但是比MFCC的系统好。 2 卷积神经网络在语音识别中的应用 将语音看做二维特征输入时,第一维是时域维度,第二维是频域维度。 DNN上实验证明,多帧串联的长时特征对模型性能的提高很重要。当前帧的前后几帧串联起来构成长时特征。 频域维度上,一般采用梅尔域的滤波带系数( filterbank) 作为参数( 如图% 中选择+ 个滤波频带) 在送入B++ 训练前,将多帧串联构成长时 特征!所有特征都进行了逐句的均值方差规整! 英文标准连续语音识别库TIMIT 主流的语音识别系统基本上都是以隐马尔科夫模型为基础所建立的 倒谱均值方差归一化、声道长度归一化以及RASTA滤波 用深度学习方法提取语音高层特征通常可以采用MFCC、PLP以及filter-bank 等参数作为输入。

FLUENT和ANSYS的并行计算设置

Fluent并行计算 以2核为例: 1:找到fluent安装目录中的启动程序,在地址栏中复制目录例如:C:\Fluent.Inc\ntbin\ntx86 2:开始-->程序-->附件-->命令提示符 cd C:\Fluent.Inc\ntbin\ntx86 3:fluent 3d –t2 (启动3d模型,两核) 6.在ansys中使用多核处理器的方法: 使用AMG算法,可以使多个核同时工作。使用方法1或2. 方法1: (1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys. (2). 然后在求解前执行如下命令: finish /config,nproc,n!设置处理器数n=你设置的CPU数。 /solu eqslv,amg !选择AMG算法 solve !求解 方法2: (1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys. (2). 在D:\professional\Ansys Inc\v90\ANSYS\apdl\start90.ans中添加一行:/config,nproc,2.别忘了把目录换成你自己的安装目录. 化学反应软件 FactSage_Demo COMSOL

Courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。 在FLUENT中,用courant number来调节计算的稳定性与收敛性。一般来说,随着courant number的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。FLUENT计算开始迭代最好使用较小的库朗数,否则

用ANSYS和FLUENT进行管壳式换热器整体分析

用ANSYS和FLUENT进行管壳式换热器整体分析 作者:郭崇志林长青 利用数值模拟计算软件进行管壳式换热器的流体力学和传热性能计算及评估已经成为开发和研究管壳式换热器的重要手段之一,由于结构和流道复杂,导致准确地进行换热器的流体力学性能和传热性能计算和评估有一定的困难。而对换热器的结构性能进行准确分析一般都需要进行流固耦合模拟,如果要同时进行换热器的流体流动与传热和结构性能分析就更加困难。 有关管壳式换热器的温度场研究,目前大多数文献集中于研究管板的温度场及所产生温差应力、以及由此导致的结构强度等问题,通常利用ANSYS 大型商用软件行管壳式换热器管板结构的温度场研究,采用简化的三维实体模型较多,一般利用已知的平均温度或利用已知的换热(膜)系数对几何结构模型加载,而这些已知条件通常来源于手册提供的数据或者经验数据,并非来源于严格的换热器流体力学与传热工艺的数值计算,因此是产生结果计算偏差的主要原因之一。 目前文献对于给定工艺条件下管壳式换热器的整体温度场研究的并不多,由于准确的温度场是研究温差应力及其危害的前提,因此本文利用FLUENT 和ANSYS 软件对一台固定管板换热器的约束构件之间的整体结构在正常运行工况下的数值模拟问题进行了研究,首先从计算流体力学与传热的角度出发,利用FLUENT软件进行换热器流体流动与传热的工艺状况数值模拟。然后把FLUENT 软件的数值模拟结果导入ANSYS中作节点插值,完成温度场的重建,作为进行换热器的热分析以及结构分析的边界条件。从而实现了管壳式换热器的FLUENT 和ANSYS 联合仿真模拟,综合整个过程可以很好地完成同一条件下换热器的流体力学与传热和结构性能分析,使得换热器的工艺性能计算与结构分析计算完整地结合在一起,计算精度更高。 1 CFD数值模拟 本文研究的换热器结构示意如图1所示,在对实际结构进行合理简化的基础上,以影响流动和传热的主要结构建立了某固定管板式换热器温度场数值计算模型,采用分段模拟、整体综合的方法,利用FLUENT软件对该换热器在正常操作工况下的流动与传热情况进行数值模拟[8] ,得到计算流道上有关各个构件的壁温场分布。

