量子力学第七章自旋和全同粒子

量子力学第七章自旋和全同粒子
量子力学第七章自旋和全同粒子

南华大学课程教案

课程名称:量子力学与电动力学授课教师:路兴强

量子力学部分

全同粒子体系习题解

第六章 全同粒子体系习题解 1.求在自旋态)(2 1z S χ中,x S ?和y S ?的不确定关系:?)()(2 2 =y x S S ?? 解:在z S ?表象中)(2 1z S χ、x S ?、y S ?的矩阵表示分别为 ???? ??=01)(2 1z S χ 01?102x S ??= ???h ??? ? ??-=002?i i S y η ∴ 在)(2 1z S χ态中 00101102)0 1(2 12 1 =??? ? ?????? ??== +ηχχx x S S 4 010*********)0 1(?2222 121ηηη=???? ?????? ?????? ??==+ χχx x S S 4 )(22 22 η=-=?x x x S S S 001002)0 1(?2 121=??? ? ?????? ??-==+ i i S S y y ηχχ 401002002)0 1(?2222 121ηηη=???? ?????? ??-???? ??-==+ i i i i S S y y χχ 4 )(22 22 η=-=?y y y S S S 16 )()(4 2 2 η=??y x S S 讨论:由x S ?、y S ?的对易关系 [x S ?,y S ?]z S i ?η= 要求4 )()(2 2 2 2z y x S S S η≥?? 16)()(422η=??y x S S ① 在)(2 1z S χ态中,2 η = z S ∴ 16 )()(4 2 2 η≥y x S S ??

可见①式符合上式的要求。 2.求??? ? ??--=???? ??=002?01102?i i S S y x ηη及的本征值和所属的本征函数。 解:x S ?的久期方程为 02 2=--λ λ ηη 20)2(22ηη±=?=-λλ ∴ x S ?的本征值为2 η±。 设对应于本征值的本征函数为 ??? ? ??=112/1b a χ 由本征方程 2/12 /12 ?χχη =x S ,得 ???? ??=???? ?????? ??1111201102b a b a ηη 111111 a b b a a b =???? ? ??=???? ??? 由归一化条件 12/12/1=+χχ,得 1),(11* 1*1=??? ? ??a a a a 即 122 1 =a ∴ 2 1 2 111= = b a 对应于本征值 2η的本征函数为 ??? ? ??=11212/1χ 设对应于本征值2η - 的本征函数为 ??? ? ??=-222/1b a χ 由本征方程 ???? ??- =--222/12/12?b a S x χχη 222222 a b b a a b -=???? ? ??--=???? ??? 由归一化条件,得 1),(22* 2* 2=??? ? ??--a a a a 即 122 2=a ∴ 2 1 2 122- == b a 对应于本征值2η- 的本征函数为 ??? ? ??-=-11212/1χ

第七章-自旋和全同粒子

第七章 自旋和全同粒子 §7 - 1 电子自旋 一 电子自旋的概念 在非相对论量子力学中,电子自旋的概念是在原子光谱的研究中提出来的。实验研究表明,电子不是点电荷,它除了轨道运动外还有自旋运动。 描述电子自旋运动的两个物理量: 1 、 自旋角动量(内禀角动量)S 它在空间任一方向上的投影s z 只能取两个值 21±=z s ;

(7. 1) 2、 自旋磁矩(内禀磁矩)μs 它与自旋角动量S 间的关系是: S e s m e -=μ, (7. 2) B e s 2μμ±=±=m e z , (7. 3) 式中(- e ):电子的电荷,m e :电 子的质量,B μ:玻尔磁子。 3、电子自旋的磁旋比(电子的自旋磁 矩/自旋角动量) e s e s 2m e g m e s z z =-=μ, (7. 4)

g s = –2是相应于电子自旋的g因数,是对于轨道运动的g因数的两倍。 强调两点: ●相对论量子力学中,按照电子的 相对论性波动方程 狄拉克 方程,运动的粒子必有量子数为 1/2的自旋,电子自旋本质上是 一种相对论效应。 ●自旋的存在标志着电子有了一个 新的自由度。实际上,除了静质 量和电荷外,自旋和内禀磁矩已 经成为标志各种粒子的重要的 物理量。特别是,自旋是半奇数 还是整数(包括零),决定了粒子 是遵从费米统计还是玻色统计。

二 电子自旋态的描述 ψ ( r , s z ):包含连续变量r 和自旋投 影这两个变量, s z 只能取 ±2/ 这两个离散值。 电子波函数(两个分量排成一个二行一列的矩阵) ?? ? ??-=)2/,()2/,(),( r r r ψψψz s , (7. 5) 讨论: ● 若已知电子处于/2z s = ,波函数 写为 (,/2)(,) 0z s ψψ??= ??? r r ● 若已知电子处于/2z s =- ,波函数

