单极性和双极性PWM调制的区别在哪里 详解PWM中的单极性和双极性

单极性和双极性PWM调制的区别在哪里 详解PWM中的单极性和双极性

单极性和双极性PWM调制的区别在哪里详解PWM中的单极性和双极性本文主要是关于单极性和双极性PWM调制的相关介绍,并着重对单极性和双极性PWM调制的区别进行了详尽描述。

PWM控制的基本原理PWM(PulseWidthModulaTIon)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。

面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1.1(1)所示,三个窄脉冲形状不同,但是它们的面积都等于1,当它们分别加在如图1.1.1(2)(a)所示的R-L电路上时,并设其电流i(t)为电路的输出,则其输出响应波形基本相同且如图 1.1.1(2)(b)所示。

一、什么是单极性PWM和双极性PWM

通俗的说:单极性PWM就是PWM波形在半个周期中只在单极性范围内变化。双极性PWM就是PWM波形在半个周期中有正、有负。

单、双极性是根据对低电平的不同定义而言的,然后所谓单极性,指的是以0V为低电平,双极性,指的是以“与高电平大小相等,极性方向相反(即在横轴下面)”的电位为低电平。

我们知道,PWM波形的产生是通过载波和信号波两个波形共同作用而成的,基本元素只有两个,高电平和低电平,信号波比载波高,则为高电平,比载波低,则为低电平。

二、单极性PWM原理

产生单极性PWM模式的基本原理如下所示。首先由同极性的三角波载波信号ut。与调制信号ur,比较(图(a)),产生单极性的PWM脉冲(图(b));然后将单极性的PWM脉

现代通信原理课程实验报告单极性和双极性NRZ信噪

现代通信原理课程实验报告单极性和双极性NRZ信噪

现代通信原理课程 设计报告 设计题目:单极性和双极性NRZ信噪 比和误比特率的 关系特性 专业班级:信处 姓名: 指导教师:陈爱萍老师

设计时间:2011.11.28

单极性和双极性NRZ 的信噪比与误比特率关系特性 一、设计任务与要求 利用Matlab 作图比较单极性NRZ 和双极性NRZ 的信噪比与误比特率关系特性,并计算当要求基带传输系统的误码率为10-6时所需要的信噪比。 二、设计任务分析 首先分析下二元码有如下: 单级性非归零码(NRZ (L ))属于非归零码NRZ (Not Return Zero code )在整个码元期间电平保持不变。在这种编码中用高电平和低电平(通常为零电平)分别表示二进制 信息“1”、“0”。 双极性非归零码也同单级性非归零码相同的是在整个码元期间电平保持不变,但它用正电平,负电平分别表示“1”,“0”. 对于单极性NRZ 码,设对应0和1信息时其幅度分别为0和A ,无码间干 扰时,接收滤波器的输出信号 或 。若接 收判决门限为d ,即若 ,判定信号幅度为A ;若 判定信号幅度为0。 当发送信号为0时,叠加高斯噪声后接收波形幅度的概率密度函数为: 发送信号为1时,叠加高斯噪声后的接收波形幅度的概率密度函数为: 若噪声幅度过大,就会造成接收端的误判,误判概率为 总误判概率为 ,通常 ,采用 作为判决电平是最佳的,此时的误比特率为 ,噪声功率为 ,所以有: ,所以 。 流程图: )2220()2r p r σπσ-=())2221()2r A p r σπσ --=()()22212d r A b p dr σπσ--=?0011b b b p p p p p =+0112p p ==2A 2212x b d p dx Q σσπ+∞-??== ????22 S A =2N σ =2b p Q S N =24S A =b p Q S N =()()r KT A n KT =+()()r KT n KT =r d > r d <

单相桥式PWM逆变电路设计

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 综合设计报告 设计题目:单相桥式PWM逆变电路设计 单位(二级学院):自动化学院 学生姓名:梁勇 专业:电气工程与自动化 班级: 0830702 学号: 07350225 指导教师:罗萍 设计时间:2010年10月 重庆邮电大学自动化学院制 目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7)

4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19) 3.电路图 (22) 摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图

列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。 这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。 从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽度线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果。 1.工作原理 图2-4是SPWM变频器的主电路,图中VTl~VT6是逆变器的六个功率开关器件(在这里画的是IGBT),各由一个续流二极管反并联,整个逆变器由恒值直流电压U供电。图2-5是它的控制电路,一组三相对称的正弦参考电压信号由参考信号发生器提供,其频率决定逆变器输出的基波频率,应在所要求的输出频率范围内可调。参考信号的幅值也可在一定范围内变化,决定输出电压的大小。三角载波信号C U是共用的,分别与每相参考电压比较后,给出“正”或“零”的 饱和输出,产生SPWM脉冲序列波 ,, da db dc U U U 作为逆变器功率开关器件的 驱动控制信号。