Ansys与FLUENT中MHD(Magnetohydrodynamics)模型接口

用户手册

目录 1 免责声明 (1) 2 前言 (2) 3 软件概述 (2) 3.1 软件简介 (2) 3.2 功能特点 (2) 4 软件安装 (2) 5 软件操作指南 (3) 5.1 整体操作流程 (3) 5.2 如何得到坐标文件(Coordinate File)和磁场文件(B File) (3) 5.3 将坐标与磁场文件导入软件 (6) 5.4 设置参数 (6) 5.5 计算并得到目标文件(*.mag) (9) 5.6 将目标文件导入FLUENT (9) 6 帮助 (10)

1 免责声明 本软件为北京科技大学绿色冶金及冶金过程模拟仿真研究室(Laboratory of Green Process Metallurgy and Modeling,以下称LGPMM)为提供ANSYS与FLUENT中MHD模型的接口而制作,本说明书所载所有内容(包括但不限于文字叙述、图片与其它信息等)均受著作权法及其它智慧财产权法规保护,LGPMM保留一切法律权利,非经LGPMM授权同意使用,此处数据或内容均不得以任何形式予以重制或其它不当侵害。 免责声明 本服务及软件乃依其ANSYS模拟结果文件为基础提供FLUENT中MHD所需磁场文件,不提供ANSYS模拟结果之前及FLUENT中MHD加载磁场文件之后之保证。对于因使用本服务及软件而产生任何损害(包括模拟结果及其权利纠纷之损害),即便本研究室已被告知此类损害之可能,均不负任何责任。 本研究室保留任何时刻修改本用户手册之权利,恕不另行通知。

2 前言 本手册是专为ANSYS与FLUENT中MHD(Magnetohydrodynamics)模型接口V2.0用户编写的。与本手册配套的软件版本为ANSYS与FLUENT中MHD(Magnetohydro-dynamics)模型接口V2.0,手册包含软件的总体介绍及用户操作说明。 3 软件概述 3.1 软件简介 ANSYS与FLUENT中MHD(Magnetohydrodynamics)模型接口是一款用于仿真模拟的软件,可将ANSYS磁场模拟结果转为FLUENT中MHD模型所需加载的磁场文件(*.mag)。使用该软件可节省大量人力及时间,并且不会产生因人为操作而导致的错误或误差。 该软件适用于ANSYS磁场的三维(3D)模拟,将其结果用于FLUENT中MHD模型的二维(2D)和三维(3D)模拟,暂不提供ANSYS磁场的二维(2D)模拟。 3.2 功能特点 ●软件界面简洁,操作简单,用户可以迅速上手。 ●节省人力及时间,且不会产生人为错误或误差。 ●支持ANSYS三维(3D)与FLUENT中MHD模型的二维(2D)和三维(3D)模拟操 作。 4 软件安装 该软件是基于MATLAB R2012a开发,其运行环境为MATLAB R2012a,即需安装MATLAB R2012a.exe或安装该版本库函数包MCRInstaller.exe。运行该软件前需安装与其配套使用的KEY.exe文件(如图4-1)。 图4-1

ansysfluent13.0or14.0tutorials教程

Ansys FLUENT Tutorials └─ANSYS FLUENT ├─ANSYS-FLUENT-Intro_13.0_1st-ed_pdf ││fluent_13.0_Agenda.pdf ││fluent_13.0_TOC.pdf ││ │├─lectures ││fluent_13.0_lecture01-welcome.pdf ││fluent_13.0_lecture02-intro-to-cfd.pdf ││fluent_13.0_lecture03-solver-basics.pdf ││fluent_13.0_lecture04-boundary-conditions.pdf ││fluent_13.0_lecture05-solver-settings.pdf ││fluent_13.0_lecture06-turbulence.pdf ││fluent_13.0_lecture07-heat-transfer.pdf ││fluent_13.0_lecture08-udf.pdf ││fluent_13.0_lecture09-physics.pdf ││fluent_13.0_lecture10-transient.pdf ││fluent_13.0_lecture11-post.pdf ││ │├─workshop-input-files ││├─workshop1-mixing-tee │││ fluidtee.meshdat │││ ││├─workshop2-airfoil-new │││ NACA0012.msh │││ mach_0.5_ │││ mach_0.5_ │││ mach_0.7_ │││ mach_0.7_ │││ test-data-bottom.xy │││ test-data-top.xy │││ ││├─workshop3-multi-species │││ calc_activities.jou │││ garage.msh │││ workshop3- │││ workshop3- │││ ││├─workshop4-electronics │││ │││ ws4_no- │││ ws4_no- │││ ws4_s2s- │││ ws4_s2s-

