《平行四边形的性质》典型例题

《平行四边形的性质》典型例题
《平行四边形的性质》典型例题

《平行四边形的性质》典型例题

例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?

例2 已知:如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,AOB ?的周长比BOC ?的周长多8cm ,求这个平行四边形各边的长

.

例3 已知:如图,在ABCD 中,BD AC 、交于点O ,

过O 点作EF 交AB 、CD 于E 、F ,那么OE 、OF 是否相等,说明理由

.

例4 已知:如图,点E 在矩形ABCD 的边BC 上,且DE AF AD DE ⊥=,,垂足为F .求证:.DC AF =

例5 O 是ABCD 对角线的交点,OBC ?的周长为59,38=BD ,24=AC ,则=AD ________,若O B C ?与OAB ?的周长之差为15,

则=AB ______,ABCD 的周长=______.

例6 已知:如图,ABCD 的周长是cm 36,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且cm DE 34=,cm DF 35=.求这个平行四边形的面积.

例7 如图,已知:ABCD 中,BC AE ⊥于E ,CD AF ⊥于F ,

若?=∠60EAF ,cm BE 2=,cm FD 3=.

求:AB 、BC 的长和ABCD 的面积.

参考答案

例1 分析 根据平行四边形的对角相等,邻角互补可以求出四个内角的度数.

解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题意,得1803=+x x ,解得45=x ,∴.1353=x

∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°.

例2 分析 由平行四边形对边相等,可知=+BC AB 平行四边形周长的一半=30cm ,又由AOB ?的周长比BOC ?的周长多8cm ,可知8=-BC AB cm ,由此两式,可求得各边的长.

解 ∵四边形ABCD 为平行四边形,∴.,,OO AO BC AD CD AB ===

60=+++BC AD CD AB ,∴.30=+BC AB

8)(=++-++OC BC OB OB AB AO ,∴.8=-BC AB

∴.11,19====AD BC CD AB

答:这个平行四边形各边长分别为19cm ,11cm ,19cm ,11cm.

说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.

例3 分析 观察图形,DOF BOE CFO AEO CDO ABO ?????????,,,从而可说明.OF OE =

证明 在ABCD 中,BD AC 、 交于O ,∴.OC AO =

CD AB // ,∴CFO AEO FCO EAO ∠=∠∠=∠,,

∴)(AAS CFO AEO ???,∴.OF OE =

例4 分析 观察图形,AFD ?与DCE ?都是直角三角形,且锐角DEC ADF ∠=∠,斜边DE AD =,因此这两个直角三角形全等。在这个图形中,若连结AE ,则ABE ?与AFE ?全等,因此可以确定图中许多有用的相等关系。

证明 ∵四边形ABCD 是矩形,∴?=∠90,//C BC AD ,∴.DEC ADE ∠=∠ DE AF ⊥ ,∴?=∠=∠90C AFD ,

又DE AD =,∴DCE AFD ???。∴.DC AF =

例5 解答 ABCD 中,AC OC OA

21=

=,BD OD OB 2

1==. ∴ OBC ?的周长BC AC BD BC OC OB ++=++=2121 591219=++=BC

∴ 28=BC . 在ABCD 中,AD BC =. ∴28=AD

OBC ?的周长-OAB ?的周长)()(AB OB OA BC OC OB ++-++=

AB BC -=15=

∴ 13=AB

∴ ABCD 的周长82)2813(2)(2=+=+=+++=BC AB AD CD BC AB

说明:本题考查平行四边形的性质,解题关键是将OBC ?与OAB ?的周长的差转化为两条线段的差.

例6 解答 设ycm BC xcm AB ==,.

∵ 四边形ABCD 为平行四边形,

∴ BC AD CD AB ==,.

又∵四边形ABCD 的周长为36,∴3622=+y x ①

∵ BC DF AB DE ⊥⊥,,

∴ y x 3534= ②

解由①,②组成的方程组,得8,10==y x . ∴)(34034102cm DE AB =?=?=. 说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题.