全同粒子体系习题解

全同粒子体系习题解-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第六章 全同粒子体系习题解 1.求在自旋态)(2 1z S χ中,x S ?和y S ?的不确定关系:?)()(22=y x S S ?? 解:在z S ?表象中)(2 1z S χ、x S ?、y S ?的矩阵表示分别为 ???? ??=01)(21z S χ 01?102x S ??= ??? ???? ??-=002?i i S y ∴ 在)(2 1z S χ态中 00101102)0 1(2121=??? ? ?????? ??==+ χχx x S S 4 010*********)0 1(?2222 121 =???? ?????? ?????? ??==+ χχx x S S 4 )(22 22 =-=?x x x S S S 001002)0 1(?212 1=??? ? ?????? ??-==+i i S S y y χχ 401002002)0 1(?2 222 121 =???? ?????? ??-???? ??-==+ i i i i S S y y χχ 4 )(22 22 =-=?y y y S S S 16 )()(4 2 2 =??y x S S 讨论:由x S ?、y S ?的对易关系 [x S ?,y S ?]z S i ? = 要求4)()(2 22 2z y x S S S ≥?? 16)()(422 =??y x S S ① 在)(2 1z S χ态中,2 = z S ∴ 16 )()(4 2 2 ≥y x S S ??

第七章-自和全同粒子

第七章自旋和全同粒子 §7 - 1 电子自旋 一电子自旋的概念 在非相对论量子力学中,电子自旋的概念是在原子光谱的研究中提出来的。实验研究表明,电子不是点电荷,它除了轨道运动外还有自旋运动。 描述电子自旋运动的两个物理量: 1 、自旋角动量(内禀角动量)S

它在空间任一方向上的投影s z 只能取两个值 s z =± 12 η; (7. 1) 2、 自旋磁矩(内禀磁矩)μs 它与自旋角动量S 间的关系是: μs e =- e m S , (7. 2) μμs e B z e m =± =±η 2, (7. 3) 式中(- e ):电子的电荷,m e :电

子的质量,μB :玻尔磁子。 3、电子自旋的磁旋比(电子的自旋磁矩/自旋角动量) μs e s e z z s e m g e m =- =2, (7. 4) g s = – 2是相应于电子自旋的g 因数, 是对于轨道运动的g 因数的两倍。 强调两点: ● 相对论量子力学中,按照电子的 相对论性波动方程??狄拉克方程,运动的粒子必有量子数为

1/2的自旋,电子自旋本质上是 一种相对论效应。 ●自旋的存在标志着电子有了一个 新的自由度。实际上,除了静质 量和电荷外,自旋和内禀磁矩已 经成为标志各种粒子的重要的 物理量。特别是,自旋是半奇数 还是整数(包括零),决定了粒子 是遵从费米统计还是玻色统计。二电子自旋态的描述

ψ( r, s z ):包含连续变量r和自旋投影这 两个变量,s z只能取 ±η/2这两个离散值。 电子波函数(两个分量排成一个二行一列的矩阵) ψ ψ ψ (,) (,/) (,/) r r r s z= - ? ? ? ? ? η η 2 2, (7. 5) 讨论: ●若已知电子处于s z=η/)2,波函数写为 ψ ψ ψ (,) (,/) (,/) r r r s z= - ? ? ? ? ? η η 2 2 ●若已知电子处于s z=η/)2,波函数写为 ψ ψ ψ (,) (,/) (,/) r r r s z= - ? ? ? ? ? η η 2 2

全同粒子体系

第六章全同粒子体系 6.1 全同粒子体系 之前所讨论的问题都是单粒子问题,在自然界中经常碰到由多个粒子所组成的体系,称为多粒子体系,这些体系或者由非全同粒子构成或者由全同粒子构成,而我们关注是由全同粒子构成的体系。首先研究由全同粒子组成的多粒子体系的特性。 1、全同粒子 我们称质量m,电荷q,磁矩M,自旋S等固有属性完全相同的微观粒子为全同粒子。其中,固有属性又叫内禀属性,如所有的电子,所有的质子系都是全同粒子系,在相同的物理条件下,全同粒子体系中的全同粒子的行为应该是相同的。 全同粒子体系有个重要的特点,就是我们量子力学第5个基本假设给出的。 2、量子力学基本假设 全同性原理假设(不能由量子力学中的基本假设推出):全同粒子具有不可区分性,交换任何两个粒子不引起体系物理状态的改变。(不可区分性与交换不变性) 量子力学中,粒子的状态是用波函数来描述的,如果描述两个粒子的波没有重叠,例如:把两个粒子分别置于两个不同的容器中,自然可以区分哪个是1粒子,哪个是2粒子;但如果描述两个粒子的波发生重叠,例如:氢原子中的两个电子,这两个全同电子就无法区分了,因为一切测量结果都不会因为交换而有所改变。由于全同粒子的不可区分性,每个粒子都是处于完全相同的状态,所以交换任何两个全同粒子并不形成新的状态。在自然界中,实际出现的状态,只是那些交换不变的态,其余的态实际都不存在,由全同性原理假设出发,可以得到全同粒子体系的一些重要性。 3、全同粒子体系?H算符的交换不变性 粒子不可区分,单体算符形式一样。在量子力学情况下,微观粒子不存在严