汉语连续语音识别中声学模型

第六届全国人机语音通讯学术会议,267-271页,2001年11月20-22日,深圳 汉语连续语音识别中声学模型基元比较汉语连续语音识别中声学模型基元比较:: 音节音节、、音素音素、、声韵母 李净,徐明星,张继勇,郑方,吴文虎,方棣棠 语音技术中心,智能技术与系统国家重点实验室, 清华大学计算机科学与技术系, 北京, 100084 [lijing, xumx, zjy, fzheng, wuwh]@https://www.360docs.net/doc/5e8202517.html,, fangdt@https://www.360docs.net/doc/5e8202517.html, https://www.360docs.net/doc/5e8202517.html, 摘要 本文研究的是汉语连续语音识别中声学模型基元的选 择问题。根据汉语语音的特点,本文分别采用音节、 音素和声韵母等三种语音识别基元进行声学建模。为 了描述连续语音中的协同发音现象,本文针对音素和 声韵基元,设计了相应的问题集,利用基于决策树的 状态共享策略建立了上下文相关音素模型 (Triphone )和上下文相关声韵模型(TriIF ),并对 几种声学基元进行了对比。实验结果表明,对于上下 文无关模型,音素和声韵模型都要劣于音节模型,而 对于上下文相关模型,Triphone 和TriIF 模型与音节 模型相比,识别性能有了很大提高,其音节误识率分 别降低了8.5%和23.6%。 1. 引言 声学建模是连续语音识别中声学层面处理的关键步骤。声学模型用来描述识别基元对应的特征矢量序列的产生过程。通过声学建模,可以估计待识别特征矢量序列所对应的语音识别基元,从而完成特征矢量序列到语音识别基元的识别转换。 基元的选择是声学建模中一个基本而重要的问题。在汉语连续语音识别中,可以选择的基元包括:词(Word )、音节(Syllable )、半音节(Semi-Syllable )、声韵母(Initial/Final )、音素(Phone )等。识别基元的选择一般是基于语音学知识的,但是,基元也可以通过数据驱动的方式来产生,使用这种方式确定的基元可能在语音学上没有什么明确的意义,但也可以达到很好的性能。 对于词,在小词表语音识别系统中,或者命令与控制(Command & Control )系统中,使用词作为识别基元是适当的。但是,在连续语音识别中将词作为识别基元是不合适的。首先,在连续语音识别系统中,词条的数目比较多,一般都要使用几千或者几万 条词条,所以声学模型的规模必然很大。这不但会增 加存储的开销,还会极大地增加搜索的复杂度。其 次,当词表以外的词条,即OOV (Out Of Vocabulary )问题出现时,声学模型处理起来比较困 难。第三,要对这么多基元进行训练,必然需要一个 很大的数据库,并且要尽量覆盖词表中的词条,这一 点是很难达到的。所以,在汉语连续语音识别系统 中,采用类似于词这样较长的语音段作为识别基元是 不合适的。 对于音节,在汉语中,无调音节约有400个,如果考虑音调,有1300多个有调音节[1]。在进行上下文无关的声学建模时,使用有调或者无调音节是可以的,而且还可以取得相当好的性能,因为音节作为识别基元时,它很好地刻划了音节内部的变化。但是,在连续语音识别中,音节间的协同发音现象是比较严重的,因此,必须采用适当的方式来描述这种现象。一般地,上下文相关信息应在声学建模中加以考虑,这样,识别基元就会变成上下文相关的基元。如果采用音节作为识别基元,当考虑上下文信息时,基元数目会变得非常庞大,这将会使声学模型的规模变得无法接受。同时,由于基元数目过大,也会引起训练数据稀疏的问题,从而难以对模型参数给出较为准确的估计。所以,在进行上下文相关建模时,不适宜采用 音节模型。 音素在汉语中有三十多个(本文中定义的音素数目为35个)。音素基元在英语连续语音识别系统中得到了广泛的应用,并取得了很好的识别性能[2][3]。由此可见,音素也是一个很好的选择。但音 素并没有反映出汉语语音的特点,而且,相对于声韵母,音素显得更加不稳定,这一方面给手工标注带来了困难,同时,也给声学描述带来困难。 对于半音节和声韵母,它们在形式和数量上十分接近。半音节就是将音节分为两部分,而声韵母的划分更依赖于汉语语音学的知识。可以说,声韵母基元是适合汉语特点的一种识别基元,使用这种基元,还可以有很多语言学知识可以利用,从而进一步提高声 学模型的性能。声韵母作为识别基元具有以下优点: ? 汉语中的汉字是单音节的,而汉语中的音节是声韵结构的,这种独特而规则的结构,使对音节、以及词条的表示变得比较规则和统一; ? 使用声韵母作为识别基元,上下文相关信息也变得比较确定。比如,与声母相接的只能是韵母或者静音,而与韵母相接的也只能是声母或静音,而且,韵母左边相接的声母只能是与其搭配起来能够成汉语音节的那些声母。所以,上下文相关的声韵母基元的数目并不是基元数目的立方,而是远远小于这个数值的。