三相桥式PWM逆变电路

《电力电子技术》课程设计说明书三相桥式PWM逆变电路的设计院、部:电气与信息工程 学生姓名:刘远治 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级:电气本1104班 完成时间:2014年06月

摘要 本文设计了一个三相桥式PWM控制的逆变电路。PWM控制就是对脉冲的宽度进行调制的技术,如果脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称为SPWM波形。该设计包括主电路、驱动电路、SPWM信号产生电路、过流保护等方面的设计。该逆变器主电路采用的开关器件是IGBT;如需实物制作,驱动电路可采用现在大功率MOSFET、IGBT专用驱动芯片IR2110;PWM信号产生电路可采用CD4538芯片控制产生。 关键词:三相桥式;主电路;IR2110;CD4538

Abstract This paper designed a three-phase PWM controlled inverter bridge circuit. PWM control is on the pulse width modulation technology, if the pulse width changes according to sine law and the sine wave PWM waveform equivalent, also known as SPWM waveform. The design includes the main circuit, driver circuit, SPWM signal generation circuit, over-current protection and other aspects of design. The inverter main circuit uses IGBT; If you need make it real, driver circuit can use high-power MOSFET, IGBT dedicated driver chip IR2110; PWM signal generation circuit controlled by the CD4538 chip produced。 Key words three-phase bridge; main circuit; IR2110; CD4538

单双极性SPWM单相桥电压型逆变电路课程设计单极性

单极性PWM控制方式 调制信号ur为正弦波,载波uc在ur的正半周为正极性的三角波,在ur的负半周为负极性的三角波。 在ur的正半周,V1保持通态,V2保持断态。 当ur>uc时使V4导通,V3关断,uo=Ud。 当uruc时使V3关断,V4导通,uo=0。 主电路在每个开关周期内输出电压在正和零(或负和零)间跳变,正、负两种电平不会同时出现在一个开关周期内,故称为单极性SPWM。 七、单极性SPWM调制分析 载波比和调制深度的定义与双极性SPWM相同。它不适于半桥电路,而双极性SPWM在半桥、全桥电路中都可以使用。 与双极性SPWM相同,在m<=1和fc>>f的条件下,单极性SPWM逆变电路输出的基波电压u1的幅值U1m满足如下关系: U1m=mUd 即输出电压的基波幅值随调制深度m线性变化,故其直流电压利用率与双极性时也相同。 就基波性能而言,单极性SPWM和双极性SPWM完全一致,但在线性调制情况下它的谐波性能优于双极性调制:开关次整数倍谐波消除,值得考虑的最低次谐波幅值较双极性调制时小得多,所需滤波器也较小。 八、建立单极性SPWM仿真模型 单极性SPWM触发信号产生图: 触发电路中三角载波(Triangle)参数设置:“Time V alues”为[0 1/fc/2 1/fc],“Output V alues”为[1 0 1]。 对脉冲电路进行封装:

单极性SPWM主电路: 触发电路参数设置:Ud=300v,R=1欧,L=2mH 九、进行单极性SPWM仿真 1、仿真时间设为0.06s 键入MATLAB语言命令: >> subplot(4,1,1) >> plot(b.time,b.signals(1).values) >> subplot(4,1,2) >> plot(b.time,b.signals(2).values) >> subplot(4,1,3) >> plot(b.time,b.signals(3).values) >> subplot(4,1,4) >> plot(b.time,b.signals(4).values) >> subplot(3,1,1) >> plot(c.time,c.signals(1).values) >> subplot(3,1,2) >> plot(c.time,c.signals(2).values) >> subplot(3,1,3) >> plot(c.time,c.signals(3).values)