格意义的轨道,对于粒子的坐标,我们仅知道粒子在某处出现的几率,设有两个全同粒子在不同时刻给它们照相,根据照片上的位置,在某一时刻把它两个粒子编号,则在后一时刻的照片上没有任何根据能指出哪个是第一号,哪个是第二号,即使两次的照片时间间隔再短,也无法分辨。但我们又必须给粒子的“坐标”i q 编上号码(1,2, i N =),因为不可能把各个粒子的不同坐标的哦要用一个变量q 来表示,这样,12,N q q q 代表第一个位置(含自旋) ,第二个位置,……各有一个粒子,不能规定是哪一个粒子;于是,12 ,N q q q 表示粒子的坐标(含自旋) ,但每一个坐标q 都不专属于某一个粒子,若把12,N q q q 顺序作任意置换后,也 还是在(1,2, )i q i N =各有一个粒子。假设有一由N 个全同粒子组成的体系,以 i q 表示第i 个粒子的坐标和自旋的(),i i i q r S =,(),i U q t 表示第i 个粒子在外场中的能量,(),i j W q q 表示第i 个粒子与第j 个粒子之间的相互作用能量,则体系的Hamilton 量算符可写为: () ()()12 2211 ??,,,1,,22i j N N N i i i j i i j H H q q q q q t U q t W q q μ=≠==??=-?++????∑∑ (6.1.1) 显然交换两个粒子,全同体系的?H 不变,即交换对称性。这里我们引入:交换算符?ij P :它表示交换第i 个粒子与第j 个粒子的运算 ()()1 2 12 ?,,,,i j N i j N q q q q q H q q q q q ≡ (6.1.2) 全同性原理中,全同粒子的不可区分性使得体系?H 具有交换不变性,同样全同性原理要求体系具有交换不变性,即交换任意两粒子,体系物理状态不变。 而量子力学中状态用波函数来描述,所以全同性原理对多粒子体系的波函数提出了新的限制,除了满足其它条件外(单位、连续、有限),还必须具有交换对称性。 4、全同粒子体系波函数的交换对称性 考虑由N 个全同粒子组成的多体系,其状态用波函数 ()12 ,,i j N q q q q q ψ

量子力学 第四版 卷一 (曾谨言 著) 科学出版社第7章

第七章:粒子在电磁场中的运动 P367——7.1,7.2 证明在磁场B 中,带电粒子的速度算符的各分量,满足下述的对易关系: [] z y x c q i v v B ?,2μ = (1) [] x z y c q i v v B ?,2μ = (2) []y x z c q i v v B ? ,2 μ = (3) [证明]根据正则方程组: x x p H x v ??== ? ,Φ+?? ? ??-=q A c q p H 2 21? μ ? ? ? ?? -=x x x A c q p v ??1?μ 同理 ? ? ? ? ?-=y y y A c q p v ??1?μ ()z y x p p p p ?,?,?? 是正则动量,不等于机械动量,将所得结果代入(1)的等号左方: [] ? ? ????--=y y x x y x A c q p A c q p v v ??,??1,2μ ] [] y x A A c q ?,?2 2 μ+ (4) [] 0?,?=y x p p 又A ? [] z x y y x B c y x i c v v 22 ,μμ = ??? ??-?? = (因A B ??=??) 其余二式依轮换对称写出。 P368证明在规范变换下 ψψρ* = (1) [ ]ψψμψψψψμ * * *- -=A c q p p j ??21 (2)

??? ? ?-=A c q p v ?μ (机械动量的平均值)都不变 (3) (证明)如课本证明,要规范变换下,若将体系的波函数作以下变换(P368 20式) ψψc iqf e → (4) 则薛定谔方程形式不变,将(4)代入(1)式等号右方,设变换后几率密度: ρ ρψ ψψψψψ ρ='=?=??? ? ? ???? ? ? ?='* * -* c iqf c iqf c iqf c iqf e e e e 又设变换后几率流密度是j ',将(4)代入(2)式右方,同时又代入 ()t r f A A , ?+→ ψψψψμc iqf c iqf c iqf c iqf e P e e p e j * - * -????? ?-='21 (5) 注意到算符的对易关系 推广到三维:() )(F )(F ,?r i r p ??=? 6) 令c iqf e r =)(F 则有: c iqf e p -=e p c iqf (7) =-e p c iqf (8) 将(7)(5)式成为: ()() j A c q p p f A c q f c q p e e f c q p e e j c iqf c iqf c iqf c iqf =--=?+-????????? ???--??? ???+=* ***-*-ψψμψψψψμψψμψψψψμ2121 (9) 在证明第3式时,设变换后的v 是v ' 。写出右方平均值的显式,用(4)的波数变换,和)4('的矢势的变换式:

量子力学(周世勋)课后答案-第七章

7.1.证明:i z y x =σσσ ??? 证:由对易关系 z x y y x i σσσσσ ?2????=- 及 反对易关系 0????=+x y y x σσσσ , 得 z y x i σσσ ???= 上式两边乘z σ ?,得 2????z z y x i σσσσ= ∵ 1?2=z σ ∴ i z y x =σσσ ??? 7.2 求在自旋态)(2 1z S χ中,x S ?和y S ?的测不准关系: ?)()(22=y x S S ?? 解:在z S ?表象中)(2 1z S χ、x S ?、y S ?的矩阵表示分别为 ???? ??=01)(21z S χ ???? ??=01102? x S ???? ??-=002?i i S y ∴ 在)(2 1z S χ态中 00101102)0 1(2121=??? ? ?????? ??==+ χχx x S S 4010110201102)0 1(?2 22 2 121 =???? ?????? ?????? ??==+ χχx x S S 4 )(22 22 =-=?x x x S S S 001002)0 1(?212 1=??? ? ?????? ??-==+i i S S y y χχ 401002002)0 1(?222 2 121 =??? ? ?????? ??-???? ??-==+ i i i i S S y y χχ 4 )(22 22 =-=?y y y S S S

16 )()(4 2 2 =??y x S S ① 讨论:由x S ?、y S ?的对易关系 [x S ?,y S ?]z S i ? = 要求 4 )()(2 2 2 2z y x S S S ≥?? 在)(2 1z S χ态中,2 = z S ∴ 16 )()(4 2 2 ≥y x S S ?? 可见①式符合上式的要求。 7.3.求??? ? ??--=???? ??=002?01102?i i S S y x 及的本征值和所属的本征函数。 解:x S ?的本征方程为01102a a b b λ??????= ??? ? ?????? 移项得: 20 2 a b λ λ? ? - ???= ? ? ???- ??? x S ?的久期方程为 02 2=--λ λ 可得 20)2(22 ±=?=-λλ ∴ x S ?的本征值为2 ±。 设对应于本征值2 的本征函数为 ???? ??=112/1b a χ 由本征方程 2 /12/12 ?χχ =x S ,得

第七章-自旋与全同粒子 lt

第七章例题剖析 1求自旋角动量在任意方向n [方向余弦是(cos α,cos β,cos γ)]的投影γβαc o s c o s c o s z y x n s s s s ++=的本征值和本征矢。 [解] 自旋算符的矩阵表示为 ??? ? ??-=???? ??-=???? ??=10012;002;01102 z y x s i i s s ?????????? ??-+???? ??-+???? ??=∴γβαcos 10 01 cos 00cos 01102i i s n ???? ??-+-=γβαβ αγ c o s c o s c o s c o s c o s c o s 2i i 令s n 的本征矢为 ???? ??=ηξψ 它必然是一个两行两列的矩阵,s n 的本征方程为 λψψ2 =n s 则 ???? ??=???? ?????? ?? -+-ηξληξγβαβ αγ2cos cos cos cos cos cos 2 i i 就有 ???=+-+=-+-) 2(0)(cos )cos (cos ) 1(0)cos (cos )(cos ηλγξβαηβαξλγi i ηξ,不同时为零的条件是其系数行列式为零,即 0)(cos cos cos cos cos cos =+-+--λγβαβ αλγi i 展开得: 0)c o s (c o s )(c o s 2222=+---βαλγ 1012±==-∴λλ 因此 n S 的本征值为2 ± 下面求本征矢: (1)当2 =n S 时,即1=λ时,由①式得 ηβαξγ)cos (cos )1(cos i --=- ηγβ αξcos 1cos cos --=i ??? ? ? ??--=ηηγβαψcos 1cos cos i 利用归一化条件

量子力学[第七章自旋与全同粒子] 山东大学期末考试知识点复习

第七章自旋与全同粒子 本章的目的是将量子力学基本理论向两个方面扩展,一是将电子自旋纳入量子力学理论体系,并讨论与其相关的问题;二是由单粒子量子力学扩展到多粒子体系,建立起完整的非相对论量子力学的理论体系. 根据光谱的精细结构和施特恩一格拉赫等实验,人们发现电子还具有的一种无经典对应的新的运动自由度.通过对实验事实的分析,人们提出了电子自旋的假设,引入了自旋角动量,并进一步扩展成包括空间运动和自旋运动在内的完整的状态描述和力学量的算符表示,并将薛定谔方程扩展到包含自旋的情况,建立起非相对论的含自旋的运动方程. 真实的物理系统是多个微观粒子共存的,与经典力学不同,量子化的全同粒子具有不可分辨性,全同粒子体系的微观状态只能是对称的(对应于玻色子)或者反对称的(对应于费米子).因此,还需要将单粒子非相对论量子力学扩展到全同粒子系统. 本章的主要知识点有 1.电子自旋 (1)泡利算符 泡利算符是描写电子自旋运动力学量的矢量厄米算符,定义为 由此可以推出 ζ i ζ j =iε ijk ζ k +δ ij (7-3)

(2)电子自旋角动量 借助泡利算符,电子自旋角动量S可以表示为 (3)电子自旋状态 (4)有关力学量 (5)自旋状态的演化 在电磁场中,电子的波函数为ψ(r,s z ,t):(ψ + (r,t),ψ - (r,t))T,随 时间的演化仍然由薛定谔方程 决定,但是哈密顿算符要修正为

其中A为电磁场的矢势,φ为标势.概率流密度要修正为 2.角动量耦合 (1)角动量的一般性质 其中角量子数j为正整数或半正整数,磁量子数m=-j,…,j-1,j共2j+1个取值. (2)自旋轨道耦合

