差速移动机器人的设计及路径跟踪研究

差速移动机器人的设计及路径跟踪研究

差速移动机器人的设计及路径跟踪研究

现代的制造业正在全面朝着自动化、智能化的方向发展,其中智

能装备及生产线的需求也大大提升。移动机器人是一种高度自动化的智能体,它能代替人工搬运货物,大幅度降低了人工成本,其高效快捷

的运输方式,成为了未来制造业必不可少的智能装备。结合某企业的

要求,本文设计了一款差速移动机器人,对其布局方案及导引方式选

择的基础上,基于Croe 3.0软件,建立了驱动轮及整体的三维实体模型,并利用ANASYS软件对结构进行了有限元分析,对移动机器人的各

功能部件选型进行了详细的阐述,最终完成了移动机器人的方案设计。针对差速移动机器人进行了运动学分析,得到了移动机器人运动学模型,并且基于ADAMS对移动机器人的直行、转弯及自转运动方式进行

了仿真,最终验证结构设计的合理性,为移动机器人运动控制提供依据。在移动机器人运动学分析的基础上,对移动机器人的路径跟踪控

制进行了深入研究,设计了移动机器人路径跟踪的模糊PID控制器。

设计了基于Simulink的移动机器人路径跟踪控制器仿真模型,对其

在不同速度、不同路径下进行仿真,与常规的PID控制器进行了对比。最终进行了移动机器人路径跟踪实验,验证了移动机器人模糊PID控

制器的稳定性及有效性。

智能机器人的现状和发展趋势

智能移动机器人的现状和发展 姓名 学号 班级:

智能移动机器人的现状及其发展 摘要:本文扼要地介绍了智能移动机器人技术的发展现状,以及世界各国智能移动机器人的发展水平,然后介绍了智能移动机器人的分类,从几个典型的方面介绍了智能移动机器人在各行各业的广泛应用,讨论了智能移动机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能移动机器人方面发展并提出期望。 关键词:智能移动机器人;发展现状;应用;趋势 1引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能移动机器人则是一个在感知 - 思维 - 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能移动机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能 力。智能移动机器人与工业机器人的根本区别在于,智能移动机器人具有感知功 能与识别、判断及规划功能[1] 。 随着智能移动机器人的应用领域的扩大,人们期望智能移动机器人在更多领 域为人类服务,代替人类完成更复杂的工作。然而,智能移动机器人所处的环境 往往是未知的、很难预测。智能移动机器人所要完成的工作任务也越来越复杂; 对智能移动机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对 智能移动机器人的研究不断深入。 本文对智能移动机器人的现状和发展趋势进行了综述,分析了国内外的智能 移动机器人的发展,讨论了智能移动机器人在发展中存在的问题,最后提出了对 智能移动机器人发展的一些设想。 1

