瞬态浪涌抑制器件(TVS)SMBJ

瞬态浪涌抑制器件(TVS)SMBJ
瞬态浪涌抑制器件(TVS)SMBJ

SHANGHAI SEMITECH SEMICONDUCTOR CO., LTD

SMBJ5.0 --- SMBJ440CA

Ratings and Characteristic Curves T A=25°C unless otherwise noted

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 1、根据被保护线路制式,例如:单相220V、三相220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 50343-5 4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一 级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 50057-里的分流计算,计算线路所需的泄放电流强度,选择合 适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现 在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理 在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地 线连接在一起。 MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电 源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时, 电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的 电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌

浪涌保护器的安装

浪涌保护器的有关知识和安装 电涌保护器(SPD)工作原理和结构 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类 1、按工作原理分: 1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 3.分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。按用途分: (1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。 (2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。 二、SPD的基本元器件及其工作原理 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

浪涌保护器(SPD)的设置及应用现状

浪涌保护器(SPD)的设置及在福建省的应用现状 作者:福建省建筑设计研究院林卫东 杭州鸿雁电器公司谢文平 摘要:为减少雷电电磁脉冲、开关浪涌等对设备所造成的损坏,本文分析了建筑物内电气设备要设置浪涌保护器(SPD)的原因,列出了部分防雷规范、规定及标准,介绍了选用设置各种电源浪涌保护器和信号浪涌保护器的方法;同时本文简述了浪涌保护器在福建省的应用现状,对常用几个厂家的产品进行了市场信息比较,指出浪涌保护器在福建省各个地区必将得到进一步普及。关键词:浪涌保护器(SPD)应用选用设置电压保护水平放电电流雷电电磁脉冲 (转载请保留电气论坛https://www.360docs.net/doc/6013757691.html, 版权!) 在地球上,雷电时时刻刻都存在,国际电工委员会(IEC)将雷电称之为电子化时代的一大公害。据统计,在任一时刻平均有2000多个雷暴在进行着,火灾、爆炸、建筑物破坏、人畜伤亡、设备损坏等无不与之相连,雷暴被联合国列为十大自然灾害之一,它严重影响着人类的各种活动。我国每年因雷害造成的损失达100亿元人民币。 当人类社会进入电子信息时代后,雷灾出现的特点与以往有极大不同,可概括为:(1)受灾面积大大扩大,雷害从电力、建筑这两个传统领域扩展到几乎所有行业,特别是与高新技术关系最密切的领域,如航天航空、国防、邮电通信、计算机、电子工业、石油化工、金融证券等。(2)入侵方式从平面入侵变为立体入侵,从闪电直击和雷电波沿线传输变为空间闪电的脉冲电磁场从立体空间入侵到任何角落,无孔不入地造成灾害,因而防雷工程已从防直击雷、感应雷进入防雷电电磁脉冲(LEMP)。(3)雷灾的经济损失和危害程度大大增加了。有时候雷电袭击对象本身的直接经济损失并不太大,而由此产生的间接损失和影响却难以估量。例如,1999年8月27日下午3点,某寻呼台遭受雷击,导致该台中断数小时,其直接损失是有限的,但间接损失大大超过直接损失。 产生上述现象的根本原因是雷灾的主要对象已集中在微电子设备上,雷电本身并没有变,而是随着科学技术的发展,微电子技术的应用渗透到各种生产和生活领域,微电子器件极端灵敏这一特点很容易受到无孔不入的LEMP的作用,造成微电子设备的失控或者损坏。为此,当今时代的防雷工作的重要性、迫切性、复杂性大大增强了,雷电的防御已从直击雷防护进入到感应雷、雷电电磁脉冲等的防护。当然,来自电路的开、断操作,感性和容性负载的开关操作及来自短路电流的阻断等引起的开关浪涌也是造成微电子设备失控或损坏的原因之一。美国的调查数据表明,在保修期内出现问题的电气产品中,有63%是由于浪涌造成的。 一、浪涌保护器的设置原因 雷电防护包括针对建筑物的直击雷防护,以及针对建筑物内设备、人员的雷电波侵入防护和雷击电磁脉冲防护两大部分。 多数人对直击雷防护并不陌生,但对雷电电磁脉冲防护的认识仍非常有限。雷击发生时,大约50%的雷电流将沿接闪——引下线通路直接泄放入地,频率成分非常复杂的雷电流快速通过引下线时会感应出极强的电磁场,建筑物中的管线相对切割磁力线产生感应电流(即雷击电磁脉冲),间接导致设备损坏和人员伤亡;另一方面,至少有50%的雷电流将沿着进出建筑物的管线泄放,对人员和设备构成直接威胁。因此,雷电波侵入与雷击电磁脉冲防护已成为现代防雷设计的重中之重。依据IEC61024-1的说明,室内雷电保护的主要防护措施是:浪涌保护器安装和等电位连接。等电位连接的目的,在于减小保护区间内,各金属部件和各系统之间的电位差。对非带电金