量子力学曾谨言第六章第七章习题详解

第六章:中心力场 [1]质量分别为m, ,m 2的两个粒子组成的体系,质心座标R及相对座标r为: m" m zD “、 R = 一一⑴ m, m2 rr 二O -「1 ⑵ 试求总动量P = p,亠p2及总角动量L = h亠丨2在R,r表象中的 算符表示。 1.[解](a)合动量算符p = P1 ? P2。根据假设可以解出r i,r2 - - m2 令 m 三m ,亠口2: 「=R_ ----- r (3) m 1 m1 r2= R ? r (4) m2 设各个矢量的分量是r1(x1, y1, z1) , r2 (x2, y 2, z2), r(x, y,z)和R(X,Y,Z)。为了计算动量的变换式先求对x , X2等的偏导数: L、L、# L、r L、L、L、 X x m1 ' ' ' '' 1(5) :x1;:x1;:X ;:x1;:x m ;:X ;:x jx2cX cx2 L、rx x ;X ;x2 a m2 e jx m ;X :x (6) 关于 L、L、 d d-可以写出与( 5) (6) 类似的式子,因而-71 -7 2 .z1.z2 A A A A A d e P - (P1 ■P2)x 二P 1x p2x -( - -) i ;x1;x2 L、L、*-?.L、

m1m2 =_(」2): i m ;X :x m ;:X ;:x i ;X --h d P 二i ' i _:X r d j i ;: Y -h k —

A " ■ ■ /t ■ ■ (b)总角动量 L = l i ?丨2 =— (「1 ::甘 1 ?「2 ::詁 2) i L x — (「i J j J)x i m 2 -(Z -z)(- m cY ^(yi--z) i Z -(y 2- i :z 利用(3), (4), ( 5), (6): L x {(丫一匹 i m m-:: y)(- m cZ m —-—) :-y m 1 (Y -y)( m m 2 m ;Z -) m i _(Z ? — z)( m m E -—)} :-y -f Z i m ;Z c c )-(丫 一 -Z —) ;z .y m 1m 2 (y 「 z jz m 2 —(Y m -(Y - 'z -Z mm m 2 .L 、 ,l~. G C (y z ) :z :丫 (y — :z -z :)} :y h d =— c c -Z ) (y — Y 'z -z^)} -y h - = (—R I R i h _ ■ -r J)x i

第七章-自旋与全同粒子-习题 y

第七章 自旋与全同粒子 第一部分: 基本概念和基本思想题目 1. 描述全同粒子的波函数应具什么性质? 2. 玻色子是否受泡利原理的限制? 为什么? 3. 描述全同粒子体系的波函数有什么特征? 4. 电子的自旋可用 ()z S a X b ??= ??? 表示,试说明|a|2 与|b|2的物理意义。 5. 当单电子处于任一自旋态时,测量S x 、S y 各可能测到哪些值? 6. 费米子与玻色子体系对描述其状态的波函数有什么要求? 7. 提出电子有自旋的实验根据是什么? 8. 斯特恩-盖拉赫实验中为什么要选用基态氢原子? 9. 考虑电子自旋后,电子波函数在形式上有什么特点? 10. 说明积分2 |(,,,,) x y z t d ψτ??? 的物理意义。 11. 古德斯米特-乌伦贝克关于电子自旋的基本假设是什么? 12. 电子自旋磁矩与自旋角动量之间的关系是什么? 13. 电子自旋是如何表示的? 14. 无耦合表象中,哪些力学量是对角矩阵? 15. 耦合表象中,哪些力学量是对角矩阵? 第二部分:基本技能训练题 1. 试求泡利算符?x σ 的本征值和本征函数。 2. y z ??? i 证明=x σ σσ

3. 221y 2 ??X ()S S (S )(S )? 求在自旋态中,与的测不准关系:z x x y s ???= 4. 求下列状态中J z 的本征值 1112 1101 112 2 1211() ()(,) () ()(,)()(,)] z z z X S Y S Y X S Y ψθ?ψθ?θ?- == + 5. 01021020 求及的本征函数与本征值。 x y i S S i -?? ?? == ? ????? 6. 求自旋角动量在(cosα,cosβ,cosγ)的投影 ????cos cos cos n x y z S S S S αβγ=++的本征值和本征函数。 在这些本征态中,测量S z 有哪些可能值?这些可能值各以多大的几率出现? 7. 下列波函数中,哪些是完全对称的? 哪些是反对称的? 1212211122 2 2111211122 2 2 2 12341() 2121() () f(r )()()() () r () f(r )()[()()()()] () z z r r z z z z r r g r X s X s e f r X s X s X s X s e αα-+----- 8. 设氢原子的状态是 21112110122z z L S R Y R Y ψ?? ? ?= ?- ??? 求=?=? 9. (1)(2)(3)(4) s s s A X ,X ,X X 证明和组成正交归一系。 10. 在1z 2 X (s )态中测量S z 可得到哪些可能值?可能值的几率分别是多