基于动态滑模控制的移动机器人路径跟踪

第32卷第1期 2009年1月 合肥工业大学学报 (自然科学版) J OU RNAL OF H EFEI UN IV ERSIT Y OF TECHNOLO GY Vol.32No.1  J an.2009  收稿日期:2008204221;修改日期:2008206202 基金项目;先进数控技术江苏省高校重点建设实验室基金资助项目(KX J 07127)作者简介:徐玉华(1985-),男,江西乐平人,合肥工业大学博士生; 张崇巍(1945-),男,安徽巢湖人,合肥工业大学教授,博士生导师. 基于动态滑模控制的移动机器人路径跟踪 徐玉华1, 张崇巍1, 鲍 伟1, 傅 瑶1, 汪木兰2 (1.合肥工业大学电气与自动化工程学院,安徽合肥 230009;2.南京工程学院先进数控技术江苏省高校重点实验室,江苏南京 211167) 摘 要:文章研究了室内环境下基于彩色视觉的移动机器人路径跟踪问题,利用颜色信息提取路径,简化了图像的特征提取;拟合路径参数时引入RANSAC 方法,以提高算法的可靠性;在移动机器人非线性运动学模型的基础上,设计了一阶动态滑模控制器,并通过仿真验证了控制器的有效性。关键词:移动机器人;视觉导航;路径跟踪;动态滑模 中图分类号:TP24 文献标识码:A 文章编号:100325060(2009)0120028204 Mobile robot ’s path following based on dynamic sliding mode control XU Yu 2hua 1, ZHAN G Chong 2wei 1, BAO Wei 1, FU Yao 1, WAN G Mu 2lan 2 (1.School of Electric Engineering and Automation ,Hefei University of Technology ,Hefei 230009,China ;2.Jiangsu Province College Key Laboratory of Advanced Numerical Control Technology ,Nanjing Institute of Technology ,Nanjing 211167,China ) Abstract :In t his paper ,mobile ro bot ’s pat h following in indoor environment based on color vision is st udied.Firstly ,t he image feat ures are extracted by color information so t hat t he real 2time perform 2ance of t he algorit hm is imp roved.To enhance t he ro bust ness of pat h parameter fitting ,a least square met hod based on RANSAC is adopted.Then ,a first 2order dynamic sliding mode cont roller is designed based on t he nonlinear vision 2guided robot ’s kinematics.The simulation proves t he validity of t he con 2t roller. K ey w ords :mobile robot ;visual navigation ;pat h following ;dynamic sliding mode 轮式移动机器人亦称自动引导车(A GV ),有着广泛的应用价值[1]。近年来,随着计算机技术和图像处理技术的发展,移动机器人视觉导航技术成为研究的热点[2]。视觉引导的路径跟踪是视觉导航技术之一。文献[3]基于移动机器人线性化的运动学模型,运用线性二次型最优控制理论设计最优控制器。该控制器对于较小角度的转向控制有一定的优越性,但没有讨论在较大偏差情况下的控制问题。文献[4]提出了一种模仿人工预瞄驾驶行为的移动机器人路径跟踪的模糊控制方法。而在实际应用中,模糊规则难以制定。文献[5]针对全局视觉条件下的轮式移动机器人路径跟踪问题,将基于图像的视觉伺服控制方法引 入到运动控制中,提出一种基于消除图像特征误差的跟踪控制方法。但该方法只适用于小规模环境条件下的使用。 针对以上存在的问题,本文采用价格低廉的车载彩色CCD 相机获取预先铺设引导线的路面实时图像,利用颜色信息提取路径。拟合路径参数时引入了RANSAC 方法,提高了参数拟合的鲁棒性。在移动机器人非线性运动学模型基础之上,设计了一阶动态滑模控制器(Dynamic Sliding Mode Cont roller ,简称DSMC ),在存在较大偏差的情况下也能达到良好的跟踪效果。滑模变结构控制对满足匹配条件的外界干扰和参数变化具有不变性,是一种适用于非线性系统的鲁棒控制方

变电站机器人发展概况及最新发展趋势

移动机器人 移动机器人用途广泛,世界各国正在加紧移动机器人的研制。移动机器人的研究始于60年代末期,斯坦福研究院(SRI)的NilsNilssen和CharlesRosen等人研制出了名为Shakey 的自主移动机器人,它能够在复杂环境下,识别对象、自主推理、实现路径规划和控制功能。美国军方于1984年开始研制第一台地面自主车辆,可以在无人干预的情况下在道路上行驶,也称之为早期的移动机器人。许多国家也各自制定了移动机器人的研究计划,如日本通产省组织的极限环境下作业的机器人计划和欧洲尤里卡中的机器人计划等。虽然由于人们对机器人的研究期望过高,导致80年代的移动机器人的研究虽并未取得预期的效果,却带动了相关技术的发展,为探讨人类研制智能机器人的途径积累了经验,同时推动了其他国家对移动机器人的研究和开发。 上世纪90年代,人类把研究重点放在了移动机器人的应用上,希望移动机器人可以代替人类在各种环境下,尤其是恶劣的条件下辅助人类的工作,为人类服务。1997年7月4日,美国“火星探路者”飞抵火星考察,并在火星上成功着陆,它携带的索杰纳号火星车开始在火星表面漫游,行进了几千米,完成了预定的科学探测任务。进入21世纪后,美国研制的第四个火星探测器—好奇号于2012年8月6号成功降落火星,并展开为期两年的火星探测任务。好奇号火星探测器是第一辆釆用核动力驱动的火星车,其使命是探寻火星上的生命元素。 1992年美国研制出时速75公里的自主车,地面自主车的研制大大推动了遥控机器人的发展。目前美国“自动化技术协会”(ATC),每年在移动机器人运动控制、仿真、传感器的投资超过几亿美元。欧共体(EU)和“机器人技术”有关的课题总数约为250~300项,在EU提供基金的机器人研究领域,移动机器人占22.8%左右;日本不仅加紧研制移动机器人,更把发展重点放在移动机器人的应用研究上,目的是可以代替人在各种环境下为人服务(如在医院、家庭、恶劣的环境和核反映堆、核废料清理和排雷等危险环境下工作)。 我国机器人的研究已有20多年的历史,国家也大力发展机器人,并投入了一定的资金,对机器人进行技术攻关,发出各种类型的机器人,对我国机器人的发展具有重大的意义。但由于我国对此方面的研究起步较晚,在机器人技术水平、实用化程度以及稳定方面,与美国、日本等国家相比,都存在着较大的差距。 国内研制的机器人样机,有保安机器人、消防机器人等,有轮式和履带式;但大都是有缆方式,具有小范围内一定的避障功能。国内移动机器人的研究成果主要如下:清华大学的智能移动机器人THMR-V型机器人;中科院沈阳自动化所的AGV自主车和防爆机器人;