浪涌保护器的安装

欢迎阅读 浪涌保护器的有关知识和安装 电涌保护器(SPD )工作原理和结构 电涌保护器(SurgeprotectionDevice )是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 11.2.3.(1.过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F 作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar )的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF) 气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压) 在交流条件下使用:Udc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻: 它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压 , ; Ub 4. 9 ( ( ( (4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。 (5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。(6)响应时间:10-11s 5.扼流线圈:扼流线圈是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作

浪涌抑制器件特性及选用

浪涌抑制器件特性及选用 浪涌防护器件 目前在防雷浪涌过压的保护器件中主要有:防雷器、放电管、压敏电阻和半导体浪涌保护器。 在防雷器件的使用中按防护同流量能力的大小大致分为防雷器>气体放电管>压敏电阻>SAD (Surge Arrest Device ),从价格上按相同容量的防浪涌器件,SAD 的价格高于放电管,约是压敏电阻的2倍,但SAD 的响应时间最快,同时漏电流也相对较小。以上四种防浪涌器件中,放电管和SAD 都存在有动作后的续流问题,在应用中应加以考虑。 压敏电阻 压敏电阻的特性 金属氧化物压敏电阻的V/I 特性曲线相似于指数函数,可简单表示为:a KV I ,其中K 为陶瓷常数,取决于压敏电阻器的制作工艺材料等,对于金属氧化物压敏电阻指数a 可大于30,压敏电阻的V/I 特性如图1: 图1 压敏电阻的V/I 特性

图2 压敏电阻的等效电路 其中L为引线电感量,C为电容器,Rig为中间相的电阻值,Rv为理想的压敏电阻,Rb为ZnO的导通阻抗。 压敏电阻的工作电压,指在规定的工作电压时,导通电流较小,当所加电压为压敏电压的0.75倍时,压敏电阻的漏电流为uA级别,可忽略不计。脉冲电流,一般指流通过压敏电阻电流波形为8/20us波的瞬态最大脉冲电流。能量耐量,指压敏电阻的能够承受的最大的W。压敏电压,指压敏电阻流通过1mA的电流时,所需能量,其计算为:?=10)()(t t dt t i t v 加在压敏电阻上的电压。响应时间,指压敏电阻对浪涌的响应速度,一般为皮秒到纳秒级别,可和SAD防浪涌器件做比较。温度系数,指温度变化时压敏电阻的V/I特性随着变化,压敏电阻呈负温度特性,当温度升高时,压敏电阻的动作电压、脉冲电流、能量耐量和持续负荷都相应的降低。 压敏电阻发生浪涌过电压冲击时,在压敏电阻上测得的电压峰值既为残压,残压于压敏电压的比值,称为残压比,一般要求残压比小于3。在实际应用中应考虑到残压对保护元件的影响。 过载特性,当脉冲电流大于压敏电阻的规定值时,可导致压敏电阻受到永久性的损伤,此时压敏电阻没有损坏,但动作电压点可能会发生偏移;当输入的脉冲能量远大于其规定值时,将发生通过陶瓷体的击穿,在极端的情况下压敏电阻爆裂;当流通过压敏电阻过高的持续负荷时,将导致ZnO晶粒的融合,产生热击穿,压敏电阻陶瓷体的触点接通面可能因发热导致脱焊。 压敏电阻的应用及保护原理 压敏电阻可应用在通讯、能源、交通、工业、民用等所有电子设备防浪涌场合。按不同的浪涌过电压种类可分为,设备内部过电压,如电感负载的接通、飞狐、静电充电等引起的设备内部过电压,可通过计算出最坏情况下的条件来选用压敏电阻;外部过电压,强的电磁场、电网波动、雷电影响等都可造成外部的过电压。对于外部浪涌过电压因其波形、振幅和频繁度在大多数情况下是未知的或是很不明确的,这对需要保护的电路布置的参数设置选择是相当困难的。在对外部浪涌过压防护元件的选用上,可参考典型电源网络进行计算,但由于当地都存在有较大的差异性,,因此对于可靠的过电压保护装置,在选用上必须留有较大的余量参数。 压敏电阻的保护原理如图3:

浪涌电流抑制电路

浪涌电流限制电路图 开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 开关电源中浪涌电流抑制模块的应用 [导读]分析了电容输入式滤波整流器上电时对电源的浪涌电流冲击及危害,介绍了常规解决办法及存在的问题,提出一种实用解决方案。 1 上电浪涌电流 目前,考虑到体积,成本等因素,大多数AC/DC变换器输入整流滤波采用电容输入式滤波方式,电路原理如图1所示。由于电容器上电压不能跃变,在整流器上电之初,滤波电容电压几乎为零,等效为整流输出端短路。如在最不利的情况(上电时的电压瞬时值为电源电压峰值)上电,则会产生远高于整流器正常工作电流的输入浪涌电流,如图2所示。当滤波电容为470μF并且电源内阻较小时,第一个电流峰值将超过100A,为正常工作电流峰值的10倍。

浪涌电流会造成电源电压波形塌陷,使得供电质量变差,甚至会影响其他用电设备的工作以及使保护电路动作;由于浪涌电流冲击整流器的输入熔断器,使其在若干次上电过程的浪涌电流冲击下而非过载熔断。为避免这类现象发生,而不得不选用更高额定电流的熔断器,但将出现过载时熔断器不能熔断,起不到保护整流器及用电电路的作用;过高的上电浪涌电流对整流器和滤波电容器造成不可恢复的损坏。因此,必须对带有电容滤波的整流器输入浪涌电流加以限制。 2 上电浪涌电流的限制 限制上电浪涌电流最有效的方法是,在整流器与滤波电容器之间,或在整流器的输入侧加一负温度系数热敏电阻(NTC),如图3所示。利用负温度系数热敏电阻在常温状态下具有较高阻值来限制上电浪涌电流,上电后由于NTC流过电流发热使其电阻值降低以减小NTC 上的损耗。这种方法虽然简单,但存在的问题是限制上电浪涌电流性能受环境温度和NTC 的初始温度影响,在环境温度较高或在上电时间间隔很短时,NTC起不到限制上电浪涌电流的作用,因此,这种限制上电浪涌电流方式仅用于价格低廉的微机电源或其他低成本电源。而在彩色电视机和显示器上,限制上电浪涌电流则采用串一限流电阻,电路如图4所示。最常见的应用是彩色电视机,这种方法的优点是简单,可靠性高,允许在宽环境温度范围内工作,其缺点是限流电阻上有损耗,降低了电源效率。事实上整流器上电处于稳态工作后,这一限流电阻的限流作用已完成,仅起到消耗功率、发热的负作用,因此,在功率较大的开关电源中,采用上电后经一定延时后用一机械触点或电子触点将限流电阻短路,如图5所示。这种限制上电浪涌电流方式性能好,但电路复杂,占用体积较大。为使应用这种抑制上电浪涌电流方式,象仅仅串限流电阻一样方便,本文推出开关电源上电浪涌电流抑制模块。

P6KE系列TVS管瞬态抑制二极管型号大全

P6KE系列TVS管瞬态抑制二极管型号大全 硕凯电子(Sylvia) 1、产品图 功率:600W,工作电压:5.5-513.0V,电流:55.56-0.72A 2、特性曲线