量子力学习题集汇集

第一章习题 1.证明下列算符等式 [][][][][][][][][][][][][][][]0 ,,,,,,,,,,,,,,,=+++=+=+=+B A C A C B C B A B C A C B A C AB C B A C A B BC A C A B A C B A 2.设粒子波函数为),,(z y x ψ,求在()dx x x +, 范围内找到粒子的几率. 3.在球坐标中,粒子波函数为()??ψ,,r ,试求: 1)在球壳(r,r+dr)中找到粒子的几率; 2)在()??,方向的立体角Ωd 中找到粒子的几率. 4.已知力学量F 的本征方程为 n n n F ?λ?= 求在状态波函数 332211???ψc c c ++= 下测力学量F 的可能值,相应的几率及平均值(假设波函数ψ已归一或不归一的情况). 第二章习题 1.一粒子在二维势场 ???∞=,,0),(y x V 其它b y a x <<<<0,0 中运动,求粒子的能级和波函数.能级是否简并?

2.由哈密顿算符 () 2232 22221222 2z y x m m H ωωω+++?-= 所描述的体系,称各向异性谐振子.求其本征态和本征值. 3.利用递推关系 ??? ? ??--=+-1121 2)(n n n n n x dx d ψψαψ 证明 ( ) 222 22)2)(1()12()1(2 +-++++--=n n n n n n n n n dx d ψψψαψ 并由此证明在n ψ态下 2 ,0n E T P = = 第 四 章 习 题 1. 证明 )cos sin (cos ???i A +=ψ 为2L 和y L 的共同本征态,并求相应的本征值。说明当体系处在此状态时, z L 没有确定值。 2. 对于一转动惯量为I 的平面转子,其能量算符为I L H z 2 =,求体系的能量本 征态。如??ψsin )0,(A =,求),(t ?ψ。 3.量子化对称陀螺的哈密顿量可写成

量子力学填空简答证明复习资料

填空 第一章 绪论 6、玻尔的量子化条件为 n L = 9 德布罗意关系为 k p E ==,ω 。 1、 用来解释光电效应的爱因斯坦公式为 2 2 1mv A h + =ν 。 2、 戴微孙-革末 实验验证了德布罗意波的存在,德布罗意关系 为 k p E ==,ω 。 第二章 波函数和薛定谔方程 1、波函数的标准条件为 单值,连续,有限 。 4、2 ),,,(t z y x ψ的物理意义: 发现粒子的几率密度与之成正比 。 5、dr r r 22 ),,(??θψ表示 在r —r+dr 单位立体角的球壳内发现粒子的几率 。 第三章 量子力学中的力学量 2如两力学量算符 有共同本征函数完全系,则 0 。 3、设体系的状态波函数为 ,如在该状态下测量力学量 有确定的值 ,则力学量算符 与态矢量 的关系为__ψλψ=F ?_______。 5、在量子力学中,微观体系的状态被一个 波函数 完全描述;力学量用 厄密算符 表示。 10坐标和动量的测不准关系是_2 ≥ ??x p x ___________________________。 自由粒子体系,_动量_________守恒;中心力场中运动的粒子___角动量________守恒 3、 设 为归一化的动量表象下的波函数,则 的物理意义为___在 p —p+dp 范围内发现粒子的几率____________________________________________。 3、厄密算符的本征函数具有 正交,完备性 。 10、=]?,[x p x i ; =]?,?[z y L L x L i ;

第四章 态和力学量的表象 量子力学中的态是希尔伯特空间的__矢量__________;算符是希尔伯特空间的__算符 __________。 力学量算符在自身表象中的矩阵是 对角的 第五章 微扰理论 第七章 自旋与全同粒子 7. 为泡利算符,则 =2?σ 3 ,=]?,?[y x σ σ z i σ ?2 8、费米子所组成的全同粒子体系的波函数具有_交换反对称性__ _______, 玻色子所组成的全同粒子体系的波函数具有____交换对称性____ 。 4、 对氢原子,不考虑电子的自旋,能级的简并度为 2n ,考虑自旋但不考虑自 旋与轨道角动量的耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。 5、 S ? 为自旋算符,则 =2 ?S 2 4 3 ,=]? ,?[2z S S 0 , =]?,?[y x S S z S i ? 。 简答 第一章 绪论 什么是光电效应?爱因斯坦解释光电效应的公式。 答:光的照射下,金属中的电子吸收光能而逸出金属表面的现象。 这些逸出的电子被称为光电子 (3分) 用来解释光电效应的爱因斯坦公式:2 2 1mv A h +=ν (3分) 第二章 波函数和薛定谔方程 1、如果1ψ和2 ψ 是体系的可能状态,那么它们的线性迭加:

量子力学讲义第七章讲义

第七章量子力学的矩阵形式与表象变换 §1 态的表象 一、什么叫表象——量子力学中态和力学量的具体表示方式 二、研究表象的意义 根据不同问题选择不同表象,还可以进行表象变换。 §7.1 量子态的不同表象 一、坐标表象波函数(x,t) 1、(x,t) 2、——表示体系处在(x,t)所描述的态中,在xx+d x范围内找到粒子的几率,也就是说,当体系处在(x,t)所描述的态中,测量坐标x这个力学量所得值在xx+d x这个范围内的几率。 3、 4、动量为的自由粒子的本征函数 5、x在坐标表象中对应于本征值的本征函数, 即, 二、动量表象波函数 动量本征函数:组成完备系,任一状态可按其展开 (1) 展开系数 (2) (x,t)与c(p,t)互为Fourier(付里叶)变换,一一对应关系,所不同的是变量不同。认为c(p,t)和(x,t)描述同一个状态。(x,t)是这个状态在坐标表象中的波函数,c(p,t)是同一个状态在动量表象中的波函数。 1、 ——状态波函数 2、表示体系处在c(p,t)所描述的态中测量动量这个力学量p所得结果 为pp+d p范围内的几率。

3、 命题:假设(x,t)是归一化波函数,则c(p,t)也是归一。(在第一章中已经证明) 4、的本征函数(具有确定动量的自由粒子的态) 若(x,t)描写的态是具有确定动量p'的自由粒子态,即: 则相应动量表象中的波函数: 所以,在动量表象中,具有确定动量p' 的粒子的波函数是以动量p为变量的函数。换言之,动量本征函数在自身表象中是一个函数。 三、力学量表象 问题:那末,在任一力学量F表象中,(x,t)所描写的态又如何表示呢? 1、分立谱的情况 设算符的本征值为:F1, F 2, ..., F n,..., 相应本征函数为:1(x), 2(x),..., n(x),...。 将(x,t)按的本征函数展开: 若(x,t), u n(x)都是归一化的,则a n(t)也是归一化的。(在第三章中已经证明) 由此可知,| a n| 2表示在(x,t)所描述的状态中测量F得F n的几率。 展开系数组成的数列与(x,t)是一一对应关系, {a n(t)}与(x,t)描述体系的同一个态,(x,t)是这一状态在坐标表象中的表示,而数列{a n(t)}是这同一状态在F表象中的表示。我们可以把数列{a n(t)}写成列矩阵的形式,用F标记: (1)、体系态列矩阵为(x,t)所描写的态在F表象中的表示 并把矩阵F称为(x,t)所描写的状态在F表象中的波函数。 的共轭矩阵是一个行矩阵,用+F标记 F (2)、| a n| 2表示在(x,t)所描述的状态中测量F得F n的几率。 (3)、若(x,t)已归一化,则有。若用矩阵表示 (4)、本征值为的本征函数。

量子力学第七章习题

第七章 中心力场 7-1 对于库仑场证明E T E U ==,2,其中E 是总能量。 7-2 中心力场)(r U 中的经典粒子的哈密顿量为)(222 22r U r L p H r ++=μμ,其中P r r P r ?=1,当过渡到量子力学时,r P 要换为)()11(21r r i r r P P r r P r +??-=?+?= ,试问P r r r i ?=??-1是否厄米算符?r P 是否厄米算符? 7-3 设氢原子处于状态),()(2 3),()(21 ),,(11211021?θ?θ?θψ--=Y r R Y r R r ,试求氢原子的能量,2?L 及z L 的可能值及其几率,并由此求出它们的平均值。 7-4 某类氢原子的波函数表示如下(r 以a 0为单位):θπψcos )6(812 3/2/3Zr Zre Zr Z --= (1)通过对ψ的考察,求量子数l n ,和m 的数值。(2)从ψ产生具有相同l n ,值,但磁量子数等于1+m 的另一个本征函数。(3)当1=Z 时,求为ψ所规定的状态中某电子的最可几r 值。 7-5 氢原子处于基态0301),,(a r e a r -= π?θψ,试求(1)r 的平均值;(2) 最可几半径。 7-6 试证明:处于1S ,2P 和3d 态的氢原子的电子在离原子核距离分别为a 0 ,4a 0 和9a 0 的球壳内被发现的几率最大(a 0 为第一玻尔轨道半径)

7-7 氢原子处于基态,(1)求距核二倍玻尔轨道半径以外发现电子的几率。(2)如果我们画一个球面,使得在此球面内发现电子的几率为90% ,那么这个球面的半径是多少? 7-8 如坐标轴绕z 轴旋转一个α角,试问氢原子波函数的角度部分),(?θlm Y 将如何变化?此种变化是否观察到? 7-9 试求出在10Y 及21Y 态下,电子按角度的分布几率取极大值和极小值 的θ角。 7-10 试证明: ±==z L L ,6的氢原子中的电子在045=θ和1350方向上被发现的几率最大。 7-11 原子中的电子束缚态,作为z L L H ?,?,?2的共同本征态,),()(?θψlm Y r R =,求相应的电流密度和磁矩。 7-12 求出氢原子基态波函数在动量表象中的表示。 7-13 由于发生原子核的β衰变,原子核的电荷突然由e Z Ze )1(+→ 。对于衰变前处于原子Z 的K 层(1S 层)的电子,在原子核衰变后仍旧处于原子(Z+1)的K 层的几率等于多少? 7-14 粒子在半径为a ,高度为h 的圆筒中运动,在筒中粒子是自由的,在筒壁及筒外势能为无限大,求粒子的能量本征值及本征函数。 7-15 单价原子中的价电子(最外层电子)所受原子实(原子核及内层电子)的作用可近似表示为)10(,)(2022<<<--=λλr a e r e r U s s ,式中04πεe e s =,0a 为玻尔半径,求价电子的能级,并与氢原子能级相比 较。