移动机器人的发展状况及趋势

移动机器人的发展状况及趋势 摘要 移动机器人就具有广泛的应用前景,也是近年来研究的热门课题之一。本文对移动机器人的发展与现状以及移动机器人导航技术的发展状况做了总结与阐述。 1.引言 导航技术在移动机器人的相关技术研究中,是其核心技术,也是其实现其智能化的技术。导航研究的目标就是没有人的干预下使机器人有目的地移动并完成特定任务,进行特定操作。机器人通过装配的信息获取手段,获得外部环境信息,实现自我定位,判定自身状态,规划并执行下一步的动作。机器人及其技术在未来将起到重要作用。展望生产自动化的未来,从使用角度看,生产系统如何才能在与人协调的作业环境中快速高效地生产出高质量、高性能的商品。 2.移动机器人的分类 移动机器人按工作环境来分:室外移动机器人和室内移动机器人。按移动方式分:轮式移动机器人,步行移动机器人,蛇形移动机器人,履带移动机器人,爬行移动机器人。按结构体系结构分:功能式结构机器人,行为式结构机器人,混合式结构机器人。按功能和用途分:医疗机器人,军用机器人,助残机器人,清洁机器人。按作业空间分:陆地移动机器人,水下移动机器人,无人和空军移动机器人 3.移动机器人导航及定位现状 导航和定位是移动机器人发展的两重要问题,移动机器人的导航方式可以分为:基于环境信息的地图模型匹配导航,视觉导航,传感器数据导航。 3.1导航 3.1.1陆标导航 陆标导航是将陆地上的一些特殊景物作为陆标,移动机器人在知道这些陆标坐标形状的前提下通过对陆标的探测确定自己的位置。同时将全场的目标分解为陆标和陆标之间的片段。不断对陆标探测完成导航,根据不同环境可以分为人工路标导航和自然路标导航。人为路标导航是通过对人放置的一些陆标进行识别完成导航,但它容易改变工作环境。自然路标导航不会改变自然环境,是机器人对工作环境中的自然标志进行识别完成那个导航。 3.1.2视觉导航 由于计算机视觉理论及算法的发展,视觉导航成为导航技术中的一个重要发展方向。DeSouza等总结了近20年机器人导航中视觉导航技术的发展状况,包桂秋等也描述了图像技术在机器人导航中的应用,特别是在飞行器包括导弹、飞机等

移动机器人轨迹跟踪软件设计(站点设计)(DOC)

燕山大学 课程设计说明书 题目:移动机器人轨迹跟踪软件设计(站点设计)学院(系):电气工程学院 年级专业: 10级过程控制二班 学号: 学生姓名: 指导教师:陈贵林李雅倩

燕山大学课程设计(论文)任务书

2013年11 月25 日

目录 前言……………………………………………………………………………第一章设计思路……………………………………………………………第二章程序…………………………………………………………… 第三章算法…………………………………………………………… 心得体会