3、型号

型号大全: (1)5%偏差: P6KE6.8A,P6KE6.8CA,P6KE7.5A,P6KE7.5CA,P6KE8.2A,P6KE8.2CA, P6KE9.1A,P6KE9.1CA,P6KE10A,P6KE10CA,P6KE11A,P6KE11CA, P6KE12A,P6KE12CA,P6KE13A,P6KE13CA,P6KE15A,P6KE15CA, P6KE16A,P6KE16CA,P6KE18A,P6KE18CA,P6KE20A,P6KE20CA, P6KE22A,P6KE22CA,P6KE24A,P6KE24CA,P6KE27A,P6KE27CA, P6KE30A,P6KE30CA,P6KE33A,P6KE33CA,P6KE36A,P6KE36CA, P6KE39A,P6KE39CA,P6KE43A,P6KE43CA,P6KE47A,P6KE47CA, P6KE51A,P6KE51CA,P6KE56A,P6KE56CA,P6KE62A,P6KE62CA, P6KE68A,P6KE68CA,P6KE75A,P6KE75CA,P6KE82A,P6KE82CA, P6KE91A,P6KE91CA,P6KE100A,P6KE100CA,P6KE110A,P6KE110CA, P6KE120A,P6KE120CA,P6KE130A,P6KE130CA,P6KE150A,P6KE150CA,P6KE160A,P6KE160CA,P6KE170A,P6KE170CA,P6KE180A,P6KE180CA,P6KE200A,P6KE200CA,P6KE220A,P6KE220CA,P6KE250A,P6KE250CA,P6KE300A,P6KE300CA,P6KE350A,P6KE350CA,P6KE380A,P6KE380CA,P6KE400A,P6KE400CA,P6KE440A,P6KE440CA,P6KE500A,P6KE500CA,P6KE520A,P6KE520CA,P6KE550A,P6KE550CA,P6KE600A,P6KE600CA。 (2)10%偏差: P6KE6.8,P6KE6.8C,P6KE7.5,P6KE7.5C,P6KE8.2,P6KE8.2C, P6KE9.1,P6KE9.1C,P6KE10,P6KE10C,P6KE11,P6KE11C, P6KE12,P6KE12C,P6KE13,P6KE13C,P6KE15,P6KE15C, P6KE16,P6KE16C,P6KE18,P6KE18C,P6KE20,P6KE20C, P6KE22,P6KE22C,P6KE24,P6KE24C,P6KE27,P6KE27C, P6KE30,P6KE30C,P6KE33,P6KE33C,P6KE36,P6KE36C, P6KE39,P6KE39C,P6KE43,P6KE43C,P6KE47,P6KE47C, P6KE51,P6KE51C,P6KE56,P6KE56C,P6KE62,P6KE62C, P6KE68,P6KE68C,P6KE75,P6KE75C,P6KE82,P6KE82C,

瞬态抑制二极管工作原理及选型应用

瞬态抑制二极管工作原理及选型应用 Socay (Sylvia) 1、产品简述 瞬态电压抑制器(TransientVoltageSuppressor)简称TVS管,TVS管的电气特性是由P-N结面积、掺杂浓度及晶片阻质决定的。其耐突波电流的能力与其P-N结面积成正比。TVS广泛应用于半导体及敏感器件的保护,通常用于二级电源和信号电路的保护,以及防静电等。其特点为反应速度快(为ps级),体积小,脉冲功率较大,箝位电压低等。其10/1000μs波脉冲功率从400W~30KW,脉冲峰值电流从0.52A~544A;击穿电压有从6.8V~550V的系列值,便于各种不同电压的电路使用。 2、工作原理 器件并联于电路中,当电路正常工作时,它处于截止状态(高阻态),不影响线路正常工作,当电路出现异常过压并达到其击穿电压时,它迅速由高阻态变为低阻态,给瞬间电流提供低阻抗导通路径,同时把异常高压箝制在一个安全水平之内,从而保护被保护IC或线路;当异常过压消失,其恢复至高阻态,电路正常工作。 3、特性曲线

4、主要特性参数 ①反向断态电压(截止电压)VRWM与反向漏电流IR:反向断态电压(截止电压)VRWM 表示TVS管不导通的最高电压,在这个电压下只有很小的反向漏电流IR。 ②击穿电压VBR:TVS管通过规定的测试电流IT时的电压,这是表示TVS管导通的标志电压(P4SMA、P6SMB、1.5SMC、P4KE、P6KE、1.5KE系列型号中的数字就是击穿电压的标称值,其它系列的数字是反向断态电压值)。TVS管的击穿电压有±5%的误差范围(不带“A”的为±10%)。 ③脉冲峰值电流IPP:TVS管允许通过的10/1000μs波的最大峰值电流(8/20μs 波的峰值电流约为其5倍左右),超过这个电流值就可能造成永久性损坏。在同一个系列中,击穿电压越高的管子允许通过的峰值电流越小。 ④最大箝位电压VC:TVS管流过脉冲峰值电流IPP时两端所呈现的电压。 ⑤脉冲峰值功率Pm:脉冲峰值功率Pm是指10/1000μs波的脉冲峰值电流IPP 与最大箝位电压VC的乘积,即Pm=IPP*VC。 5、命名规则