单极性和双极性

单相桥式PWM 逆变电路如图一所示,其控制方式有单极性和双极性两种,当输出脉冲的宽度按正弦规律变化时,这种电路一般称为SPWM 逆变电路。无论对于单极性还是双极性SPWM 逆变电路,均把需要输出的正弦波作为调制信号u r ,去调制一个等腰三角形载波信号u c ,从而获得对逆变电路开关器件的控制信号,进而得到所需要的SPWM 波形,如图二所示[2] 。而在具体分析逆变电路的输出电压时常采用一种近似方法,这种方法是假设三角载波信号的频率f c 远大于正弦调制信号的频率f r , 既满足条件 f c 》f r ,这样两个三角载波信号间的正弦波形就可近似看作直线[3] ,从而可方便的确定各个控制脉冲的起止时刻,以及输出电压的大小和谐波分布。这种近似分析方法会产生过少误差及控制方式不同时输出电压的不同特点将是本文分析的内容。 二、逆变电路输出脉冲的数学分析 1 单极性逆变电路 为分析方便,把图二(a )中细实线方框内的部分图形放大并展宽于图三中。并设半周正弦调制信号内的脉冲个数为N ,且N 为奇数,由图可见载波信号的第K 个过零点相对于正弦调制信号的角度为 πβN K K 21 2-= (1) 它与正弦调制信号u r 的交点A 、B 的坐标分别为(αK -, u K -)与(αK +,u K +), 根据直线方程的两点式表达式,可解出A 、B 两 点所在直线的方程为 )12(2-+-=--K N u K K απ )12(2--= ++K N u K K απ 把以上两式结合在一起,既有 ?? ????--=- )12(2K N u K K απ (2) 在近似计算逆变电路的输出时,正弦调制信号看作不变并用它在 K β时刻的值取代,既有关系式 ?? ????--=)12(2sin K N m K K απβ (3) 其中cm rm u u m = 为调制比,由此可解出输出脉冲的始末角度 K α为 ()[]K K m K N βπ αsin 122 -= (4) 但实际上由三角载波和正弦调制信号所产生的输出脉冲与上述是有区别的,要准确计算输出脉冲的始末角度 K α必须使用下 式 ?? ? ???--=)12(2sin K N m K K απα (5) 而该式为一奇异方程,我们不能求得其解析解,只能通过计算机求得近似解。 由于逆变电路的输出由一系列宽度不等的脉冲组成,当在正弦调制信号半个周期内的脉冲数为奇数时,它们具有奇函数和半波对称的性质,因而其输出电压可用富氏级数表示为 t n U u n nm ωsin 1 00∑∞ == (n=1,3,5,…) (6)

单相桥式逆变电路设计

《电力电子技术》课程设计说明书单相桥式逆变电路的设计 院、部:电气与信息工程学院 学生姓名: 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级: 完成时间: 2014年6月

电力电子技术》课程设计任务书 一、课程设计的目的 通过课程设计达到以下目的 1、加强和巩固所学的知识,加深对理论知识的理解; 2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料; 3、培养学生综合分析问题、发现问题和解决问题的能力; 4、培养学生综合运用知识的能力和工程设计能力; 5、培养学生运用仿真软件的能力和方法; 6、培养学生科技写作水平。 二、课程设计的主要内容 1、关于本课程学习情况简述 2、主电路的设计、原理分析和器件的选择; 3、控制电路的设计; 4、保护电路的设计; 5、利用MATLAB软件对自己的设计进行仿真。 三、课程设计的要求 1、通过查阅资料,确定自己的设计方案; 2、按学号尾数定课题,即课题一的学号尾数为1,以此类推。自拟参数不能雷同; 3、要求最后图纸是标准的CAD图; 4、课程设计在第18周五前交上来。 四、课题 1、课题一:单相桥式可控整流电路的设计 已知单相交流输入交流电压220V,负载自拟,要求整流电压在0~100V连续可调,其它性能指标自定。 2、课题二:三相半波可控整流电路的设计 已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 3、课题三:三相桥式可控整流电路的设计

已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 4、课题四:直流降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在50~100V可调,其它性能指标自定。 5、课题五:直流升压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在300~400V可调,其它性能指标自定。 6、课题六:直流升降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在100~300V连续可调,其它性能指标自定。 7、课题七:单相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 8、课题八:单相交流调压电路设计 已知单相交流输入交流电压220V,负载自拟,要求输出交流电压在0~220V 可调,其它性能指标自定。 9、课题九:三相交流调压电路的设计 已知三相交流输入交流线电压380V,负载自拟,要求输出交流电压在0~200V可调,其它性能指标自定。 10、课题十:三相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 注意:若已经按上课时我讲解的内容和安排的课题进行了设计,则不必再更改。 五、格式要求 1、格式严格按照教务处规定的毕业设计格式; 2、文档内容: 1)绪言:主要介绍对本课程学习情况;本设计内容的掌握情况;拟出设计任务书。 2)主电路设计: (1)电路原理图:用CAD绘制电路; (2)原理分析:用自己的语言;

