费马大定理的故事

费马大定理的故事
费马大定理的故事

费马大定理的故事

彼埃尔.德.费马(1601-1665)是数学史上最伟大的业余数学家,他的名字频繁地与数论联系在一起,可是他在这一领域的工作超越了他所在的时代,所以他

的同代人更多地了解他是从他的有关坐标几何(费马独立于笛卡尔发明了坐标几

何),无穷小演算(牛顿和莱布尼茨使之硕果累累)和概率论(本质上是费马和帕斯

卡共同创立的)的研究中得出的.费马并不是一位专业数学家,他的职业是律师兼土伦地方法院的法官.

费马登上法学职位后开始了业余数学研究;虽然他未受过正规的数学训练,但他很快对

数学产生了浓厚的兴趣,可惜他未养成发表成果的习惯,事实上在其整个数学生涯中,他未发

表过任何东西.另一方面,费马保持了跟同时代的最活跃和最权威的数学家之间的广泛的通信联系.在那个由数学巨人组成的世界里,有笛沙格,笛卡尔,帕斯卡,沃利斯和雅克.贝努里,而

这位仅以数学为业余爱好的法国人能和他们中任何一位相媲美.

著名的费马大定理的生长道路即漫长又有趣.1453年,新崛起的奥斯曼土耳其帝国进攻

东罗马帝国的都城-----君士坦丁堡陷落了.拜占庭的学者纷纷逃向西方,也带去了希腊学者

的手稿,其中就有刁番都的<<算术>>.这本书一直流传到今天,但在1621年前几乎无人去读他.这一年,克罗德.巴舍按照希腊原文重新出版了这本书,并附有拉丁译文,注释和评论.这才使

欧洲数学家注意到这本书,似乎费马就是读了这本书才对数论开始感兴趣的. 在读<<算术>>时,费马喜欢在页边空白处写一些简要的注记.在卷II刁番都问题8旁边的空白处,原问题是"给定一个平方数,将其写成其他两个平方数之和",费马写道:"另一方面,不可能将一个立方数写成两个立方数之和,或者将一个四次幂写成两个四次幂之和.一般地,对于任何一个数,其幂大于2,就不可能写成同次幂的另外两个数之和.对此命题我得到了一个真正奇妙的证明,可惜空白太小无法写下来."

用代数术语表达,刁番都问题是想求出方程:

x2+y2=z2

的有理数解,这已经由古希腊数学家欧几里德得到:x=2mn,y=m2-n2,z=m2+n2

而费马在页边的注解断言,若n是大于2的自然数,则方程 x n+y n=z n不存在有理数解.这就是我们今天称为费马大定理的由来.

尽管在普通人的心目中,相信费马真的找到了一个奇妙的证明,但他毕竟是一个动人的故事,17世纪的一位业余数学爱好者证明了一个结果,他使得其后350年间的数学家起来为之奋斗了,然而却劳而无功.他的问题是如此简明,因而这个故事更富有感染力.而且永远存在费马是正确的可能性. 从费马的另一处注解中,数学史家发现了费马唯一具体的对于n=4的情

形做的证明,在这个证明中,费马发明了一种"无穷递降法",他利用了整数边直角三角形的面

积不可能是平方数的结论,假设方程:

x4+y4=z4

有一组有理解,令a=x4,b=2x2z2,c=z4+x4,d=y2xz.反复利用熟知的恒等式:(s+t)2=s2+2st+t2

得到:a2+b2=(z4-x4)2+4x4z4=z8-2x4z4+x8+4x4z4=(z4+x4)2=c2.并且有:

ab/2=y42x2z2=(y2xz)2=d2

于是,a2+b2=c2,并且ab/2=d2.但是这已经证明是不可能的,因此假定n=4时有解是错误的.

对于n=3的情形,后来的欧拉在1753年用了一种有缺陷的方法证明了这个命题.他使用了一种"新数",即形如a+b√-3的数系,这个数系在许多方面与整数有相似之处,两者都构成一个数

环.但他并不具备整数的全部性质,欧拉证明中用到的最要紧的性质是唯一因子分解定理,对

于a+b√-3数系,这个定理碰巧也成立,所以欧拉的结论是正确的.但是换成别的形式比如

a+b√-5,则唯一因子分解定理就不成立了.关于对于什么样的数系唯一因子分解定理成立的

理论叫做示性类理论.接着,1825年,20岁的狄利赫莱和70岁的勒让德同时证明了n=5.

1832年,法国杰出的女数学家索非.热尔曼证明:若p是奇素数并使得2p+1也是素数,则费马大定理成立.

1839年,拉梅证明了n=7.

取得突破性进展的是德国数学家E.库莫尔,1847年,他证明了对于小于100的除了37,59和67这三个所谓非正则素数以外,费马大定理成立.在这一证明过程中,库莫尔的最重要贡献不在于费马大定理本身,而是发明了一种全新的概念-----理想数,这是一种特别有用的涉及范

围极广的概念,他将引出一个更一般的概念------理想,以及整个新的数学分支-----理想论,后者的基本原理现在已经成为大学一般数学系学生的必修课.

1983年,29岁的德国数学家G.法尔廷斯证明了一个结论:对于每一个大于2的指数n,费马方程

x n+y n=z n

至多有有限多个解.这一证明使他赢得了1986年的菲尔兹奖.他把存在无穷多个解的可能性

降低到最多只可能有有限多个解,这确实是一个巨大的成就.

但是,费马大定理被彻底征服的途径一定会使涉及到这一领域的所有前人出乎意外,最后的攻坚路线跟费马本人,欧拉和库莫尔等人的完全不同,他是现代数学诸多分支(椭圆曲线论,模形式理论,伽罗华表示理论,等等)综合发挥作用的结果.