PocketSphinx语音识别系统声学模型的训练与使用

声学模型主要用于计算语音特征和每个发音模板之间的似然度。目的是为每个声学单元建立一套模型参数(通过不断地学习和改进得到最优的,也就是概率最大的一组HMM模型参数)。 需要训练的情况: 1)需要创建一个新的语音或者方言的模型; 2)为你的小词汇的应用创建一个特定的模型; 3)你有足够的大量的语音数据:单的人的话(控制指令)需要1小时的录音,200个人的话需要50小时的录音。 4)你需要有语言的音素结构的知识; 5)你有足够的时间去训练和优化(大概需要一个月)。 如果不具备以上的情况或者条件,那么用模型增强(适应)比训练一个新的模型更有效。 另外,你的语音数据库应该能够比较好地代表你所要识别的语音,而且最好是多个人的录音数据,而且包含多种录音情况,还有所有可能的语言学句子。语音数据库包含两个部分:训练集和测试集,一般来说,测试集占全部数据库的1/10,但最好不要超过4个小时的录音时长。获得一个语音数据库的一个比较好的方式是:

1)对现有的你需要识别的语音的录音材料进行切割,例如新闻或者电台播音等; 2)把你身边的人,例如家人,朋友或者同事的语音录下来; 3)在voxforge上面收集; 关于语音识别的基础知识和sphinx的知识,具体可以参考我的另外的博文: 语音识别的基础知识与CMUsphinx介绍: https://www.360docs.net/doc/5e8202517.html,/zouxy09/article/details/7941585 PocketSphinx语音识别系统的编译、安装和使用: https://www.360docs.net/doc/5e8202517.html,/zouxy09/article/details/7942784 PocketSphinx语音识别系统语言模型的训练和声学模型的改进: https://www.360docs.net/doc/5e8202517.html,/zouxy09/article/details/7949126 SphinxTrain是CMU大学开发的开源声学模型训练器。此工具可以训练适应于PocketSphinx的半连续HMM声学模型,也可以训练应用于Sphinx3的连续HMM声学模型。

ansys与fluent区别

流动传热的问题建议用fluent,纯导热问题用ansys。因为ansys的热分析模块只能处理纯传热问题,不计算流场。ansys的强项在于处理固体问题,流体有关的问题不是它的擅长,是fluent的擅长。 所以楼主的问题属于固壁传热问题,原来的ansys就可以较好的解决。 另外,虽然说ansys先后收购了CFX和fluent这两个软件,但是ansys仅是指ansys本身的软件,不包括上面的两个。个人看法:暂时不会出新的混合了上述三种的所谓的新ansys,因为从算法上讲,ansys用的是有限元算法,而fluent和CFX用的是有限体积法,所以暂时无法整合到一起。 两者最根本的区别在于求解方法的不同,Fluent用的是有限容积法,而Ansys用的是有限元法。 如果是用来算固体的稳态或者非稳态传热,比如固体的热传导,耦合热应力,ansys好很多。) Y4 |( E& D$ a7 z! g1 t. m5 o- v 如果是有流场、自然对流等的情况下,fluen好些。 ; N! p$ `/ X, e/ d5 _三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江主要是应用的场合不同,要是用过这两个软件就知道了。 ( d1 I7 O0 j7 f D7 P& M) T7 j三维网技术论坛但平心而论,ansys的热分析功能强大不少。 有限容积法 其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。 编辑本段五部分 有限容积法(FVM)是计算流体力学(CFD)和计算传热学(NHT)中应用最广泛的数值离散方法。它通常包括如下五个部分: 1. 网格生成 2. 对流项的离散化 3. 边界条件的离散化 4. 压力速度耦合 5. 离散方程的求解对以上五个部分的处理将直接影响到最准结果的