例7 分析 由已知条件?=∠60EAF ,在四边形AECF 中,可求出?=∠120C . 从而可知?=∠=∠60D B ,所以?=∠=∠30DAF BAE . 因此,在直角三角形ABE 和直角三角形ADF 中,可分别求出AB 、AD 长,从而也可求出AE 、AF 的长,

则容易求出ABCD 的面积.

解答 在四边形AECF 中,

?=∠=∠90AFC AEC (垂直定义)

,?=∠60EAF (已知), ∴ ?=?-?-?-?=∠120609090360C . 在ABCD 中,

∵BC AD CD AB //,//,

∴?=∠+∠180C B ,?=∠+∠180C D ∴?=∠=∠60D B

在ABE Rt ?中,?=∠60B ,2=BE , ∴42==BE AB ,

∴4==AB CD

同理,可求出6==BC AD . 在ABE Rt ?中,根据勾股定理, 32242222=-=-=BE AB AE ∴2)(312326cm AE BC =?=?=

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

双曲线题型归纳含(答案)

三、典型例题选讲 (一)考查双曲线的概念 例1 设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若3||1=PF ,则=||2PF ( ) A .1或5 B .6 C .7 D .9 分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出 2||PF 的值. 解:Θ双曲线19222=-y a x 渐近线方程为y =x a 3 ±,由已知渐近线为023=-y x , 122,||||||4a PF PF ∴=±∴-=,||4||12PF PF +±=∴. 12||3, ||0PF PF =>Q ,7||2=∴PF . 故选C . 归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法. (二)基本量求解 例2(2009山东理)设双曲线12222=-b y a x 的一条渐近线与抛物线2 1y x =+只有一个公共点, 则双曲线的离心率为( ) A . 4 5 B .5 C .25 D .5 解析:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ? =? ??=+?,消去y ,得 210b x x a - +=有唯一解,所以△=2()40b a -=, 所以2b a =,2221()5c a b b e a a a +===+=,故选D .

归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能. 例3(2009全国Ⅰ理)设双曲线22221x y a b -=(a >0,b >0)的渐近线与抛物线y =x 2 +1相 切,则该双曲线的离心率等于( )A.3 B.2 C.5 D.6 解析:设切点00(,)P x y ,则切线的斜率为 0'0|2x x y x ==.由题意有 00 2y x x =.又有2001y x =+,联立两式解得:2201,2,1()5b b x e a a =∴ ==+=. 因此选C . 例4(2009江西)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点,若12F F ,, (0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3 解析:由3tan 6 2c b π = =2222 344()c b c a ==-,则2c e a ==,故选B . 归纳小结:注意等边三角形及双曲线的几何特征,从而得出3 tan 6 2c b π = =体现数形结合思想的应用. (三)求曲线的方程

2018四边形特殊四边形经典习题(附答案)

2018年暑假作业精编《四边形》 第一部分 基础题 1.如图,在平行四边形ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边 于点E ,且AE =3,则AB 的长为( )A .4 B .3 C . 2 5 D .2 2.如图所示,如果 ABCD 的对角线AC ,BD 相交于点O ,?那么图中的全等三角形共有( ) A .1对 B .2对 C .3对 D .4对 3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A . ∠3=∠4 B . ∠1=∠2 C . ∠D =∠DCE D . ∠D +∠ACD =180° 4.如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE , 则△CDE 的周长为( ) A.20 B.12 C.14 D.13 5.如果三角形的两条边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是( ) A.6 B.8 C.10 D.12 6.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,已知BC =10,则DE 的长为( ) A .3 B .4 C .5 D .6 7.矩形各内角的平分线围成一个( ) A .平行四边形 B .正方形 C .矩形 D .菱形 8.下列命题中正确的是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是矩形