浪涌抑制器的作用

浪涌电压抑制器的应用 [摘要]文章结合我国居民信息设备需求的不断增长,阐述了现代住宅居民信息设备瞬态过电压保护的设计原则和浪涌电压抑制器件的分类,重点论述了硅瞬变吸收二极管的特性、参数及其工程选用原则。 [关键词]设计原则 TVS 特性参数工程应用 1设计原则 对于家居信息系统的保护除了做好常规的防雷设施和处理好接地问题外,还应在信息家电的电源端加装相应的过电压保护装置,以消除电网浪涌、雷电感应电压、设备切换等意外事件对信息家电设备的冲击和毁坏。要求进入信息家电内的电源线、信号线应通过防雷、防过压处理,并将设备外壳、室内的金属门、窗、管道等进行等电位处理。 信息家电设备雷电过电压及电磁干扰防护是保护通信线路、设备及人身安全的重要技术手段和确保通信线路、设备运行不受干扰必不可缺少的技术环节。信息网络过电压保护必须运用电磁兼容原理将计算机网络局部的防护归结到整体的雷电过电压保护。 网络设备所处的建筑物作为一个欲保护的空间区域,从电磁兼容的角度出发,可由外到内分为几个雷电保护区,现已规定出各部分空间不同的雷电磁脉冲(LEMP)的严重程度。 根据雷电保护区的划分要求,建筑物外部是直击雷区域,在这个区域内的设备最容易遭受损害,危险性最高,是暴露区,为0区;建筑物内部所处的位置为非暴露区可将其分为1区、2区,越往内部,危险程度越低,雷电过电压对内部电子设备的损害主要是沿线路引入。保护区的界面通过外部的防雷系统、建筑物的钢筋混凝土及金属外壳等构成屏蔽层。电气通道以及金属管则必须通过这些界面,穿过各级雷电保护区的金属构件在每一穿过点做等电位联结。 2浪涌电压抑制器件 浪涌电压抑制器件基本上可以分为两大类。第一种类为橇棒(CrowBar)器件,其主要特点是器件击穿后的残压很低,因此不仅有利于浪涌电压的迅速泄放,而且使功耗大大降低。另外,该类型器件的漏电流小,器件极间电容量小,所以对线路影响很小。常用的撬棒器件包括气体放电管、气隙型浪涌保护器、硅双向对称开关(CSSPD)等。 另一类为箝位保护器,即保护器件在击穿后,其两端电压维持在击穿电压上不再上升,以箝位的方式起到保护作用。常用的箝位保护器是氧化锌压敏电阻MOV,瞬态电压抑制器(TVS)等。 保护器分过电压保护元件和过电流保护元件。我们通常所称的“避雷器”和随着国外防雷器件引入的“浪涌抑制器”、“过电压限制器”、放电管、齐纳二极管等都属于电压限制元件。它们的工作原理差不多,但它们之间的通流容量、动作速度、残压等有很大差别。

LS系列浪涌抑制器

雷尔逊LS系列浪涌保护器的优势特点 一、雷尔逊浪涌保护器执行的标准 ●IEC1024 建筑物防雷设计规范 ●IEC61643 低压配电系统的电涌保护器 ●UL 1449 低压配电系统的电涌保护器 ●BS 6651 低压配电系统的电涌保护器 ●GA173 计算机信息系统防雷保安器 ●YD-T 1235.1 通信局(站)低压配电系统用电涌保护器 二、LSY系列电源浪涌保护器的优势特点 1.箱式电源浪涌保护器 (1)产品高安全、高可靠性设计,最大限度地免除用户的后顾之忧: ●多通道冗余电路,支路失效或过流过热自动断开,后备电路继续工作,产品更加安全; ●可以虑除或者抑制电网中的高频干扰信号,被保护设备工作更加可靠; ●通流容量大,限制电压低,一级相当于两级保护(如下图)。 ●防爆金属外壳,超过10年设计寿命,可用于石油化工等特殊行业。 (2)加强保护型产品完备的自我监测、告警和保护功能,确保履行职责时决不失职: ●具有在线工作指示以及导线松脱、后备保险跳闸告警功能,避免保护器成为虚设; ●具有接地不良和交流缺相告警功能、保证保护器有效运行; ●具有老化预警功能,用指示灯提示,保证最终失效前有足够的时间进行更换; ●具有失效告警功能,用声光警示用户及时更换,避免保护中断。

2.小型电源浪涌保护器 ●串联使用时,当产品劣化或遭遇大电流冲击,会自动切断线路,进一步保护设备安全; ●并联使用时,当产品出现裂化,会自动退出系统,并可以“热更换”,不影响线路工作。 ●既可用DIN导轨直立安装,也可用L型附件卧式安装,并通过安装件自动接地。 3.交流电源防浪涌插座 ●-A型产品在电网异常,即交流电压有效值高于286V或低于154V时,将自动切断交流电路,以 保护贵重设备安全。 ●带后缀“+”的产品可以插挂有金属固定卡的各种通用信号浪涌保护器,以简化现场安装和接地 连接,节省空间。 三、LSX系列信号浪涌保护器的优势特点 1.过程控制信号浪涌保护器 ●既可用DIN导轨直立安装,也可用L型附件卧式安装,并通过安装件自动接地。 ●导线屏蔽层悬浮接地,可以消除地电流干扰或不接地隐患。 ●多路组合产品,适用于保护回路较多的场合,节省空间,简化安装。 ●可以按照用户的要求增加在线监测和劣化指示功能。 2.通用信号浪涌保护器 ●既可用DIN导轨直立安装,也可用L型配件卧式安装,并可两个重叠通过安装件自动接地。 ●多路组合产品可极大地节省空间,另外还可通过19英寸1U或2U机架进行大量集中安装。 ●有金属固定卡的产品可以插挂到型号后带“+”后缀的防浪涌电源插座上。