其中最重要的武器是椭圆曲线和模形式理论.在50年代,日本数学家谷山丰和志村五郎提

出一个猜想:有理数域上的每条椭圆曲线都有同构的模形式存在(今天我们一般称之为谷山-

志村猜想).

所谓椭圆曲线是由椭圆积分衍化而来的,他是如下形式的三次曲线:

y2=Ax3+Bx2+Cx+D

而模形式是解析数论中研究的一种函数的运算(模函数是满足某种线性变换的复变函数,而摸形式是处处全纯的摸函数运算,全纯是指函数的摸是有限的).而通过相似的格,可以将椭圆曲线与摸形式联系在一起.

从60年代开始,有人将费马方程x n+y n=z n和形如

y2=x(x+A)(x+B) (1)

的椭圆曲线相联系,最初的着眼点是利用跟费马大定理有关的结论来证明与椭圆曲线有关的

结论.1984年秋,G.弗赖在两者的联系方面迈出了关键性的一步,他参加了在德国黑森州奥波沃尔法赫小城举行的一次数学讨论会上演说中提出:假定费马大定理不成立,即存在一组非零整数a,b,c使得a n+b n=c n(n>2),那么用这组解构造出的形如(1)的椭圆曲线(在(1)中令A=a n, B=-b n ,现在称这类椭圆曲线为弗赖曲线),不可能是摸形式.而这与谷山-志村猜想矛盾.如果弗赖的结论和谷山-志村猜想都得到证明是正确的,根据反证法的逻辑可知,"假定费马大定理不成立"是错的,因而导出费马大定理正确.可惜弗赖本人未能证明自己的论断;但是在1986年,K.里贝特按照美国数学家J.P.赛尔的思想证明了弗赖的论断.于是,证明费马大定理的工作归结为去证明谷山-志村猜想.

当时的数学家们普遍认为,要证明谷山-志村猜想还是很遥远的事情,但是,年轻的英国数学家安德鲁.怀尔斯对这种看法不以为然,他立即集中全部精力去证明这个猜想.经过7年的艰

苦奋斗,怀尔斯于1993年6月在英国剑桥大学牛顿数学科学研究所举行的数学讨论会上,报告了他对如下结论的证明:对于有理数域上的一大类椭圆曲线(用专业术语称为半稳定的椭圆曲线),谷山-志村猜想成立.由于弗赖曲线恰好属于半稳定的椭圆曲线的范围,因此费马大定理

自然地成为怀尔斯的推论.据称怀尔斯的证明长达200页.按照数学界的习惯,他的证明在得

到确认之前,必须经过其他有关数学家的详细审查,尽管当时许多人相信怀尔斯的证明是经得

起推敲的.好事多磨,事情并未就此了结.有关怀尔斯的证明中存在漏洞的传闻不胫而走.1993年12月4日,怀尔斯给他的同行们发出了一封电子邮件,承认他的证明中确有漏洞.数学家对待证明的态度是十分严肃的,不容半点含糊.

1994年10月25日,美国俄亥俄州立大学的教授K.鲁宾以电子邮件的形式向数学界的朋友发出了谨慎而乐观的消息:

"今天早上,有两篇论文已经发表,他们是:"椭圆模曲线和费马大定理",作者是安德鲁.怀尔斯;"某些赫克代数的环论性质",作者是R.泰勒和安德鲁.怀尔斯.第一篇是一篇长文,...他宣布了费马大定理的一个证明,而这个证明中关键的一步依赖于第二篇短文...."

1995年7月号的"美国数学会通告"上发表了G.法尔廷斯的文章,题为"R.泰勒和A.怀尔斯对费马大定理的证明".他开宗明义,以肯定的语调宣称:"在本文题目中所提到的猜想于1994年9月终于被完整地证明了."至此,人们相信那个搅扰了数学家300多年的著名的猜想真正成为了一条定理!

虽然费马大定理已经被证明了,但是也引起我们深入的哲学思考,怀尔斯是用归纳法来证明谷山-志村猜想的,即对于椭圆曲线的E-序列,对应着模形式的M-序列,并且应用了数学中高

深的群论思想.那么我们要想,当年费马写在刁番都<<算术>>的空白处的"奇妙的证明"到底存在吗?无独有偶,我国的一位学者蒋春喧在怀尔斯之前就已经用初等数学的方法证明了费马大定理,并且得到了我国数论专家乐茂华和美国科学家桑蒂利的支持,想必不会是没有根据的错误论证.我们假设是正确的,那么这是否就是费马本人想到的那种"奇妙的证明"呢?对于这个

问题,我们只能关注事态的发展,拭目以待最后的结果了.

我至今还未找到我国学者蒋春喧的有关费马大定理的简单证明.等我找到之后会写完本篇

文章,如果那位网友能帮助我找到,我将不胜感激,谢谢.

获奖和评论

1995-96年度数学沃尔夫(Wolf)奖由怀尔斯和朗兰兹(Robert P. Langlands)分享,于1996年3月24日在耶路撒冷由以色列总统魏兹曼颁发,奖金十万美元.

沃尔夫基金会称,怀尔斯得奖是“由于对数论及相关领域的壮观贡献,由于在若干基本猜想上得到的巨大进展,由于解决了费尔马大定理". 美国数学会的报道说, 怀尔斯引入深刻的奇异的方法, 对于数论中一些长期未决的基本问题的解决作出了巨大的贡献.例如, BSD猜想, 伊瓦萨瓦(Iwasawa)理论主猜想, 和谷山丰-志村五郎(Taniyama-Shimura)猜想. 他的工作的顶峰是对令人称颂的费尔马大定理的证明, 此定理塑造了过去两个世纪大多数论的形态. 朗兰兹是60岁的著名数学家,他的“朗兰兹猜想"影响深远,博大精深.