pwm滤波单极性双极性-电感纹波

作业3: H 桥DC-DC 变换器主电路如图1所示,电源电压为s U ,控制电压设为r u ,三角波为t u ,三角波峰值为tm U ,三角波频率为s f ,输出电压为AB u ,其稳态开关周期平均值为AB U ,电源电流为s i ,其稳态开关周期平均值为s I ,电感电流为L i ,其稳态开关周期平均值为L I 。设电路已达到稳态,求解下列问题(每题20分): (1) 采用双极性PWM 控制方式,r u =0.5tm U 。求取 AB s U U 和 s L I I 的表达式;画 出AB u 和s i 的波形(忽略电感电流L i 中的纹波),通过傅里叶分析,求解AB u 和s i 的开关频率谐波幅值(请给出开关频率的1至6次谐波)。 解答: 采用双极性的PWM 控制方式的时候,其波形如图所示: 其中,r u =0.5tm U ,解得占空比75.0u 2u u t q tm r tm on =+== T . 其中,s 5.0)1-q 2()q 1(q s U U U U U S S AB ==--= 所以, AB s U U =0.5. 在不考虑电感纹波的情况下,相当于电感电流为方波(无充放电的三角波过程),此时,Is 由于电感电流不能迅速充放电的原因而和Uab 电压波形保持一致,且由于输出输出侧功率守恒可知,L S S I U I U ab =,所以,. )(1-q 2s ab s ==U U I I L =ur/utm=0.5 其中,Uab 的波形如下:(若下图在word 里面打不开,请参见visio 文件绘图1)

其中Is的波形如下:(若下图在word里面打不开,请参见visio文件绘图2)

单相桥式整流逆变电路的设计及仿真

单相桥式整流逆变电路的设计及仿真 辽宁工业大学 电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真 院(系):电气工程学院 专业班级:自动化111班 学号: 110302030 学生姓名: 指导教师:(签字) 起止时间:2013.12.30-2014.1.10

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 整流电路是把交流电转换为直流电的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。逆变电路是把直流电变成交流电的电路,与整流电路相对应。无源逆变电路则是将交流侧直接和负载连接的电路。 此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。 关键词:交直流转换;桥式整流;无源逆变电路;

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.2系统组成方案 (2) 2.2.1单相桥式整流电路的结构 (2) 2.2.2单相桥式无源逆变电路的结构 (3) 第3章主电路设计 (4) 3.1单相桥式整流主电路 (4) 3.1.1单相桥式整流主电路图 (4) 3.1.2工作原理 (4) 3.2单相桥式无源逆变电路主电路 (5) 3.2.1单相桥式整流电路主电路图 (5) 3.2.2工作原理 (6) 第4章控制电路设计 (7) 4.1单相桥式整流电路控制 (7) 4.1.1触发电路 (7) 4.1.2保护电路 (8) 4.2单相桥式无源逆变电路控制电路 (9) 4.2.1驱动电路 (9) 4.2.2保护电路 (10) 第5章 MATLAB仿真 (12) 5.1单相桥式整流电路的仿真 (12) 5.2单相桥式无源逆变电路的仿真 (15) 第6章课程设计总结 (17) 参考文献 (18)

单相单,双极性SPWM仿真课设

目录 引言 (1) 1.单相SPWM结构及其工作原理 (2) 1.1PWM控制的基本原理 (2) 1.2 SPWM基本原理 (2) 2.单相PWM逆变电路及其控制方法 (3) 2.1单相SPWM逆变电路结构 (3) 2.2单相SPWM逆变电路的控制方法 (3) 2.2.1计算法和调制法 (3) 2.2.2调制度 (4) 2.2.3异步调制与同步调制 (4) 2.2.4采样方法 (4) 2.2.5单极性与双极性控制方式 (5) 3.MATLAB仿真建模 (6) 3.1单极性SPWM逆变电路建模 (6) 3.1.1单极性PWM逆变主电路建模 (7) 3.1.2单极性SPWM逆变控制电路建模 (8) 3.2双极性SPWM逆变电路建模 (9) 3.2.1双极性SPWM逆变主电路建模 (9) 3.2.2双极性SPWM逆变控制电路建模 (10) 4.仿真结果 (11) 4.1单极性SPWM仿真结果 (11) 4.2双极性SPWM仿真结果 (15) 4.3仿真结果分析 (18)