P6KE瞬态抑制二极管

P6KE瞬态抑制二极管 优恩半导体(UN) 1、P6KE瞬态抑制二极管型号: P6KE6.8、P6KE6.8C、P6KE6.8A、P6KE6.8CA、P6KE7.5、P6KE7.5C、P6KE7.5A、P6KE7.5CA、P6KE8.2、P6KE8.2C、P6KE8.2A、P6KE8.2CA、P6KE9.1、P6KE9.1C、P6KE9.1A、P6KE9.1CA、P6KE10、P6KE10C、P6KE10A、P6KE10CA、P6KE11、P6KE11C、P6KE11A、P6KE11CA、P6KE12、P6KE12C、P6KE12A、P6KE12CA、P6KE13、P6KE13C、P6KE13A、P6KE13CA、P6KE15、P6KE15C、P6KE15A、P6KE15CA、P6KE16、P6KE16C、P6KE16A、P6KE16CA、P6KE18、P6KE18C、P6KE18A、P6KE18CA、P6KE20、P6KE20C、P6KE20A、P6KE20CA、P6KE22、P6KE22C、P6KE22A、P6KE22CA、P6KE24、P6KE24C、P6KE24A、P6KE24CA、P6KE27、P6KE27C、P6KE27A、P6KE27CA、P6KE30、P6KE30C、P6KE30A、P6KE30CA、P6KE33、P6KE33C、P6KE33A、P6KE33CA、P6KE36、P6KE36C、P6KE36A、P6KE36CA、P6KE39、P6KE39C、P6KE39A、P6KE39CA、P6KE43、P6KE43C、P6KE43A、P6KE43CA、P6KE47、P6KE47C、P6KE47A、P6KE47CA、P6KE51、P6KE51C、P6KE51A、P6KE51CA、P6KE56、P6KE56C、P6KE56A、P6KE56CA、P6KE62、P6KE62C、P6KE62A、P6KE62CA、P6KE68、P6KE68C、P6KE68A、P6KE68CA、P6KE75、P6KE75C、P6KE75A、P6KE75CA、P6KE82、P6KE82C、P6KE82A、P6KE82CA、P6KE91、P6KE91C、P6KE91A、P6KE91CA、P6KE100、

浪涌保护器的原理及参数介绍

浪涌保护器的原理及参数介绍 浪涌保护器原理 浪涌保护器(SurgeprotectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为"避雷器"或"过电压保护器"英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏.电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件.用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 汇骐防雷商城提示您浪涌保护器的参数介绍 1、最大持续运行电压Uc 在220/380V三相系统中选择SPD时,其最大持续运行电压Uc应根据不同的接地系统形式来选择. (1)当电源采用TN系统时,从建筑物内总配电盘(箱)开始引出的配电线路和分支线路必须采用TN-S系统; (2)在下列场所应视具体情况对氧化锌压敏电阻SPD提高上述规定的Uc值: ①供电电压偏差超过所规定的10%的场所; ②谐波使电压幅值加大的场所. 2、冲击电流Iimp 规定包括幅值电流Ipeak和电荷Q. 3、标称放电电流In 流过SPD、8/20μs电流波的峰值电流,用于对SPD做Ⅱ级分类试验,也用于对SPD做Ⅰ级和Ⅱ级分类试验的预处理.对Ⅰ级分类试验In不宜小于15kA,对Ⅱ级分类试验In不宜小于5kA. 4、电压保护水平Up 即在标称放电电流In下的残压,或浪涌保护器的最大钳压. 为使被保护设备免受过电压的侵害,SPD的电压保护水平Up应始终小于被保护设备的冲击耐受电压Uchoc,并应大于根据接地类型得出的电网最高运行电压Usmax,即要求UsmaxIn.