ansys15.0-fluent操作步骤

Fluent 操作步骤 1.模型建立:用SolidWorks建模,保存成x_t格式(exercise1),用于稍后导入fluent。 2.网格划分:打开ansys15.0中的workbench15.0软件,在component systems中双击或者 拖mesh到project schematic; 导入文件:在geometry右键import geometry /browse /exercise1; 定义初始条件:在mesh右键edit,进入mesh-meshing[ansys icem cfd],定义流体inlet、outlet、wall等初始条件。点击,选择流体进口面右键create named selection ,把selection更改成inlet; 同理,定义出口面为outlet; 未定义的实体表面默认为wall。 开始划分网格:,单击中的mesh把default /Physics Preference下可选项更改成CFD,同时把solver preference下可选项更改成fluent,然后点击 进行网格划分,保存文件save project,关闭。 此时在workbench中出现两个对号,表示网格划分完成。 3.打开fluent软件,设置参数求解,如图: 出现界面:

应先update,再edit。 单击edit,如图。设置参数,单击OK。 出现界面,部分界面如图: 在solution setup下Generate,单击check检查网格。 单击models,单击viscous-laminar,单击edit进行设置,在model下选择K-epsilon,其他条件一般默认。 单击materials,单击fluid,单击create/edit对流体属性进行设置;单击solid,单击create/edit 对固体属性进行设置。

基于声学模型的语音识别专利技术综述

龙源期刊网 https://www.360docs.net/doc/5e8202517.html, 基于声学模型的语音识别专利技术综述 作者:尤鑫陈雪梅 来源:《科学与信息化》2018年第34期 摘要语音识别是以语音为研究对象,让机器通过识别和理解过程把语音信号转变为相应的文本或命令,使人机能自然地进行语音交流的技术。语音识别涉及生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及人的体态语言,其最终目标是实现人与机器进行自然语言通信。本文从基于声学模型的语音识别的研究现状及原理、技术路线演进等方面进行技术分析。 关键词语音识别;声学模型;技术路线演进 1 总览 现在语音识别系统已经开始从实验室走向实用,出现了比较成熟的已推向市场的产品。许多发达国家如美国、日本、韩国以及IBM、Apple、Microsoft、AT&T等著名公司都为语音识别系统的实用化开发研究投以巨资[1]。 1.1 专利技术分解 语音识别基于声学模型,从技术上可以分解为两类:模型拓扑结构与模型训练方法。目前最常用也最有效的声学识别模型包括隐马尔科夫高斯混合模型(HMM)和深度神经网络隐马尔科夫模型等。声学模型训练通常采用最大似然估计准则、区分性训练准则、自适应方法、有监督训练、和无监督训练方法。 1.2 专利申请量趋势 国外对语音产品的研究开始比较早,经过几十年的努力和沉淀,尤其进入20世纪90年代后,语音技术进一步成熟,开始向市场提供商业化运作比较成熟的产品。自2011年以后,申请量增长极为迅速;此后近3年来的申请都达到了较大值。国内,基于声学模型的语音识别技术发展相对国外较为滞后,在萌芽期阶段每年的申请量几乎为0,从2000 年到2011,国内专利申请呈现缓慢增长趋势。2011年后,随着需求的提升以及国外、国内语音识别成为热点, 国内申请量也随之迅速增长[2]。 1.3 主要申请人 微软作为全球最大的PC软件公司以及后来中国IT产业百度等公司的兴起,使得中国的申请量占据了大部分比重。其他传统的IT巨头,如IBM、英特尔、百度等以及专业语音技术厂商,如Nuance等,都占据了极大的比重。