沃尔夫数学奖的历届得主都是极负盛名的数学家,如盖尔丰德,西格尔,韦伊,嘉当,陈省身,小平邦彦等. 该奖是国际上极有影响的大奖,由沃尔夫捐款在1978年设立. 也有化学,医药,农业,和艺术奖.(沃尔夫原居德国,一战前移居古巴,1961年起任古巴驻以色列大使,后留居以色列.与德国专门为费马大定理而设的沃尔夫斯克尔奖无关.).怀尔斯获美国“国家科学院奖”被宣布是奖励“他对费马大定理的证明,这是他发明了一种美丽的战略,证明了志村五郎-谷山丰猜想的一大部分才完成的;也是奖励他在追求自已的思想实现的过程中所表现出的勇气和技巧力量". 此奖是在1988年为纪念美国数学会一百周年设立的, 奖金五千美元,奖给近十年内发表的杰出数学研究. 以前的得主是朗兰兹(1989)和麦克费尔逊(1993).美国数学会在上述得奖报道中,刊登了怀尔斯过去的导师剑桥大学的蔻茨(J. Coates)的评论文章. 文章说: 怀尔斯在牛津大学毕业后, 于1974-75学年度到剑桥."他的天才很快被斯文哪尔敦--戴尔(Swinnerton-Dyer)注意到. 他因管理剑桥大学太忙, 不能作怀尔斯的研究生导师,对这我很高兴. 结果当怀尔斯1975夏开始科研时,我非常幸运地得以能指导他的数学研究第一步"."我们最后得以证明平行于伊瓦撒瓦的结果",证明了BSD猜想的秩零特殊情况."我很快认识到他具有两个显著的数学禀赋,我相信这在他以后的全部数学生涯中都起了关键的作用.第一,他优先于一切地要去证明困难的具体定理,而不愿去作优美的无所不包的猜想. 第二, 他有惊人的能力去吸收大量的极高深极抽象的机制, 并在脚踏实地的问题中贯

彻直到得出巨大的成果".到1980年代中期, 怀尔斯"对于伊瓦撒瓦理论主猜想和关于希尔波特模形式的伽罗华表示的研究贡献, 已经使他成为过去150年以来对代数数论作出渊深贡献的极少数优秀数学家之一. 但是, 正象我们现在所知道的, 他并没有躺在这些桂冠上休息, 而从1986年夏他又一直默默地工作着, 朝向一个更伟大的目标.""过去35年的代数数论和算术代数几何,大多被猜想所统治, 而少有肯定的定理. 这并不是要贬毁期间证明的许多优美的定理, 只是要指出太常有的情况: 面对着那些大叠大排的猜想, 这些肯定的结果显得太拘谨, 而那些猜想的证明要留作代数数论的长期目标(例如, 椭圆曲线的BSD猜想, 或者阿庭关于他的非阿贝尔L-函数的全纯猜想). 安德鲁·怀尔斯的工作是对这种研究模式的绝妙解毒剂,也是我们时代的最响亮的警示: 我们是能够期望最终解开数论中那些最深奥的神谜的."

怀尔斯的生平

安德鲁.怀尔斯(Andrew Wiles)1953年4月11日生于英国剑桥.(所以他1993年

6月宣布证明时,刚过四十岁生日两个多月.) 1971年入牛津大学莫顿(Merton)

学院学习, 1974年获该校学士学位. 同年入剑桥大学柯雷尔(Clare)学院学习,

1980年获该校博士学位. 1977至1980年,是柯雷尔学院的“青年研究会员”和哈

佛大学的“本杰明·裴尔斯助教授”. 1981年是波恩的“理论数学专门研究院”访问

教授,此年稍后,为美国普林斯顿的“高等研究所”研究员. 1982年成为普林斯顿大学教授,该年春是奥赛的巴黎大学访问教授. 作为古根海姆特别研究员,他1985--86年是科学高级研究所(IHES)和高级师范学校(ENS)的访问教授. 1988至90年,是牛津大学皇家学会研究教授. 1994年,他取得现在的普林斯顿大学欧根·黑金斯数学教授职位. 怀尔斯于1989年被选为在伦敦的皇家学会研究员. 1995年获瑞典皇家科学院的数学韶克奖. 同年获费尔马奖,由保罗萨巴提尔大学和马特拉马克尼空间颁发. 1996年获沃尔夫奖,和[美国]国家科学院奖.

费马大定理的玩笑

很多年以前,一个叫作费马的同志在法院工作,他总是抱这么一本书--丢番图写的《算术》第三册,正如很多年以后一个叫做Jonny的人总是抱着一本Windows NT 宝典一样。关于费马老是抱着这样一本书的问题,有一点需要说明,那就是,作为一个在法院工作的同志,而且是专管给杀头的报告打红勾的同志,是不应该跟很多人显得很熟的,所以他的业余生活必然很枯燥而孤独,所以能抱着一本书是很重要的。关于为什么是第三册的问题,那是因为当时有很多运动,于是在某次运动中,第一和第二册就不小心被烧掉了。

那本《算术》书有很多空白的地方,而不是象NT宝典那样,挤的满满的字。关于空白很多这一点很重要,因为这就使费马有地方写下了他的48个定理。作为一个法官,费马同志把他不屑与人讨论或征求他人对自己决断的意见。于是他总是说:我又发现一个定理,我已经证出来了,你们会么?这句话一般是对着几个英国数学家说的,说完以后,费马就又一头钻到那本《算术》中去了,再也不理这个问题了。这使得数学家们很气愤,但是可惜的很,费马的定理总是正确的,经过一段时间以后,总能有人证出它来。于是很多年以后,那本书上写的47个定理都被证明了。于是剩下的那个就是自然被叫做 Fermat's Last Theorem了。这个定理的内容大家都知道了,但是证明方法知道的人就不多了。据我所知,自己作了这道题的人中有李卫公,王二和怀尔斯。这些人中以怀尔斯最差,因为他先是交了份有错误的卷子,后来又拿回去改了一年这才算是作出来了。可惜的是,怀尔斯得了沃尔夫奖,李卫公和王二却什么也没捞着:(