如何使用热敏电阻抑制电源电路浪涌电流

如何使用热敏电阻抑制电源电路浪涌电 流 开机浪涌电流产生的原因 图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。在开机上电的瞬间,电容电压不能突变,因此会产生一个很大的充电电流。根据一阶电路零状态响应模型所建立的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。这个电流就是我们常说的输入浪涌电流,它是在对滤波电容进行初始充电时产生的,其大小取决于启动上电时输入电压的幅值以及由桥式整流器和电解电容其所形成的回路的总电阻。 图1 电源示意图 假设输入电压V1为220Vac,整个电网内阻(含整流桥和滤波电容)Rs=1Ω,若正好在电源输入波形达到90度相位的时候开机,那么开机瞬间浪涌电流的峰值将达到I=220×1.414/1=311(A)。这个浪涌电流虽然时间很短,但如果不加以抑制,会减短输入电容和整流桥的寿命,还可能造成输入电源电压的降低,让使用同一输入电源的其它动力设备瞬间掉电,对临近设备的正常工作产生干扰。

浪涌电流的抑制 浪涌电流的抑制方法有很多,一般中小功率电源中采用电阻限流的办法抑制开机浪涌电流。图2是一个常见的110V/220V双输入电源示意图,以此为例,我们分析一下如何使用NTC热敏电阻进行浪涌电流的抑制。 图2 110/220Vac双输入电源示意图 NTC热敏电阻,即负温度系数热敏电阻,其特性是电阻值随着温度的升高而呈非线性的下降。NTC在应用上一般分为测温热敏电阻和功率型热敏电阻,用于抑制浪涌的NTC 热敏电阻指的就是功率型热敏电阻器。 图2中R1~R4为热敏电阻浪涌抑制器通常放置的位置。对于同时兼容110Vac和220Vac输入的双电压输入产品,应该在R1和R2位置同时放两个NTC热敏电阻,这样可使在110Vac输入连接线连接时和220Vac输入连接线断开时的冲击电流大小一致,也可单独在R3或R4处放置一个NTC热敏电阻。对于只有220Vac输入的单电压产品,只需在R3或R1位置放1个NTC热敏电阻即可。 其工作原理如下: 在常温下,NTC热敏电阻具有较高的电阻值(一般选用5Ω或10Ω),即标称零功率电阻值。参考图1的例子,串接10ΩNTC时,开机浪涌电流为:I=220×1.414/(1+10)= 28

瞬态抑制二极管选型

瞬态抑制二极管选型 优恩半导体(UN) 瞬态电压抑制二极管选型必须注意以下几点: 1.最小击穿电压VBR和击穿电流IR。VBR是瞬态电压抑制二极最小的击穿电压,在25℃时,低于这个电压瞬态电压抑制二极是不会产生雪崩的。当瞬态电压抑制二极流过规定的1mA电流(IR)时,加于瞬态电压抑制二极两极的电压为其最小击穿电压V BR。按瞬态电压抑制二极的VBR与标准值的离散程度,可把VBR分为5%和10%两种。对于5%的VBR来说,V WM=0.85VBR;对于10%的VBR来说,V WM=0.81VBR。为了满足IEC61000-4-2国际标准,瞬态电压抑制二极二极管必须达到可以处理最小8kV(接触)和15kV(空气)的ESD 冲击,部份半导体厂商在自己的产品上使用了更高的抗冲击标准。对于某些有特殊要求的可携设备应用,设计者可以依需要挑选元件。 2.最大反向漏电流ID和额定反向切断电压VWM。VWM是二极管在正常状态时可承受的电压,此电压应大于或等于被保护电路的正常工作电压,否则二极管会不断截止回路电压;但它又需要尽量与被保护回路的正常工作电压接近,这样才不会在瞬态电压抑制二极工作以前使整个回路面对过压威胁。当这个额定反向切断电压VWM加于瞬态电压抑制二极的两极间时它处于反向切断状态,流过它的电流应小于或等于其最大反向漏电流ID。 3.最大钳位电压VC和最大峰值脉冲电流I PP。当持续时间为20ms的脉冲峰值电流IPP流过瞬态电压抑制二极时,在其两端出现