引言 随着电力电子技术的不断发展,电力电子技术的各种装置在国民经济各行各业中得到了广泛应用。从电能转换的观点,电力电子的装置涵盖交流——直流变换、直流——交流变换、直流——直流变换、交流——交流变换。比如在可控电路直流电动机控制,可变直流电源等方面都得到了广泛的应用,而这些都是以逆变电路为核心。由于电力电子技术中有关电能的变换与控制过程,内容大多涉及电力电子各种装置的分析与大量的计算、电能变幻的波形分析、测量与绘制等,这些工作特别适合Matlab的使用。本文建立了基于Matlab的单相桥式SPWM逆变电路的动态模型给出了仿真的实例与仿真结果,验证了模型的正确性,并展现了Matlab仿真具有的快捷,灵活,方便,直观的以及Matlab绘制的图形准确、清晰、优美的优点,可以用Matlab软件来对电路的工作原理进行讨论分析和仿真,从而为电力电子技术的分析及设计提供了有效的工具。

单极性非归零码

单极性非归零码 一. 单极性非归零码: 单极性非归零码(NRZ)是一种与单极性归零码相似的二元码,但码脉冲之间无间隔.这是一种最常用的码型.单极性非归零码的特点是:有直流成分,因此很难在低频传输特性比较差的有线信道进行传输,并且接收单极性非归零码的判决电平一般取为1 码电平的一半,因此在信道特性发生变化时,容易导致接收波形的振幅和宽度变化,使得判决电平不能稳定在最佳电平,从而引起噪声.此外,单极性非归零码还不能直接提取同步信号,并且传输时必须将信道一端接地,从而对传输线路有一定要求.一般由终端送来的单极性非归零码要通过码型变换变成适合信道传输的码型. 二. 设计原理: 1.单极性非归零码:用电平1来表示二元信息中的“1”,用电平0来表示二元信息中的“0”,电平在整个码元时间里不变,记作NRZ 码。它的占空比为100%。单极性归零码:他与单极性非归零码不同处在于输入二元信息为1时,给出的码元前半时间为1,后半时间为0,输入0则完全相同。它的占空比为50%。双极性非归零码:他与单极性非归零码类似,区别仅在于双极性使用电平-1来表示信息0。它的占空比为100%。双极性归零码:此种码型比较特殊,它使用前半时间1,后半时间0来表示信息1;采用前半时间-1,后半时间0来表示信息0。因此它具有三个电平。 2.均值与自相关函数的分析 假设数字基带信号为某种标准波形g(t)在周期Ts 内传出去,则数字基带信号可用: )()(nTs t g a t S n -=∑∞ ∞ 来表示,本题中g(t)为矩形波。n a 是基带信号在一个周期内 的幅度值。 n a 组成的离散随机过程的自相关函数为:)()(k n n a a E k R += 3.均值与自相关函数的分析 均值计算公式为:n n a a E a E ==][][ k n n k n n a a a a E k R ++==}{)( 4.概率分布分析

双极性转单极性

程控放大器电路设计 项目笔记 2 双极性转单极性 双极性到单极性的信号转换电路如图4.16所示。该电路由电压跟随器和电压偏置电路两部分构成,实现了信号由-1.25~+1.25V 到0~2.5V 的极性转换。其中,R1_5和U4A 构成一个电压跟随器,输出电压Vo1=Vi 。该电压跟随器使输入、输出信号的幅值保持不变,且输入阻抗高,输出阻抗低,起到了现场信号与系统的隔离、互不干扰的作用。 3 2 1 8 4 U4A OP213 5 6 7 U4B OP213 1 2JVI_612 JVO_61 2JVI_7 C4_5104 +12V + C3_510μR1_51 K R2_52.4K R4_5 2.4K R5_51.2K R3_51.2K Vo Vo1 C2_5104 -12V + C1_510μ Vi 图4.16 双极性到单极性的转换电路 为了得到精度较高的偏置电压,本电路采用了电压基准芯片TL431产生一个幅值为2.5V 的基准电压源(其详细电路设计见4.6节),从该电路的JVI_7端输入。 由R2_5、R3_5、R4_5、R5_5和U4B 构成运放电路的输出电压为 -+=V )4 R 4 R 5R (Vo 3 R 2R 1 Vo 2R 3R 2R 5.23R V V +?+ +?= =-+ 为了描述方便,在以上公式中,R2、R3 R5分别代表R2_5、R3_5、R4_5和R5_5。取R2=R4=2.4K ,R3=R5=1.2K ,则有Vo=Vi+1.25,即输入、R4和信号正向平移了1.25V 。 按图4.16接好模块测试电路:电路上电后,采用信号发生器DG1022产生一个频率为1KHz 、电压峰-峰值为2.5V 的正弦波信号接入插针JVI_6端,采用数字存储示波器TDS2012观测输入/输出电压,其波形如图4.17所示。 图4.17 双单极性电路频率为1KHz 时的输入/输出电压波形