费尔马大定理的最后证明

费尔马大定理的最后证明(Fermat‘s Last Theorem)

十七世纪法国数学家费尔马(Fermat)在刁番都(Diophantine)著作的一页边上写了一个猜测“xn+yn=zn当n〉2时没有正整数解。”后人称此猜想为费

尔马大定理。费尔马接着写道:“对此,我已发现了一个巧妙的证明,可惜这里页边的空白太小,写不下。”

费尔马去世之后,他的儿子把费尔马的著述、书信以及费尔马校订刁番都的著作都一起发表了,但没有发现费尔马大定理的证明,费尔马是否真正能够证明这个猜想,至今仍然是个谜。

三百多年以来,许多优秀的数学家采用种种方法试图补证这个定理,但始终都未获得成功,直至最近才有英国的怀尔斯(AndrewWiles)解决。历史性的转变发生在1993年6月21日至23日这三天,当时在普林斯顿数学系任教的40岁的怀尔斯正在英国剑桥大学举行一次约有40至60人出席的数学会议上,每天做一段演讲,题目是“模形式,椭圆曲线和伽罗华表示”。从题目上看不出他要讲的是费尔马大定理,但是他演讲的最后一句话是:“这表明费尔马大定理成立,证毕。”

怀尔斯的证明引起了数学界的很大关注,他的初稿虽然有少许瑕疵,但是稍后被怀尔斯自己修正过来。纽约时报曾在1993年6月29日以“安德鲁。怀尔斯放出数学卫星,350年的古老问题已被攻克”为题发表有关报道。

一本畅销书《费马大定理》

经过几代大数学家失败的尝试之后,(其中包括欧拉和柯西),这个名声比歌德巴赫猜想还大的名题在很长时间里几乎没有专业数学家肯碰了。所谓鉴赏力就是判断一个问题是否重要的能力,这种能力在科学证明之外。数学也是一门需要鉴赏力的学科,一个小的岔路,就足以耗费一个天才的一生。高斯对费马大定理不屑一顾,他说他可以很容易的构造出许多这样的难题。希尔伯特也说他不打算把时间浪费在这种几乎注定失败的证明上直到1986年,在弗赖和里贝特成功地把费马大定理和一个对专业数学家来说也十分重要的猜想——谷山志村猜想——联系起来之后,情况才发生改变。安德鲁*怀尔斯听说这个消息之后,我想他感到了上帝的召唤,就象许多人在过了几十年安稳的生活之后,突然某一天抛弃一切去“殉道”一样,他开始了长达九年的艰苦而秘密的证明。这个证明涉及到这样几个东西:“椭圆方程”“模形式”和“谷山志村猜想”。“谷山志村猜想”是50年代

日本数学家谷山丰和志村五郎提出的一个猜想,他们认为数学中的两个领域——椭圆方程和模形式——是完全相同的两个东西,也就是每一个椭圆方程能和唯一一个模形式对应,反之亦然。模形式到底是什么,我看完了整本《费马大定理》(一本畅销书)也没搞懂,不过可以不去管它。1985年弗赖提出一个思路把费马大定理和谷山志村猜想联系起来,弗赖从假设费马大定理错误出发,也就是如果费马方程有解的话,他从原方程导出一个“奇怪”的椭圆方程,并断言这个椭圆方程不能模形式化,从而和谷山志村猜想矛盾。1986年里贝特证明了这个“奇怪”的椭圆方程确实不能模形式化,从而费马大定理和谷山志村猜想同对或同错。现在怀尔斯就是要证明谷山志村猜想。他采用的是数学归纳法。他首先证明椭圆方程的特征E 序列的第一项和模形式的特征M序列的第一项是一一对应的,然后再证明如果第N项是一一对应的,那么N+1项也是一一对应的。证明的第一步他花了两年时间,主要用到了伽罗华的群论方法(具体不懂,我正在看群论。疯了!)第二步他用了七年时间,中间经历了可以想象的“灵感”“失败”“一无进展”“黑暗中的大厦”“痛苦的自我怀疑”“假出路的引诱”“曝光”……,总之1995年他证出来了,这个证明经过全世界数学家的审视,现在可以说是盖棺论定了。

安德鲁*怀尔斯——他的名字将载入史册。

这是一本全球畅销书,写得非常好,确实令人激动。我估计又将有不知多少的年轻人要扑向歌德巴赫猜想了。

世界数学难题——费马大定理

世界数学难题——费马大定理 费马大定理简介: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 [编辑本段] 理论发展 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

费马大定理证明

【法1】 等轴双曲线方程的通解与费尔玛大定理的证明 滕锡和 (河南鲁山 江河中学 邮编:467337) 摘 要: 由等轴双曲线方程与费尔玛方程的内在联系,寻找到一种费尔玛方程是否有正整数解 的充要条件,再由对此条件的否定,证明了费尔玛大定理,并且把费尔玛大定理与勾股定理有机地统一起来。 关键词: 完全+ Q 解;可导出+ Q 解;连环解 中图法分类号: 文献标识码:A 文章编号: 1 R +通解 本文所用数集:N ---自然数集,Q ---有理数集,R ---实数集。本文讨论不超出+R 的范围。 本文中方程n n n z y x =+及同类方程中的指数n ∈N ,以后不再说明。 引理1 方程 n n n z y x =+ (n ≥2) (1) 有N 解的充要条件是它有+ Q 解。 引理2 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是它有既约N 解。 这样,在以后的讨论中只需讨论+ Q 解及既约N 解的情形,可使过程简化。 引理3 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是方程 -1n n X Y = (n ≥2) (2) 有+ Q 解。 证明 充分性 如果方程(2)-1n n X Y =(n ≥2)有+ Q 解,设(v u v w ,)()u v w N ∈两两互素,,为其+ Q 解,则( v w )n -(v u )n =1,n n n w v u =+ 。于是方程(1)n n n z y x =+(n ≥2)有N 解()w v u ,,。 必要性 如果方程(1)n n n z y x =+(n ≥2)有N 解,设()w v u ,,() u v w N ∈两两互素,,

费马猜想之证明.