的最大峰值电压为VC。V C、IPP反映了瞬态电压抑制二极的突波抑制能力。VC与VBR之比称为钳位因子,一般在1.2~1.4之间。VC 是二极管在截止状态提供的电压,也就是在ESD冲击状态时通过瞬态电压抑制二极的电压,它不能大于被保护回路的可承受极限电压,否则元件面临被损伤的危险。 4.Pppm额定脉冲功率,这是基于最大截止电压和此时的峰值脉冲电流。对于手持设备,一般来说500W的瞬态电压抑制二极就足够了。最大峰值脉冲功耗PM是瞬态电压抑制二极能承受的最大峰值脉冲功耗值。在特定的最大钳位电压下,功耗PM越大,其突波电流的承受能力越大。在特定的功耗PM下,钳位电压VC越低,其突波电流的承受能力越大。另外,峰值脉冲功耗还与脉冲波形、持续时间和环境温度有关。而且,瞬态电压抑制二极所能承受的瞬态脉冲是不重覆的,元件规定的脉冲重覆频率(持续时间与间歇时间之比)为0.01%。如果电路内出现重覆性脉冲,应考虑脉冲功率的累积,有可能损坏瞬态电压抑制二极。 5.电容器量C。电容器量C是由瞬态电压抑制二极雪崩结截面决定的,是在特定的1MHz频率下测得的。C的大小与瞬态电压抑制二极的电流承受能力成正比,C太大将使讯号衰减。因此,C是数据介面电路选用瞬态电压抑制二极的重要参数。电容器对于数据/讯号频率越高的回路,二极管的电容器对电路的干扰越大,形成噪音或衰减讯号强度,因此需要根据回路的特性来决定所选元件的电容器范围。高频回路一般选择电容器应尽量小(如LC瞬态电压抑制二极、低电容

浪涌电流及浪涌抑制器分类及主要技术详解

浪涌电流及浪涌抑制器分类及主要技术详解 【电源网】浪涌电流指电源接通瞬间,流入电源设备的峰值电流。由于 输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。电源应该 限制AC开关、整流桥、保险丝、EMI滤波器件能承受的浪涌水平。反复开 关环路,AC输入电压不应损坏电源或者导致保险丝烧断。浪涌电流也指由 于电路异常情况引起的使结温超过额定结温的不重复性最大正向过载电流。 ?浪涌抑制器的分类 ?1.放电间隙(又称保护间隙): ?它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属 棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按 需要调整,结构较简单,其缺点是灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上 升作用而使电弧熄灭的。 ?2.气体放电管: ?它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或 陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。 这种充气放电管有二极型的,也有三极型的,气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电 流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)气体放电管可在直 流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件 下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)在交流条件下使用:U

瞬态抑制二极管1.5KE型号参数规格书大全

Axial Lead Transient Voltage Suppressors (TVS) The 1.5KE series is designed specifically to protect sensitive electronic equipment from voltage transients induced by lightning and other transient voltage events. Uni-directional Bi-directional u Low leakage u Uni and Bidirectional unit u Excellent clamping capability u 1500W Peak power capability at 10 × 1000μs waveform Repetition rate (duty cycle):0.01% u Fast response time: typically less than 1.0ps from 0 Volts to V BR min u Typical I R less than 5μA above 12V. u High Temperature soldering: 260°C/40 seconds at terminals u Typical maximum temperature coefficient ΔV BR = 0.1% × V BR @25°C × ΔT u Plastic package has Underwriters Laboratory Flammability 94V-0 u Matte tin lead –free Plated u Halogen free and RoHS compliant u Typical failure mode is short from over-specified voltage or current u Whisker test is conducted based on JEDEC JESD201A per its table 4a and 4c u IEC-61000-4-2 ESD 15kV(Air), 8kV (Contact) u ESD protection of data lines in accordance with IEC 61000-4-2 (IEC801-2) u EFT protection of data lines in accordance with IEC 61000-4-4 (IEC801-4) TVS devices are ideal for the protection of I/O interfaces, V bus and other vulnerable circuits used in Telecom, Computer, Industrial and Consumer electronic applications. Parameter Symbol Value Unit Peak Pulse Power Dissipation with a 10/1000μs waveform (Fig.1)(Note 1), (Note 2) P PPM 1500 Watts Peak Pulse Current with a 10/1000μs waveform.(Note1,Fig.3) I PP See Next Table Amps Power Dissipation on Infinite Heat Sink at T L =75°C P M(AV) 6.5 Watt Peak Forward Surge Current, 8.3ms Single Half Sine Wave (Note 3) I FSM 200 Amps Maximum Instantaneous Forward Voltage at 25A for Unidirectional Only (Note 4) V F 3.5/5.0 Voltage Operating junction and Storage Temperature Range. T J , T STG -55 to +150 °C Notes: 1. Non-repetitive current pulse, per Fig. 3 and derated above T A = 25°C per Fig. 2. 2. Mounted on 5.0mm x 5.0mm (0.03mm thick) Copper Pads to each terminal. 3. 8.3ms single half sine-wave, or equivalent square wave, Duty cycle = 4 pulses per minutes maximum. 4. V F < 3.5V for V BR < 200V and V F < 6.5V for V BR > 201V.

相关文档
最新文档