周世勋量子力学习题解答第七章习题.doc

7.1.证明:i z y x =σσσ ??? 证:由对易关系z x y y x i σσσ σσ?2????=- 及 反对易关系0????=+x y y x σσ σσ , 得 z y x i σσσ ???= 上式两边乘z σ ?,得 2????z z y x i σσσσ = ∵ 1?2=z σ ∴ i z y x =σσσ??? 7.2 求在自旋态)(2 1z S χ中,x S ?和y S ?的测不准关系: ?)()(22=y x S S ?? 解:在z S ?表象中)(2 1z S χ、x S ?、y S ?的矩阵表示分别为 ??? ? ??=01) (21z S χ ???? ??=01102?ηx S ???? ??-=002?i i S y η ∴ 在)(2 1z S χ态中 00101102)0 1(2121=???? ?????? ??==+ ηχχx x S S 4010110201102)0 1(?222 2121ηηη=???? ?????? ?????? ??==+χχx x S S 4)(2222η=-=?x x x S S S 001002)0 1(?2121=??? ? ?????? ??-==+i i S S y y ηχχ 401002002)0 1(?2222121ηηη=???? ?????? ??-???? ??-==+i i i i S S y y χχ 4)(2222η=-=?y y y S S S

16)()(4 22η=??y x S S 讨论:由x S ?、y S ?的对易关系 [x S ?,y S ?]z S i ?η= 要求4)()(2222z y x S S S η≥?? 16 )()(4 22η=??y x S S ① 在)(2 1z S χ态中,2η =z S ∴ 16)()(4 22η≥y x S S ?? 可见①式符合上式的要求。 7.3.求??? ? ??--=???? ?? =002?011 02?i i S S y x ηη及的本征值和所属的本征函数。 解:x S ?的久期方程为 022=--λληη 20)2(22η η±=?=-λλ ∴ x S ?的本征值为2η ±。 设对应于本征值2η的本征函数为 ??? ? ??=112/1b a χ 由本征方程 2/12/12?χχη =x S ,得 ??? ? ?? =?? ?? ?? ???? ?? 11112011 02b a b a ηη 111111 a b b a a b =????? ? ?=???? ??? 由归一化条件 12/12/1=+ χχ,得

第七章 电子自旋与全同粒子

272 第七章 电子自旋与全同粒子 (Electron spin and identical particles) §7.1电子自旋 §7.2电子的自旋算符和自旋函数 §7.4两个角动量的耦合 §7.5光谱的精细结构 §7.6全同粒子的特性 §7.7全同粒子体系的波函数,泡利(Pauli)原理 §7.8 两个电子的自旋函数 §7.9氦原子(微扰法) 第七章 电子自旋与全同粒子 (Electron spin and identical particles) 引言: 很多问题是多粒子体系,例如:多电子原子、分子、原子核和晶 体等。多粒子体系复杂,dinger o Schr && 方程不能直接求解。一是要采用逐级近似的方法,二要尽可能多的了解多粒子体系的知识和信息,如:角动量和对称性等知识。 1.角动量 角动量有两种: (1)与空间运动有关—轨道角动量L r ; (2)与空间运动无关—自旋角动量S r 。 有些物理现象必须引入自旋角动量概念才能给予解释,例如: (1)碱原子光谱的双线结构 如钠原子光谱中一条很亮的黄线o A 5893≈λ,如用分辨本领较高的光谱仪进行观测,发现它是由很靠近的两条谱线组成(o A 5896≈λ和

273 o A 5890≈λ)。 (2)反常塞曼(Zeeman)效应: 1912年,Passhen 和 Back 发现反常Zeeman 效应-在弱磁场中原子光谱线的复杂分裂现象(能级分裂成偶数条子能级,例如钠光谱线4D 1→条,6D 2→条)。 2.对称性 对称性中有一类为置换对称性,如全同粒子体系中,相互置换任意两个粒子,体系的哈密顿不变,这是研究全同粒子体系的基础,基本原理是全同性原理。共价键理论,光谱理论,超导超流理论,夸克与核力问题等都是建立在全同性原理的基础上。 总之,自旋与全同粒子是研究多体问题的基础,非常重要。 §7.1 电子自旋 重点:Stern-Gerlach 实验和Ulenbeck-Goudsmit 假设 难点:Ulenbeck-Goudsmit 假设 我们从实验事实引入电子自旋的概念。 一、Stern-Gerlach(斯特恩-革拉赫) experiments(1921) 实验现象是单价原子(如银原子和氢原子等)束流通过非均匀磁场后裂为两束,我们以氢原子为例介绍这种实验现象。 实验现象:电炉K 射出的处于S 态的氢原子束流通过狭缝BB 和不均匀磁场,最后射到照相片PP 上,实验结果是照片上出现两条分立线。

相关文档
最新文档