费马猜想之证明 景光庭 引言:20世纪60年代初,笔者首次接触“费马猜想”。在以后的岁月中,笔者断断续续地研究它。直至1992年,才有机会在《潜科学》上相继发表过三篇论文,这次是最终的证明。 虽然美国数学家怀尔斯因发表论证“费马猜想”的文章,并于1997年荣膺国际上的沃尔夫斯克尔数学大奖,但并没有推开蒙在世界数学家心头上的阴云。笔者曾通过《美国教育交流中心》向怀尔斯寄去了总长仅一页的论文复印件,并明确指出,他在证明中将“费马方程”转化为椭圆曲线,而笔者转化为抛物线,这是不能共存的。何况笔者的转化过程,浅显得连中学生都能读懂,无懈可击,百分之百的正确。怀尔斯巨著难道不是沙滩上的一座摩天大厦?我也向德国马克斯普朗克研究所的学者法尔廷斯寄去了论文复印件,亦表述了上述观点,因为他是少数几个通读怀尔斯论文,并唯一肯定和帮助怀尔斯将论文从二百多页化减到一百三十页的学者 。遗憾的是至今未复。 如果怀尔斯不屑回答一个业余数学爱好者提出的疑问,对他就是一个绝妙的讽刺,因为他以毕生精力研究攻克和使他一举成名的“费马猜想”提出者费马是律师,而不是法兰西学院的院士。恰恰相反,数学只是他的业余爱好。他与人交流数学心得,往往是在通信中进行的,并不象今天这样只有在学术界认可的刊物上发表的文章才能被专家认可。如果当年的学术界也对费马这样苛求,那么今天根本不存在什么“费马猜想”这个问题了。 定理:2>p P P P Z Y X =+ (1) 中,p 为奇素数,X ,Y ,Z 无正整数解。 证:假设X ,Y ,Z 均有正整数解。 令 X=x ,Z = x +a (a 为正整数), Y = y 0+a (y 0为正整数),约定(x ,y 0,a )=1 ,则有: p p p a x a y x )()0+=++( (2) 即: 0 (1) 12221101120221010=----++++--------x a c x a c ax c y a c y a c ay c y p p p p p p p p p p p p p p p (3) 不失一般性,可设1),(0≥=d y x 1),(,,11101===y x dy y dx x ,以d 除 (3)式, 并令:10-=p d b ,,2 1 1-=p p ad c b ……,1 11---=p p p p a c b , 于是:0 (11212111111) 1 110=----+++-----x b x b x b y b y b y b p p p p p p 11 1 123122111 1 211110............s y b x b x b x b x b y b y b p p p p p p p =++++= +++------- 11221111011.......----=----p p p p b y b y b y b x s 11231221111.......----=----p p p p b x b x b x b y s

数 学 家 的 故 事 简 直 惊 呆 了 ( 2 0 2 0 )

《费马大定理》阅读手记(修订版) 《费马大定理》阅读手记(修订版) ? 寻求费马大定理证明的过程,牵动了这个星球上最有才智的人,充满绝望的反抗、意外的转机、隐忍的耐心、灿烂的灵性。 ? 在靠近问题8的页边处,费马写着这么几句话:? “不可能将一个立方数写成两个立方数之和;或者将一个4次幂写成两个4次幂之和;或者,总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。” ? 这个喜欢恶作剧的天才,又在后面写下一个附加的评注:? “我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。” ? 费马写下这几行字大约是在1637年,这些被侥幸发现的蛛丝马迹成了其后所有数学家的不幸。一个高中生就可以理解的定理,成了数学界最大的悬案,从此将那些世界上最聪明的头脑整整折磨了358年。一代又一代的数学天才前赴后继,向这一猜想发起挑战。 ? 欧拉,18世纪最伟大的数学家之一,在那本特殊版本的《算术》中别的地方,发现费马隐蔽地描述了对4次幂的一个证明。欧拉将这个含糊不清的证明从细节上加以完善,并证明了3次幂的无解。但在他的突破之后,仍然有无数多次幂需要证明。 ? 等到索非·热尔曼、勒让德、狄利克雷、加布里尔·拉梅等几个法国人再次取得突破时,距离费马写下那个定理已经过去了将近200年,而他们才仅仅又证明了5次幂和7次幂。 ? 事实上拉梅已经宣布他差不多就要证明费马大定理了,另一位