前言 机器人的应用越来越广泛,几乎渗透到所有领域。移动机器人是机器人学中的一个重要分支。早在60年代,就已经开始了关于移动机器人的研究。关于移动机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式、腿式的,对于水下机器人,则是推进器。其次,必须考虑驱动器的控制,以使机器人达到期望的行为。第三,必须考虑导航或路径规划,对于后者,有更多的方面要考虑,如传感融合,特征提取,避碰及环境映射。因此,移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统。对移动机器人的研究,提出了许多新的或挑战性的理论与工程技术课题,引起越来越多的专家学者和工程技术人员的兴趣,更由于它在军事侦察、扫雷排险、防核化污染等危险与恶劣环境以及民用中的物料搬运上具有广阔的应用前景,使得对它的研究在世界各国受到普遍关注 关键字:移动机器人

第一章设计思路 1.1 机器人的介绍 机器人的诞生和机器人控制技术发展作为20世纪自动控制原理最具说服力的成就、人类科学技术进步的重大成果[1],是现代计算机与自动化等技术高速发展的产物,同时也是当代最高意义上的自动化。自1956年第一台工业机器人诞生之日起,机器人的应用越来越普及。20世纪60年代末机器人开始进入商业化和工业领域以来,机器人的应用范围已经遍及到工业、国防、宇宙空间、海洋开发、医疗保健、抢险救灾等人类生活的各个方面。机器人由于具有高度的灵活性、快速的反应能力以及巨大的信息处理能力,使其能够在很多环境替代人进行工作。从重复动作的流水线机械手到智能机器人,从平地到高山海底甚至太空,以至于在比较恶劣危险的工作环境,都是机器人发挥其作用的重要舞台,然而控制系统作为机器人的心脏,其性能的好坏直接决定了机器人的智能化水平。近年来对移动机器人的研究已成为了一大热点,促进了移动机器人在各个领域中的进一步应用,本文也将在这一方面进行一些分析和研究。智能移动机器人,是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。它集中了传感器技术、信息处理、电子工程、计算机工程、自动化控制工程以及人工智能等多学科的研究成果,代表机电一体化的最高成就,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在城市安全、国防和空间探测领域等有害与危险场合得到很好的应用。因此,移动机器人技术已经得到世界各国的普遍关注。 1.2 实训任务分配 本次的设计任务在老师的帮助下得到了细致地划分,而且也增加了一些项目,总体来说任务分为三大块:1.轨迹的识别与跟踪。2.站的设计。3.自定义轨迹的运行。这三部分的任务既是相互独立的又是相互联系的。 首先来分析第一个任务:轨迹的识别与跟踪,这个任务包含了摄像头的初始化以及图像的采集以及图像的存取,轨迹的识别用到了一个算法。机器人的控制也是这个任务包含的一个总要部分,其中包括了速度控制,方向控制等等。 第二个任务是站的设计,老师提到了“站”这个概念,这是在工厂的生产中的一些重要的机制,也是非常有实用性的一个设计。 第三个任务是自定义轨迹的运行,老师提到了可以设计一个圆形轨迹也可以设计一个方形轨迹,机器人的这种运动在生产生活中的应用也是很广泛的。

爬壁机器人研究现状调查

爬壁检测移动机器人研究现状调查一.研究的背景及其意义 随着社会不断进步和科技不断发展,摩天大楼已成为现代都市不可缺少的重要组成部分。人们在享受高楼大厦带来的好处的同时也不得不面临由此而带来的诸多难题,如高层建筑物立面的施工建设质量,维护以及安全监测等问题。 传统方法只有通过靠搭脚手架或采用吊篮等人工目测方法进行检测,检测精度低,检测过程十分危险,效率不高且成本较高,因此越来越多的研究人员将研究重点集中到建筑爬壁检测机器人的研究开发上。 爬壁机器人作为一种能够用于极限作业的特种机器人,可以替代人类在高空垂直立面位置作业。现在爬壁机器人已经在多个行业尤其是建筑行业,消防,核工业,石油化工业和制造业等得到了极为广泛的应用。爬壁检测机器人是在爬壁机器人的基础上进行研究开发的,是爬壁机器人在实际应用中的主演衍生产物之一。 爬壁检测机器人将极大提高建筑物检测水平,提高工人在危险环境下作业的安全性,降低高空作业的风险,提高劳动工作的效率并带来一定的社会及经济效益。 二.爬壁机器人的分类 现有的爬壁机器人主要根据吸附功能和移动功能进行分类:

(1).根据吸附方式进行分类 爬壁机器人主要可以分为真空吸附式,磁吸附式和推力吸附式三种。 真空吸附是通过真空泵使吸盘腔产生负压,通过负压使机器人紧紧贴在立面上,优点是不受壁面材料限制,容易控制,适应围广;缺点是如果建筑立面不够光滑或存在凹凸时,容易使吸盘漏气造成机器人吸附能力降低。 磁吸附式首先要保证建筑立面是导磁材料,优点是结构简单吸附能力强,能够适应比较粗糙的建筑立面,而且不会出现真空漏气现象;缺点是只能用于导磁壁面而且断电失稳。 推力吸附采用螺旋桨或涵道风扇产生的推力使机器人贴附在立面上。优点是吸附力大小容易控制,越过障碍物的能力比较强;缺点是稳定性较差不易保持精度。 (2)根据移动结构进行分类 爬壁机器人主要可以分为车轮式,脚足式,履带式,轨道式等类型。 车轮式机器人通过电机驱动车轮移动,优点是控制简单灵活,速度较快,但要求壁面必须平坦,而且车轮式机器人的避障能力差。 履带式机器人优点是接触面积大,对各种建筑立面的适应能力强;缺点是灵活性较差不易转弯。

国内机器人技术研究现状分析

国内机器人技术研究现状分析 王守龙 摘要:随着经济全球化对工农业生产提出越来越高的要求,计算机技术向着智能化发展,机器人越来越普遍的被工农业应用,其在提高工农业产品质量,增加经济效益方面发挥着重大作用。本文又介绍分析了移动机器人和小口径管内机器人及其在我国的技术研究现状。中国的机器人事业面临着新的机遇和挑战。 关键词:机器人;技术研究;移动机器人;小口径管内机器人

前言 有人认为, 应用机器人只是为了节省劳动力, 而我国劳动力资源丰富, 发展机器人不一定符合我国国情。这是一种误解。在我国, 会主义制度的优越性决定了机器人能够充分发挥其长处。它不仅能为我国的经济建设带来高度的生产力和巨大的经济效益, 而且将为我国的宇宙开发、海洋开发、核能利用等新兴领域的发展做出卓越的贡献。 1 工农业机器人 1.1 工业机器人研究现状分析 机器人产业是近30年发展起来的新型产业。我国政府早在“七·五”期间就开始组织了对工业机器人的攻关,到了1987年,国家高技术研究开发计划就把智能机器人作为七大重点领域之一进行集中研究。经过十几年的艰苦奋斗,我国在水下、空间、核领域等特殊机器人方面取得了令人欣慰的成果,一批机器人产品和机器人应用工程应运而生。到20世纪90年代末,我国共完成了l00多项工业机器人应用工程,建成了20个机器人产业化基地,从事机器人研究、开发和应用工程单位200多家,专业从事机器人产业开发的50家左右,全国工业机器人用户近800家,拥有工业机器人约4000台。2006年发布的《国家中长期科学和技术发展规划纲要》前沿技术中,我国将智能服务机器人列为重点方向,提出加大科技投入与科技基础条件平台建设。 然而,由于主要依靠科技部门研究开发计划的支持,从资金到产业的支持力度不够,在机器人关键技术方面,我国与国外的差距并没有明显缩小,在关键部件、产品产业化以及基础研究方面的差距还在拉大。到1998年,863计划推动的几个机器人产业化基地产值仅仅1亿元。然而,国外各大机器人公司认识到高速发展中的中国机器人市场的巨大潜力,凭借其技术和资金的优势纷纷进入了中国市场。可以说,目前的中国机器人市场仍然是外国企业一统天下,我国机器人发展尚未进入规模开发利用和产业化的阶段。 我国经过几十年来的研究与引进, 在机器人运动学仿真、动力学仿真和某些典型工业机器人机构分析软件方面取得了一些成果,但总的看来, 我国机器人机械技术的研究状况与国外相比还有较大的差距, 目前既没有建立一种多功能的机器人系统, 也缺乏利用技术对机器人机械学的很多专门问题进行深人研究。我国目前研制的几种工业机器人机型结构主要是直接仿制日本90年代初的样机, 一些主要关键元器件依赖国外进口。虽然国家“七五”期间安排了一些单项研究课题, 但这些课题一时还难于直接用于国产工业机器人, 还远不能从理论及实际技术上建立起我国机器人的完整设计体系, 这与国外相比差距较大。国内利用国产机器人开展应用工程的研究工作刚刚起步。我国对移动机器人研究, 近年来在步行机基础理论方面的成果较多, 而步行机实物模型或样机较少,与国外先进水平相比也存在较大的差距。