AnsysWorkbench_15_Fluent示例

Fluent示例 鉴于网上Fluent免费资料很少,又缺少实例教程。所以,分享此文章,希望对大家有所帮助。 1.1问题描述 本示例为ansys-fluent15.0-指南中的,不过稍有改动。

1.2 Ug建模图 1.3 Workbench设置 项目设置如下图所示。(为了凸显示例,所以个项目名称没改动; 并且用两种添加项目方式分析,还增加了一个copy项,以供对比。)

说明:ansys workbench15.0与ug8.5(当然,也包括同一时期的solidworks、Pro/e等三维CAD软件)可无缝连接,支持ug8.5建立的模型,可直接导入到ansys workbench15.0中。 方法:在workbench中的Geometry点击右键,弹出快捷菜单,选择“browse”,浏览到以保存的文件,打开即可。个人感觉workbench 建模不方便。 1.4 DM处理 Workbench中的DM打开模型,将导入的模型在DM中切片处理,以减少分网、计算对电脑硬件的压力(处理大模型常用的方法,也可 称之为技巧)。最终效果,如下图所示。

为以后做Fluent方便,在这里要给感兴趣的面“取名”(最好是给每一个面都取名。这样,便于后续操作)。 方法是右键所选择的面,在弹出的对话框中“添加名称”即可,给“面”取“名“成功后,会在左边的tree Outline中显示相应的“名”。结果如下图所示(图中Symmetry有两个,有一个是错的,声明一下)

1.5 Mesh设置 如下图所示。 在Mesh中insert一个sizing项(右键Mesh,选Sizing即可),以便分体网格,其设置如下:

基于ANSYS FLUENT的两相流分析例1

基于ANSYS FLUENT的两相流分析例1 众所周知,FLUENT和CFX是ANSYS中最牛的两个流体分析软件。下面以FLUENT 为例,说明其在多相流分析中的应用。该例子来自于FLUENT帮助,但是其建模,网格划分以及命名集的定义方式则进行了改变。希望该例子对于大家做多相流的分析有所帮助。 问题:一个水-空气混合物在管道内向上流动,在T型交叉点分成两支。管道宽25mm,输入部分长125mm,顶部和右边都是250mm。空气和水在进口处的速度见下图,而两个出口处的出流权重分为为0.38和0.62.现在要求对该两相流做一个稳态分析。 使用ANSYS fluent分析过程如下 (1)创建项目示意图(WORKBENCH) 设置geometry单元格的属性

(2)创建几何模型(geometry) 设置单位为mm 创建草图并施加尺寸约束

修改模型 从草图生成面物体 这样,几何建模工作完成,存盘后退出DM. (3)划分网格并设置命名集(mesh)

下面进入到mesh单元格,首先划分网格,添加一个尺寸控制,并设置单元划分尺寸为2.5mm. 划分网格结果如下 然后定义命名集,其实就是定义速度进口边,以及流出边。这些定义会在后面用到。 选择最下面这条边,并定义命名集inlet 再选择最右边这条边,定义命名集outlet1

最后选择最上边这条边,定义命名集outlet2 这样,网格划分和命名集定义结束,存盘并退出mesh. (4)设置流体分析模型(setup) 点击WB中的setup,马上弹出下列对话框

OK后进入fluent。 (4.1)设置一般选项 进入general菜单项,接受默认设置。做基于压力的稳态分析,是二维的平面问题。 (4.2)定义计算模型 首先确定是多相分析(两相分析)

Ansys Fluent基础详细入门教程(附简单算例)

Ansys Fluent基础详细入门教程(附简单算例) 当你决定使FLUENT解决某一问题时,首先要考虑如下几点问题:定义模型目标:从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使用什么样的边界条件?二维问题还是三维问题?什么样的网格拓扑结构适合解决问题?物理模型的选取:无粘,层流还湍流?定常还是非定常?可压流还是不可压流?是否需要应用其它的物理模型?确定解的程序:问题可否简化?是否使用缺省的解的格式与参数值?采用哪种解格式可以加速收敛?使用多重网格计算机的内存是否够用?得到收敛解需要多久的时间?在使用CFD分析之前详细考虑这些问题,对你的模拟来说是很有意义的。 第01章fluent介绍及简单算例 (2) 第02章fluent用户界面22 (3) 第03章fluent文件的读写 (5) 第04章fluent单位系统 (8) 第05章fluent网格 (10) 第06章fluent边界条件 (36) 第07章fluent流体物性 (55) 第08章fluent基本物理模型 (63) 第11章传热模型 (75) 第22章fluent 解算器的使用 (82)