数学家柯西也紧随其后说,要发表一个完整的证明。然而,一封来信粉碎了他们的信心:德国数学家库默尔看出这两个法国人正在走向同一条逻辑的死胡同。 ? 在让两位数学家感到羞耻的同时,库默尔也证明了费马大定理的完整证明是当时的数学方法不可能实现的。这是数学逻辑的光辉一页,也是对整整一代数学家的巨大打击。 ? 20 ? 世纪,数学开始转向各种不同的研究领域并取得非凡进步。1908年,德国实业家沃尔夫斯凯尔为未来可能攻克费马大定理的人设立了奖金,但是,一位不出名的数学家却似乎毁灭了大家的希望:库特·哥德尔提出不可判定性定理,对费马大定理进行了残酷的表达——这个命题没有任何证明。 ? 尽管有哥德尔致命的警告,尽管经受了三个世纪壮烈的失败,但一些数学家仍然冒着白白浪费生命的风险,继续投身于这个问题。二战后随着计算机的出现,大量的计算已不再成为问题。借助计算机的帮助,数学家们对500以内,然后在1000以内,再是10000以内的值证明了费马大定理,到80年代,这个范围提高到25000,然后是400万以内。 ? 但是,这种成功仅仅是表面的,即使那个范围再提高,也永远不能证明到无穷,不能宣称证明了整个定理。破案似乎遥遥无期。 ? 最后的英雄已经出现。1963年,年仅十岁的安德鲁·怀尔斯在一本名叫《大问题》的书中邂逅费马大定理,便知道自己永远不会放弃它,必须解决它。70年代,他正在剑桥大学研究椭圆方程,看来

费马最后定理的故事

●今年6月间,德国哥庭根大学的大会堂里,500名数学家齐聚,观看普林斯顿大学数学家魏尔斯(Andrew Wiles)领取沃夫斯柯奖。沃夫斯柯是一位德国工业家的名字,他在20世纪初遗赠10万马克设立此一奖项,给予世界上头一个能解决费马最后定理之人。当时10万马克是不小的一笔数目,约等于200万美金,而几个月前由魏尔斯领到时,不过相当5万美金左右,但是这确是近世数学界的盛事,魏尔斯不只是证明了费马最后定理,也替未来的数学带来革命性新发展。费马最后定理的发明者自然是一个叫费马的人。费马(Pierre deFermat)1601年出生在法国西南方小镇。费马并不是一个数学家,他的职业是一名法官。当时为了保持法官立场的公正,通常不鼓励他们出外社交,因此每天晚上费马便钻研在他嗜好的数学之中,悠然自得。在1637年的某一天,费马正在阅读古希腊大数学家戴奥芬多斯的数学译本,忽然灵光乍现,就在书页空白处,写下有名的费马定理。费马定理的内容其实很简单,它只是基于一个方程式(X+Y=Z)。这个方程式当n等于2时,就是人们熟知的毕氏定理,中国数学上所称的勾股弦定理,其内容即直角三角形两边平方和等于其斜边的平方。如32.+42.=52.(9+16=25)。费马当时提出的难题是,当这个方程式(X+Y=Z)的n大于2时,就找不到任何整数来符合这个方程式。例如33.+43.(27+64)=91,但是91却不是任何整体的3次方。费马不仅写下了这个问题,他同时也写道,自己已经发现了证明这个问题的妙法,只是书页的空白处不够大,无法写下证明。结果他至死都没有提出他的证明,却弄得300多年来数学界群贤束手,也使他的难题得到一个费马最后定理的称号。19世纪时,法国的法兰西科学院,曾经分别两度提供金质奖章和300法郎之赏,给予任何可以解决此一难题之人,不过并没有多大进展。20世纪初捐出10万马克奖金的沃夫斯柯,事实上也是一个对费马最后定理着迷的“数痴”,据一些历史学家研究,沃夫斯柯原本一度已打算自杀,但由于对解决费马定理着迷,而放弃求死之心,因此他后来便在遗嘱中捐出巨款,原因是他认为正是费马定理救了他一命。重赏之下必有勇夫,但是解决数学难题却非人人可为。20世纪公认的德国天才数学家希伯特(D. Hilbert)就不愿去碰费马定理,他的理由是自己没那么多时间,而且到头来还可能落得失败的下场。虽然费马定理还是让许多数学家萦怀于心,但是他们看这个难题就有如化学家看炼金术一样,只是一个古老的浪漫梦。秘密钻研7年突破难题最后解决这个世纪难题的魏尔斯,早在1936年他10岁之时,便有着挑战费马定理的浪漫梦想,他在英国桥剑地方的图书馆中读到这个问题,便决心一定要找出证明方法。他学校的老师并不鼓励他浪费时间于这个不可能之事,大学老师也试图劝阻他,最后他进了英国剑桥大学数学研究所,他的指导教授指引他转入数学中比较主流的领域做椭圆曲线。魏尔斯自己也没有料到,这个由古希腊起始的数学研究训练,最后会导致他再回到费马定理之上。1927年,日本数学家谷山丰提出一个讨论椭圆曲线的数学结构,后来在美国普林斯顿大学的日本数学家志村五郎,再将这个结构发展得更为完备。这个被称为“志村—谷山猜想”的数学结构,居然成为化繁为简,通向解决费马定理的绝妙佳径。1984年德国萨兰大学的数学家佛列发展出一种很奇特也很简单的关联,将“志村—谷山猜想”和费马定理扯在一块,佛列提出的关联经过好几位数学家的努力,最后终于证明了如果要证明费马最后定理,可以经由证明“志村—谷山猜想”来完成。魏尔斯是1993年在英国剑桥大学,正式宣布他已解决费马最后定理,在此之前他已秘密的工作达7年之久,原因不只是怕受到公众压力,也害怕其他数学家抄袭他的想法,在这段期间,魏尔斯连和太太去度蜜月中都未能从“附魔”脱身。最后的结果是魏尔斯并不需要证明整个的“志村—谷山猜想”,他只要证明一些特定的椭圆形曲线是具备某种特性。但是这些特定的椭圆曲线还是有无穷多个,因此证明技巧上依然十分困难。魏尔斯基本上利用了数学上常用的归纳法,他的办法有点像推倒骨牌的游戏,如果要推倒无限多张的骨牌,你必须确知的乃是一张骨牌倒下时,一定会碰到的下张骨牌。魏尔斯在1993年6月23日觉得他的证明已十分完整,于是便在剑桥大学牛顿数学研究所的研讨会上正式宣布。300年悬案终有解300多年数学悬案终于解决,不只数学界哗然震惊,数学门墙之外的社会大众亦感