C .对角线相等的平行四边形是矩形 D .对角线互相垂直的平行四边形是矩形 9.下列命题中错误的是( ) A .对角线相等的平行四边形是矩形 B .对角线互相垂直的矩形是正方形 C .对角线互相平分的菱形是正方形 D .对角线平分一组对角的矩形是正方形 10.下列命题中,错误的是( ) A .矩形的对角线互相平分且相等 B .对角线互相垂直的四边形是菱形 C .三角形的三条角平分线相交于一点,并且这点到三条边的距离相等 D .到一条线段两个端点距离相等的点在这条线段的垂直平分线上 11.在菱形ABCD 中,∠ABC =60o,AC =4,则BD 的长为 . 12.若点O 为□ABCD 的对角线AC 与BD 交点,且AO +BO =11cm ,则AC +BD = cm . 13.在平行四边形ABCD 中, ∠A =40o,则∠B = o. 14.如图, 四边形 ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是___________ ____.(只需写出一个) 15. 如图, 口ABCD 中,AE ⊥ BD 于 E .∠EAC =30°,AE =3 则AC 的长等于 16.如图, ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于E ,则∠DAE =_____度. 17.如图,在□ABCD 中,∠A =120°,则∠D =_ _°. 18. 顺次连接菱形四边中点所得四边形是_________. 19.20. 已知菱形的两对角线长分别为6和8,则菱形的面积为

全等三角形的典型例题

全等三角形(1) 一.全等三角形的判定1:三边对应相等的两个三角形全等.简写成“边边边”或“SSS ” 几何符号语言:在ABC ?和DEF ?中 ∵?? ???===DF AC EF BC DE AB ∴ABC ?≌DEF ?(SSS ) 三.练习: 1.下列说法正确的是( ) A .全等三角形是指形状相同的两个三角形 B .全等三角形的周长和面积分别相等 C .全等三角形是指面积相等的两个三角形 D .所有等边三角形都全等. 2.如图,在ABC ?中,AC AB =,D 为BC 的中点,则下列结论中:①ABD ?≌ACD ?;②C B ∠=∠;③AD 平分BAC ∠;④BC AD ⊥,其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个 3.如图,若AC AB =,DC DB =,根据 可得ABD ?≌ACD ?. 5.如图,点B 、E 、C 、F 在同一直线上,CF BE =,DE AB =,DF AC =. 求证:D EGC ∠=∠ 6.在ABC ?中,?=∠90C ,D 、E 分别为AC 、AB 上的点, 且BD AD =,BC AE =,DC DE =. 求证:AB DE ⊥ 7.如图,点A 、C 、F 、D 在同一直线上,DC AF =,DE AB =,EF BC = 求证:DE AB // 四.强化练习: 1.如图,AD AB =,CD CB =,?=∠30B ,?=∠46BAD ,则ACD ∠的度数是( ) A .120° B .125° C .127° D .104° 2.如图,线段AD 与BC 交于点O ,且BD AC =,BC AD =,则下面的结论中不正确的是( ) A .ABC ?≌BAD ? B .DBA CAB ∠=∠ C .OC OB = D .D C ∠=∠ 3.在ABC ?和111C B A ?中,已知11B A AB =,11C B BC =,则补充条件____________,可得到ABC ?≌111C B A ?. 4.如图,CD AB =,DE BF =,E 、F 是AC 上两点,且CF AE =.欲证D B ∠=∠,可先运用等式的性质证明AF =________,再用“SSS ”证明________≌_________?得到结论. 5.如图,在四边形ABCD 中,CD AB =,BC AD =. 求证:①CD AB //;②BC AD //. 6.如图,已知CD AB =,BD AC =,求证:D A ∠=∠. 7.如图,AC 与BD 交于点O ,CB AD =,E 、F 是BD 上两点, 且CF AE =, BF DE =. 求证:⑴B D ∠=∠;⑵CF AE // 8.如图,已知DC AB =,DB AC =.求证:12∠=∠.

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

初中八年级数学经典四边形习题60道(附答案)

赵老师 经典四边形习题50道(附答案) 1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60?,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。 5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60?,梯形的周长是 20cm, 求:AB 的长。 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。 7、已知:梯形ABCD 的对角线的交点为E _ D _ C _B _ C _ A _ B _ A _ B _ E _A _ B

赵老师 若在平行边的一边BC 的延长线上取一点F , 使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、 DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , _B _ C _B _ F _ B _ C _ F _ C _ D _ B _ F _ F _ G _ B _A _ E

全等三角形练习题(很经典)