移动机器人的发展现状及其趋势

移动机器人的发展现状及其趋势 ◆徐国华谭民 中科院自动化研究所 —、引言 机器人的应用越来越广泛,几乎渗透到所有领域。移动机器人是机器人学中的一个重要分支。早在60年代,就已经开始了关于移动机器人的研究。关于移动机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式、腿式的,对于水下机器人,则是推进器。其次,必须考虑驱动器的控制,以使机器人达到期望的行为。第三,必须考虑导航或路径规划,对于后者,有更多的方面要考虑,如传感融合,特征提取,避碰及环境映射。因此,移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统。对移动机器人的研究,提出了许多新的或挑战性的理论与工程技术课题,引起越来越多的专家学者和工程技术人员的兴趣,更由于它在军事侦察、扫雷排险、防核化污染等危险与恶劣环境以及民用中的物料搬运上具有广阔的应用前景,使得对它的研究在世界各国受到普遍关注。 二、移动机器人发展现状 从移动方式上看,移动机器人可分为轮式、履带式、腿式(单腿式、双腿式和多腿式)和水下推进式。本文重点放在轮式、履带式机器人,对水下机器人和两足人形机器人不做详细讨论。 1.国外移动机器人的发展概况 1.1室外几种典型应用移动机器人 美国国家科学委员会曾预言:“20世纪的核心武器是坦克,21世纪的核心武器是无人作战系统,其中2000年以后遥控地面无人作战系统将连续装备部队,并走向战场”。为此,从80年代开始,美国国防高级研究计划局(DARPA)专门立项,制定了地面天人作战平台的战略计划。从此,在全世界掀开了全面研究室外移动机器人的序幕,如DARPA的“战略计算机”计划中的自主地面车辆(ALV)计划(1983—1990),能源部制订的为期10年的机器人和智能系统计划(RIPS)(1986—1995),以及后来的空间机器人计划;日本通产省组织的极限环境下作业的机器人计划;欧洲尤里卡中的机器人计划等。 初期的研究,主要从学术角度研究室外机器人的体系结构和信息处理,并建立实验系统进行验证。虽然由于80年代对机器人的智能行为期望过高,导致室外机器人的研究未达到预期的效果,但却带动了相关技术的发展,为探讨人类研制智能机器人的途径积累了经验,同时,也推动了其它国家对移动机器人的研究与开发。进入90年代,随着技术的进步,移动机器人开始在更现实的基础上,开拓各个应用领域,向实用化进军。 由美国NASA资助研制的“丹蒂II”八足行走机器人,是一个能提供对高移动性机器人运动的了解和远程机器人探险的行走机器人。它与其他机器人,如NavLab,不同之处是它于1994年在斯珀火山的火山口中进行了成功的演示,虽然在返回时,在一陡峭的、泥泞的路上,失去了稳定性,倒向了一边,但作为指定的探险任务早己完成。其它机器人在整个运动过程中,都需要人参与或支持。丹蒂计划的主要目标是为实现在充满碎片的月球或其它星球的表面进行探索而提供一种机器人解决方案。 美国NASA研制的火星探测机器人索杰那于1997年登上火星,这一事件向全世界进行了报道。为了在火星上进行长距离探险,又开始了新一代样机的研制,命名为R ock y7,并在Lavic湖的岩溶流上和干枯的湖床上进行了成功的实验。 德国研制了一种轮椅机器人,并在乌尔姆市中心车站的客流高峰期的环境和1998年汉诺威工业商品博览会的展览大厅环境中进行了实地现场表演。该轮椅机器人在公共场所拥挤的、有大量乘客的环境中,进行了超过36个小时的考验,所表现出的性能是其它现存的轮椅机器人或移动机器人所不可比的。这种轮椅机器人是在一个商业轮椅的基础上实现的。 ·7·

相关文档
最新文档