费马

费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

费马大定理公式

储备公式 1.费马大定理(Fermat Last Theore m ): 当2n >时,n n n x y z +=无0xyz ≠的整数解; 当3n =时,3 3 3 x y z +=无0xyz ≠的整数解; 当4n =时,4 4 4 x y z +=无0xyz ≠的整数解; 当5n =时,5 5 5 x y z +=无0xyz ≠的整数解; 当7n =时,7 7 7 x y z +=无0xyz ≠的整数解; (2)n n n x y z n +=> 2.商高方程2 2 2 x y z +=满足(,)(,)(,)1x y y z z x ===,,x y 奇偶性不同的全体本原解为: 22222;;x pq y p q z p q ==-=+其中,p q 满足下面的条件: 0;(,)1;,p q p q p q >>=奇偶性不同 3.Fermat 无穷递降法 4.4n =时,Fermat 大定理证明过程 当4n =时,444 x y z +=无0xyz ≠的整数解; 原理:无穷递降法和毕达哥拉斯三元数组 证明:用反证法。若有正整数解,那么在所有正整数解中,必有一组解 假如存在,,x y z 满足444 x y z +=,且满足(,)(,)(,)1x y y z z x === 初等数论(P99) 定理4:不定方程:442 x y z +=无0xyz ≠的解。 证:用反证法。假若方程有正整数解,那么在全体正整数解中,必有一组解000,,x y z ,使得0z 取得最小值。我们要找出一组正整数解111,,x y z ,满足10z z <,得出矛盾。 (1)必有00(,)1x y =。若不然,就有素数00|,|p x p y 。由此及式442 x y z +=推出 42200|,|p z p z 。因此,2 000000,,x p y p z p 也是方程的正整数解,这和0z 的最小性矛盾。因此,22 000,,x y z 是方程的本原解,00,x y 必为一奇一偶,不妨设02|y ,以及00(,)1z y =

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

费马大定理的启示

“费马大定理”的启示 “设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。 当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。 这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。 首先,我们来看一个公式: 2 2 2z y x= +。 有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?” 没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。 但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍[]1注,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。 我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》[]2注序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。 言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

【费马大定理】

【费马大定理】 彼埃尔.德.费马(1601-1665)是数学史上最伟大的业余数学家,他的名字频繁地与数论联系在一起,可是他在这一领域的工作超越了他所在的时代,所以他的同代人更多地了解他是从他的有关坐标几何(费马独立于笛卡尔发明了坐标几何),无穷小演算(牛顿和莱布尼茨使之硕果累累)和概率论(本质上是费马和帕斯卡共同创立的)的研究中得出的.费马并不是一位专业数学家,他的职业是律师兼土伦地方法院的法官. 费马登上法学职位后开始了业余数学研究;虽然他未受过正规的数学训练,但他很快对数学产生了浓厚的兴趣,可惜他未养成发表成果的习惯,事实上在其整个数学生涯中,他未发表过任何东西.另一方面,费马保持了跟同时代的最活跃和最权威的数学家之间的广泛的通信联系.在那个由数学巨人组成的世界里,有笛沙格,笛卡尔,帕斯卡,沃利斯和雅克.贝努里,而这位仅以数学为业余爱好的法国人能和他们中任何一位相媲美. 著名的费马大定理的生长道路即漫长又有趣.1453年,新崛起的奥斯曼土耳其帝国进攻东罗马帝国的都城-----君士坦丁堡陷落了.拜占庭的学者纷纷逃向西方,也带去了希腊学者的手稿,其中就有刁番都的<<算术>>.这本书一直流传到今天,但在1621年前几乎无人去读他.这一年,克罗德.巴舍按照希腊原文重新出版了这本书,并附有拉丁译文,注释和评论.这才使欧洲数学家注意到这本书,似乎费马就是读了这本书才对数论开始感兴趣的. 在读<<算术>>时,费马喜欢在页边空白处写一些简要的注记.在卷II刁番都问题8旁边的空白处,原问题是"给定一个平方数,将其写成其他两个平方数之和",费马写道:"另一方面,不可能将一个立方数写成两个立方数之和,或者将一个四次幂写成两个四次幂之和.一般地,对于任何一个数,其幂大于2,就不可能写成同次幂的另外两个数之和.对此命题我得到了一个真正奇妙的证明,可惜空白太小无法写下来." 用代数术语表达,刁番都问题是想求出方程: x2+y2=z2 的有理数解,这已经由古希腊数学家欧几里德得到:x=2mn,y=m2-n2,z=m2+n2 而费马在页边的注解断言,若n是大于2的自然数,则方程 x n+y n=z n 不存在有理数解.这就是我们今天称为费马大定理的由来. 尽管在普通人的心目中,相信费马真的找到了一个奇妙的证明,但他毕竟是一个动人的故事,17世纪的一位业余数学爱好者证明了一个结果,他使得其后350年间的数学家起来为之奋斗了,然而却劳而无功.他的问题是如此简明,因而这个故事更富有感染力.而且永远存在费马是正确的可能性. 从费马的另一处注解中,数学史家发现了费马唯一具体的对于n=4的情形做的证明,在这个证明中,费马发明了一种"无穷递降法",他利用了整数边直角三角形的面积不可能是平方数的结论,假设方程: x4+y4=z4 有一组有理解,令a=x4,b=2x2z2,c=z4+x4,d=y2xz.反复利用熟知的恒等式:(s+t)2=s2+2st+t2 得到:a2+b2=(z4-x4)2+4x4z4=z8-2x4z4+x8+4x4z4=(z4+x4)2=c2.并且有: ab/2=y42x2z2=(y2xz)2=d2 于是,a2+b2=c2,并且ab/2=d2.但是这已经证明是不可能的,因此假定n=4时有解是错误的. 对于n=3的情形,后来的欧拉在1753年用了一种有缺陷的方法证明了这个命题.他使用了一