第01章fluent介绍及简单算例 FLUENT是用于模拟具有复杂外形的流体流动以及热传导的计算机程序。 对于大梯度区域,如自由剪切层和边界层,为了非常准确的预测流动,自适应网格是非常有用的。 FLUENT解算器有如下模拟能力: ●用非结构自适应网格模拟2D或者3D流场,它所使用的非结构网格主要有三角形/五边 形、四边形/五边形,或者混合网格,其中混合网格有棱柱形和金字塔形。(一致网格和悬挂节点网格都可以) ●不可压或可压流动 ●定常状态或者过渡分析 ●无粘,层流和湍流 ●牛顿流或者非牛顿流 ●对流热传导,包括自然对流和强迫对流 ●耦合热传导和对流 ●辐射热传导模型 ●惯性(静止)坐标系非惯性(旋转)坐标系模型 ●多重运动参考框架,包括滑动网格界面和rotor/stator interaction modeling的混合界面 ●化学组分混合和反应,包括燃烧子模型和表面沉积反应模型 ●热,质量,动量,湍流和化学组分的控制体源 ●粒子,液滴和气泡的离散相的拉格朗日轨迹的计算,包括了和连续相的耦合 ●多孔流动 ●一维风扇/热交换模型 ●两相流,包括气穴现象 ●复杂外形的自由表面流动 上述各功能使得FLUENT具有广泛的应用,主要有以下几个方面 ●Process and process equipment applications ●油/气能量的产生和环境应用 ●航天和涡轮机械的应用 ●汽车工业的应用 ●热交换应用 ●电子/HV AC/应用 ●材料处理应用 ●建筑设计和火灾研究 总而言之,对于模拟复杂流场结构的不可压缩/可压缩流动来说,FLUENT是很理想的软件。 解决问题的步骤 确定所解决问题的特征之后,你需要以下几个基本的步骤来解决问题: 1.创建网格. 2.运行合适的解算器:2D、3D、2DDP、3DDP。 3.输入网格(改变量纲) 4.检查网格 5.选择解的格式

Ansys专业的流体力学分析软件:FLUENT介绍

Ansys 专业的流体力学分析软件:FLUENT 介绍 想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。今天,全球数以千计的公司得益于FLUENT 的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD 软件。 FLUENT 因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT 受到企业的青睐。 网格技术,数值技术,并行计算 计算网格是任何CFD 计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT 使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。这些网格可以使用FLUENT 的前处理软件GAMBIT 自动生成,也可以选择在ICEM CFD 工具中生成。 在目前的CFD 市场, FLUENT 以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA 算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux 或Unix 平台,而且既适用单机的多处理器又适用网络联接的多台机器。动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU 的计算负载。 广州有道科技培训中心 h t t p ://w w w .020f e a .c o m

ANSYS fluent菜单中英文对照

1、ANSYS12.1 Workbench界面相关分析系统和组件说明【Analysis Systems】分析系统【Component Systems】组件系统 【CustomSystems】自定义系统【Design Exploration】设计优化 分析类型说明 Electric (ANSYS) ANSYS电场分析 Explicit Dynamics (ANSYS) ANSYS显式动力学分析 Fluid Flow (CFX) CFX流体分析 Fluid Flow (Fluent) FLUENT流体分析 Hamonic Response (ANSYS) ANSYS谐响应分析 Linear Buckling (ANSYS) ANSYS线性屈曲 Magnetostatic (ANSYS) ANSYS静磁场分析 Modal (ANSYS) ANSYS模态分析 Random Vibration (ANSYS) ANSYS随机振动分析 Response Spectrum (ANSYS) ANSYS响应谱分析 Shape Optimization (ANSYS) ANSYS形状优化分析 Static Structural (ANSYS) ANSYS结构静力分析 Steady-State Thermal (ANSYS) ANSYS稳态热分析 Thermal-Electric (ANSYS) ANSYS热电耦合分析 Transient Structural(ANSYS) ANSYS结构瞬态分析 Transient Structural(MBD) MBD 多体结构动力分析 Transient Thermal(ANSYS) ANSYS瞬态热分析 组件类型说明

相关文档
最新文档