单相桥式PWM逆变电路 2

单相全桥逆变电路 ——过程分析与仿真 学院:电气工程学院 班级:电自卓越111班 组员:康宁李健方浩刘文娣

目录 1.摘要 (3) 2.关键词 (3) 3.问题描述 (4) 4.分析计算.............................第5-7页 5.仿真分析.............................第8-13页 6.结论 (14) 7.心得体会 (14) 8.参考文献 (18)

摘要 逆变电路的应用十分广泛,在已有的各种电源中,蓄电池、干电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,就需要逆变电路。在我们学习电力电子的最后阶段,为了更加深入的理解与掌握逆变电电路及PWM 控制技术,现针对单相VSI与PWM控制逆变分别进行研究、仿真、分析。 关键词:单相电压型逆变电路(VSI) PWM控制极性控制方式 Simulink仿真频谱分析

1.问题描述 对图1.1单相全桥逆变电路进行分析,其中U d =600V,R=10Ω,L=0.1H ,根据该电路所给参数回答下列问题: (1)电路采用180度导电方式,控制周期T C =20mS ,求)(o t u 、)(t i o ,并给出其频谱分布。 (2)采用SPWM 导电方式,f s =5000Hz ,u nef =2202sin (100πt ),求)(o t u 、)(t i o 及其频谱分布。 2.分析计算 2.1基本原理 针对问题(1): 单相全桥逆变电路的基本原理:主要由对角两组桥臂180°交替导通的控制方式,通过电压变向实现电流方向的交变(二极管在阻感负载时起续流作用)。分析计算时,我们将电路分作两个状态,即如图示: 图1.1单相逆变电 (1)负载端加正向电压;(2)负载端加正向电压;两状态都可以列出一阶微分 R L u iR dt di L o ==+τ;0

SPWM原理+单极性SPWM

SPWM 1 SPWM 基本原理 SPWM [19]理论基于冲量等效原理:大小、波形不相同的窄脉冲变量作用于惯性系统时,只要它们的冲量(面积),即变量对时间的积分相等,其作用效果相同。也就是说,不论冲量为何种表现形式,只要是冲量等效的脉冲作用在惯性系统上,其输出响应是基本相同的。 如果将图3.6a 所示正弦波等分成若干份,那么该正弦波也可以看做是由一系列幅值为正弦波片段的窄脉冲组成。如果每个片段的面积分别与A 、B 、C …L 、M 、N 所示一系列等宽不等高的矩形窄脉冲的面积相等,那么由冲量等效原理可知,由A 、B 、C …L 、M 、N 这些等宽不等高的矩形脉冲构成的阶梯波和正弦波是等效的。进一步,如果让图1所示逆变器产生如图3.6b 所示的一系列幅值为d V ±的等高不等宽的窄脉冲,并使每个窄脉冲的面积分别与相应A 、B 、C …L 、M 、N 的面积相等,根据等效原理,图3.6b 中这些等高不等宽的窄脉冲也是与正弦波等效的。所以,不论是正弦波还是与其冲量等效的等宽不等高的阶梯波,又或者是与其冲量等效的等高不等宽的窄脉冲序列,当其作用于惯性系统后,最终输出是基本相同的。也就是说,正弦波通过惯性系统以后还是正弦波,与正弦波等效的窄脉冲序列通过惯性系统后基本也是正弦波。 如图3.6a 所示,将该正弦波()wt V t v m sin 1=的半个周期均分成n 个相等的时间段,每个时间段长n T T s 2/=,对应角度为s s wT =θ。假定第k 个时段的终点时刻为s kT ,起点时刻为()s T k 1-,则第k 个时段中心处相位角为 ? ?? ? ? -==s s k k T KT w wt 2 1α (3.1) 要使图3.6b 中第k 个时段幅值为d V 的窄脉冲的面积与对应时段内正弦波面积相等,脉冲宽度k T 必须满足式 dt wt v dt wt v T V s s s s KT T K m KT T K ab k d )(sin )()1(1)1(? ? --?==?