一只会下金蛋的鸡——费马大定理

一只会下金蛋的鸡 ——费马大定理 学了勾股定理,我们都知道直角三角形的三边满足关系式 a2+b2=c2, 同时还知道,有无数组正整数满足这个关系式。如果a、b、c的次数不是2,而是大于2的正整数,能不能找到正整数满足这个关系式呢? 十七世纪,法国的一位法官、著名的业余数学大师费马,在阅读古希腊数学家丢番图的《算术》第2卷第8个命题:“将一个平方数分解为两个平方数之和”时,在书的空白处写下了一段引人注目的文字:“要想把一个立方数分成两个立方数,把一个四次幂分成两个四次幂,一般地说,把任何高于二次的幂分成两个同次幂,都是不可能的。关于此,我确信已发现一种美妙的证法。可惜这里空白的地方太小,无法写下。”费马去世后,人们在整理他的遗物时发现了这段话,却没有找到证明,这更引起了数学界的兴趣。这就是说,费马自称证明了定理: x n+y n=z n,(n≥3) 无正整数解。人称费马大定理,也称费马最后定理。为什么叫这个名称呢?因为费马提出了数论方面许多引人注目的、富有洞察力的结论,这些结论一直到他去世后很久才被人证明大多是正确的,只有一个是错的。到1840年左右,其中只剩下上述这一个结论还没有被证明,因此称为费马的最后定理。把该定理称为费马大定理,是用以区别费马小定理。费马小定理是费马在1640年10月18日给他朋友的一封信中传出去的,这定理说,若p是一个素数而a与p互素,则a p-a能被p整除。 费马真的证明了自己的定理吗?人们普遍持怀疑的态度。费马逝世后,他的后人翻箱倒柜,也只找到了n=4的证明。他是用直角三角形三边长为整数,面积决不是平方数这一事实来证明的。后来,有人经过详实的考证,认为费马不可能完全证明了自己的定理。 三百多年来,上百名最优秀的数学家为了证明它付出了巨大的精力,其中有欧拉、勒让德、高斯、阿贝尔、狄利赫勒、拉梅、柯西、库默等。问题表述的简单和证明的困难,吸引了更多的人投入证明工作,有些数学家,如库默和近代的范迪维尔,为此献出了毕生的精力。林德曼在1882年证明了π是超越数后,也终身研究费马定理,而未获结果。 布鲁塞尔和巴黎科学院曾设奖金悬赏数次,但也未得到解决。1908年,数学家佛尔夫斯克尔在哥廷根皇家科学会又悬赏十万马克,征求正确的证明。一大批业余爱好者也进行了尝试,并寄去了自己的解答。据说,著名的数论专家朗道请人印了许多明信片,上面写道:“亲爱的先生或女士:你对费马大定理的证明已经收到,现予退回。第一个错误出现在第 页,第 行”。朗道将这些明信片分发给他的学生们,吩咐他们将相应的数字填上去。 最初的证明是从n=3开始一个数一个数的进行的。后来,库默经过终生的努力,“成

费马大定理的3次、4次不可能的证明

A 试证:试证:x x 4+y 4=z 4在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 4-x 4=(z -x)(z 3+z 2x+z x 2+x 3)=(z -x)(z +x)(z 2+x 2)=y 4由x 、y 、z 都是大于0的正整数,所以有z >x 得:得:z z -x -x<<z +x +x< <z 2+x 2(其中若z +x +x≥≥z 2+x 2,则x(1-x)x(1-x)≥ ≥z (z -1)负数大于正数,不成立。)分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y=z +x y 2=z 2+x 2由前两式得x =0(不成立)②y 是合数,得:是合数,得:(z (z -x)a=y (z -x)b=y z 2+x 2=aby 2稍微变换一下就可以得到:((a a 2b 2-1-1) )z 2=(a 2b 2+1)x 2即:即:a a 2 b 2-1=k 12a 2b 2+1=k 22但是在整数里,但是在整数里,m m 2-n 2≠1。故这种情形不成立。∴x 4+y 4=z 4在xy xy≠ ≠0时无整数解。B 试证:试证:x x 3+y 3=z 3在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 3-x 3=(z -x)-x)( (z 2+xz +x 2)=y 3>0则有:则有:z z >x z 2+xz +x 2>z -x 分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y 2=z 2+xz +x 2即:即:z z 2+xz +x 2=y 2=(z -x)2整理得到:整理得到:xz xz =-2xz (不成立不成立) )②y 是合数,则有:是合数,则有:(z (z -x)a=y z 2+xz +x 2=ay 2整理得到:((a a 3-1-1) )z 2-(a 3+1)xz +(a 3-1)x 2=0若z 有解,需有解,需△≥△≥△≥00即:即:a a 3≤3由于a 是大于0的正整数,故a =1即:即:z z -x=y 回到第回到第① ①种情形,结果仍是不成立。 ∴x 3+y 3=z 3在xy xy≠ ≠0时无整数解。另外根据我的推到出勾股方程的满足条件或生成方法是: ((e 2-f 2)/2)2+(ef)2=((e 2+f 2)/2)2 其中e 、f 取大于0的同时为奇或偶的正整数(的同时为奇或偶的正整数(e e ≠ f )但是我在一本介绍数论的书上看到已经被人家找出来,只是形式和我的有点差异。故我通过上述方法找到了勾股方程成立的充足理由,及同样找到了其满足条件。乐哉!

相关文档
最新文档