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后 仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是 ( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE , 使A,C,E 在一条直线上(如图所示),可以说明 △EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不 正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定 这两个三角形全等,还需要条件( ) 第3题图 第5题图 第7题图 第2题图 第6题图 A B C D

椭圆、双曲线、抛物线典型例题整理

椭圆典型例题 一、已知椭圆焦点的位置,求椭圆的标准方程。 例1:已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,求椭圆的标准方程。 2.已知椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 二、未知椭圆焦点的位置,求椭圆的标准方程。 例:1. 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。 例.求过点(-3,2)且与椭圆x 29+y 24 =1有相同焦点的椭圆的标准方程. 四、与直线相结合的问题,求椭圆的标准方程。 例: 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 五、求椭圆的离心率问题。 例1 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. . 例2 已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 六、由椭圆内的三角形周长、面积有关的问题 例:1.若△ABC 的两个顶点坐标A (-4,0),B (4,0),△ABC 的周长为18,求顶点C 的轨迹方程。 2.已知椭圆的标准方程是x 2a 2+y 225=1(a >5),它的两焦点分别是F 1,F 2,且F 1F 2=8,弦AB 过点F 1,求△ABF 2的周长. 3.设F 1、F 2是椭圆x 29+y 24 =1的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=2∶1,求△PF 1F 2的面积. 七、直线与椭圆的位置问题 例 已知椭圆1222=+y x ,求过点?? ? ??2121,P 且被P 平分的弦所在的直线方程.

四边形经典试题50题及答案

经典四边形习题50道(附答案) 1.已知:在矩形ABCD中,AE?BD于E, ∠DAE=3∠BAE ,求:∠EAC的度数。 2.已知:直角梯形ABCD中,BC=CD=a 且∠BCD=60?,E、F分别为梯形的腰AB、 DC的中点,求:EF的长。 3、已知:在等腰梯形ABCD中,AB∥DC, AD=BC,E、F分别为AD、BC的中点,BD 平分∠ABC交EF于G,EG=18,GF=10 求:等腰梯形ABCD的周长。 4、已知:梯形ABCD中,AB∥CD,以AD, AC为邻边作平行四边形ACED,DC延长线 交BE于F,求证:F是BE的中点。 5、已知:梯形ABCD中,AB∥CD,AC?CB, AC平分∠A,又∠B=60?,梯形的周长是 20cm, 求:AB的长。 6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。 7、已知:梯形ABCD的对角线的交点为E 若在平行边的一边BC的延长线上取一点F, _B_C _A_B _A_B _E _A _B _B _B

使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于 E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , 延长BC 到F ,使CF=CE , 求证:BE?DF _C _B _F _B _C _F _C _D _B _F _ F _G _B _D _A _E

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

高中数学《双曲线》典型例题12例(含标准答案)

《双曲线》典型例题12例 典型例题一 例1 讨论 19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k , 所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时, k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴所求双曲线方程为19 162 2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162 2 =-- λ λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164 25 =-- λ λ ∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为: ()16014162 2<<=+--λλλy x ∵双曲线过点() 223, ,∴144 1618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=- y x 说明:(1)注意到了与双曲线 14 162 2=-y x 有公共焦点的双曲线系方程为14162 2=+--λ λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面. 典型例题三 例3 已知双曲线116 92 2=- y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.

(完整)初中数学经典四边形习题50道(附答案)

经典四边形习题 50道(附答案) 1.已知:在矩形ABCD 中,A E ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60度,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。 5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60度,梯形的周长是 20cm, 求:AB 的长。 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。 7、已知:梯形ABCD 的对角线的交点为E _ D _ C _B _ C _ A _ B _ A _ B _ E _A _ B

若在平行边的一边BC 的延长线上取一点F , 使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、 DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , _B _ C _B _ F _ B _ C _ F _ C _ D _ B _ F _ F _ G _ B _A _ E

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE (AAS )∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=E G ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD, 则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F= C D B D E A B A C D F 2 1 E

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

全等三角形经典题型50题含答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB , AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°, 求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF , CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则 ⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB//ED,AE//BD 推出AE=BD, C D B D C B A F E A B A C D F 2 1 E

相关文档
最新文档