单相桥式PWM逆变电路设计说明

文理学院芙蓉学院课程设计报告 课程名称: 系部:电气与信息工程学院 专业班级:自动化0902班 学生:小龙 指导教师:熬章洪 完成时间: 报告成绩:

目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原 理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7) 4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19)

3.电路图 (22) 摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图 列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。

单极性和双极性PWM调制的区别在哪里 详解PWM中的单极性和双极性

单极性和双极性PWM调制的区别在哪里详解PWM中的单极性和双极性本文主要是关于单极性和双极性PWM调制的相关介绍,并着重对单极性和双极性PWM调制的区别进行了详尽描述。 PWM控制的基本原理PWM(PulseWidthModulaTIon)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。 面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1.1(1)所示,三个窄脉冲形状不同,但是它们的面积都等于1,当它们分别加在如图1.1.1(2)(a)所示的R-L电路上时,并设其电流i(t)为电路的输出,则其输出响应波形基本相同且如图 1.1.1(2)(b)所示。 一、什么是单极性PWM和双极性PWM 通俗的说:单极性PWM就是PWM波形在半个周期中只在单极性范围内变化。双极性PWM就是PWM波形在半个周期中有正、有负。 单、双极性是根据对低电平的不同定义而言的,然后所谓单极性,指的是以0V为低电平,双极性,指的是以“与高电平大小相等,极性方向相反(即在横轴下面)”的电位为低电平。 我们知道,PWM波形的产生是通过载波和信号波两个波形共同作用而成的,基本元素只有两个,高电平和低电平,信号波比载波高,则为高电平,比载波低,则为低电平。 二、单极性PWM原理 产生单极性PWM模式的基本原理如下所示。首先由同极性的三角波载波信号ut。与调制信号ur,比较(图(a)),产生单极性的PWM脉冲(图(b));然后将单极性的PWM脉

单极性霍尔传感器开关

单极性霍尔传感器开关 介绍:根据数字输出,霍尔效应集成器件可以分为四种:单极性开关,双极性开关,全极性开关和锁存型开关。本文主要来阐述单极性开关。 单极性霍尔传感器开关又被称作单极性开关,在强的南磁场作用下,打开。一个足够强度的南极磁场令器件打开,处于导通状态之后,器件将一直处于导通状态,直到磁场被移走,器件变为关断状态。一个用来检测车辆换挡杆位置的应用,如图1.换挡杆引用一个磁铁(红色蓝色缸)。黑盒子组成的黑色的线是一个全极性开关器件组成的阵列。当驾驶员移动换挡杆,磁铁便会在阵列当中移动。靠近磁铁的器件会打开处于导通状态,但是更多远离磁铁的器件是不受影响的,是关断的。请注意,磁铁的南极(红色)面向霍尔器件,霍尔器件的商 标面朝向磁铁的南极。

图1 一个单极性开关的应用。超小型的霍尔开关, 换挡的时候,磁铁在他们之间移动 磁场开关点的定义: B为磁场强度,用来表示霍尔器件的开关点,单位是GS(高斯),或者T(特斯拉),转换关系是1GS=0.1mT。 B磁场强度有南极和北极之分,所以有必要记住它的代数关系,北极磁场为负数,南极磁场为正数。该关系可以比较南极北极磁场的代数关系,磁场的相对强度是由B的绝对值表示,符号表示极性。例如:一个-100GS(北极)磁场和一个100GS(南极)磁场的强度是相同的,但是极性相反。-100GS的强度要高于-50GS。 ? BOP –磁场工作点;使霍尔器件打开的磁场强度。器件输出的 参数取决于器件的电学设计。 ? BRP –磁场释放点;使霍尔器件关断的磁场强度。器件输出的 参数取决于器件的电学设计。

? BHYS –磁开关点滞回窗口。霍尔元件的传输功能利用开关点之间的这个差值来过滤掉在应用中可能由于机械振动或电磁噪声引起磁场的小的波动值。BHYS = | BOP ? BRP |. 典型工作状态 单极性器件的输出特性曲线如图2。 在相同的磁场条件下,单极性器件在打开的时候,输出高电平(图2A)(几乎达到Vcc),还是低电平(图2B)(输出管的Vout,一般小于200mV),取决于器件输出级的设计。 虽然器件可以在任何外部磁场强度的状态下开机,但是为了解释图2由存在北极磁场强度远B小于南极的Bop和Brp的最远的左边开始,此时器件关断,输出为高电平或者低电平取决于器件输出级的设计(图2A或者图2B)。 按着向右的箭头走,磁场变为逐渐增加的南极磁场,当磁场强度大于Bop时,器件导通,输出转换为相反的状态。当磁场一直大于Brp 时,器件一直保持导通,输出状态不变,即使磁场小于Bop但在Bhys 区域内时,输出仍然不变。 再按着向左的箭头往回走,当南极磁场越来越弱,当磁场强度减弱到小于Brp时,器件关断,输出状态转换回初始状态。

单相PWM逆变电路设计

电力电子技术课程设计题目:单相PWM逆变电路设计 姓名: 学号: 院系: 班级: 指导老师: 日期:

目录 一前言 1.1 电力电子简介 (2) 1.2 课题目的 (3) 1.3 课题内容及要求 (3) 1.4 课题意义 (3) 二单相桥式逆变电路 2.1 电压型逆变电路 (4) 2.2 电流型逆变电路 (6) 三单相桥式PWM逆变主电路设计 3.1 逆变控制电路的设计 (9) 3.2 正弦波输出变压变频电源调制方式 (11) 3. 3种调制方式下逆变器输出电压谐波分析 (13) 四驱动和保护电路的设计 4.1 过电流保护 (14) 4.2 驱动电路的设计 (14) 五使用的元件 (16) 六仿真实验 (19) 七心得体会 (24) 八参考文献 (24)

一前言 1.1 电力电子简介 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外绝缘材料的缺陷也是一个问题。在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的4个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本次课程设计研究单相桥式PWM逆变电路,通过该电路实现逆变电源变压、变频输出。

双极性实现

模拟量输出通道之8位DAC0832及其与单片机接口 (2011-04-21 00:24:43) 标签: 杂谈 2.3.3.1 8位DAC0832介绍 1)电器指标 (a)电源电压 17V (b)除输入端的任意端电压 VCC~GND (c)控制输入端电压 -0.3~+15V (d)工作温度 -40~85 民品 -55~125 军品 (e)储存温度 -65~150 2)D/A转换器DAC0832的结构特点 DAC0832是一种8位的D/A转换器芯片,有两路差动电流信号输出,其数字量输入端具有双重缓冲功能,可由用户按双缓冲、单缓冲及直通方式进行线路连接,实现数字量的输入控制,特别是用于要求几个模拟量同时输出的场合,与微处理器的接口非常方便。 DAC0832的规格与参数 DAC0832的规格与参数如下: ①分辨率为8位; ②转换时间约1us; ③输入电平符合TTL电平标准; ④功耗为20mW。 图8.2.1是集成D/A转换芯片DAC0832(及DAC0830和DAC0831)的内部结构图。图8.2.2是其引脚图。其内部包括一个8位输入寄存器、一个8位DAC寄存器、一个8位D/A变换器和有关控制逻辑电路组成。其中的8位D/A变换器是如图8.1.1所示的R-2R T形电阻网络式的。这种D/A变换器在改变基准电压V REF的极性后输出极性也改变。所有输入均与TTL电平兼容。

在使用时,可以采用双缓冲方式(利用两个寄存器),也可以采用单缓冲方式(只用一级锁存,另一级直通),还可以采用直通方式。 DAC0832只需要一组供电电源,其值可以在+5V~+10V范围内。

DAC0832的基准电压VREF=-10V~+10V,因而可以通过改变VREF的符号来改变输出极性。但AD1408等模拟输出电压只能是一个方向,因为其基准电压极性不允许改变。 2.3.3.2 DAC0832的工作方式 DAC0832有以下工作方式: 1)直通方式。如果DAC0832的两个8位寄存器都处于直通状态(输出跟随输入变化),即为直通方式。这时由DI7~DI0输入的数据可以直接进入DAC寄存器进行D/A转换。 3)双缓冲方式。如果两个8位寄存器都处于受控方式,即为双缓存方式。在这种方式下CPU分别控制两个缓冲寄存器的工作状态,数据输出要通过两步操作才能完成。例如,当DAC0832工作于双缓冲工作方式,它在DAC寄存器输出前一个数据的同时,可将下一个数据送入输入寄存器,能有效地提高转换速度。此外,两级缓冲方式还能够在多个转换器分时进行D/A转换时,同时输出模拟电压,达到同步输出的目的。这种方式多用于2路以上模拟输出,其中每一路都有独立的D/A转换装置,并且要求同步输出转换结果的电路。 2.3.3.3 DAC0832的单极性输出 DAC0832以单缓冲方式与8086CPU相连接的电路如图4-17所示。由于DAC0832内部有8位数据输入寄存器,可以锁存CPU输出的数据,因此数据总线直接连接到DAC0832的DI7~DI0上。按单缓冲方式工作,ILE接+5V,/WR2接

(完整版)三相桥式PWM逆变电路设计

电力电子技术课程设计报告题目:三相桥式PWM逆变电路设计 学院: 姓名: 学号: 专业班级: 指导老师: 时间:

目录 课题背景********************************************2三相桥式SPWM逆变器的设计内容及要求*****************3 SPWM逆变器的工作原理******************************3 MATlAB仿真设计************************************12硬件实验************************************************19实验总结********************************************23附录一 Matab简介********************************24附录二Protel简介***************************************25参考文献*******************************************26

三相桥式PWM逆变电路设计 一、课题背景 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本文针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。

相关文档
最新文档