高中数学竞赛数列练习

高中数学竞赛数列练习
高中数学竞赛数列练习

高中数学竞赛专题讲座之 数列

一、选择题部分

1.(2006年江苏)已知数列{}n a 的通项公式2

2

45

n a n n =-+,则{}n a 的最大项是( B )

()A 1a

()B 2a

()C 3a ()D 4a

2.(2006安徽初赛)正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a = ( )

A 、98

B 、99

C 、100

D 、101

3. (2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 ( A )

A. 2007

B. 2008

C. 2006

D. 1004

4.(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。则满足不等式|S n -n-6|<125

1

的最小整数n 是 ( )

A .5

B .6

C .7

D .8

解:由递推式得:3(a n+1-1)=-(a n -1),则{a n -1}是以8为首项,公比为-

3

1

的等比数列, ∴S n -n=(a 1-1)+(a 2-1)+…+(a n -1)=

3

11]

)31

(1[8+--n =6-6×(-31)n ,∴|S n -n-6|=6×(31)n <1251,得:3n-1>250,∴满足条件的最小整数n=7,故选C 。

5.(集训试题)给定数列{x n },x 1=1,且x n+1=n

n x x -+313,则

∑=2005

1

n n

x

= ( )

A .1

B .-1

C .2+3

D .-2+3

解:x n+1=

n n x x 3

3

133

-

+,令x n =tan αn ,∴x n+1=tan(αn +6

π), ∴x n+6=x n , x 1=1,x 2=2+3, x 3=-2-3, x 4=-1,

x 5=-2+3, x 6=2-3, x 7=1,……,∴有

∑===2005

1

11n n

x x

。故选A 。

6、(2006陕西赛区预赛)已知数列{}{}n n a b 、

的前n 项和分别为n A ,n B 记(1)n n n n n n n C a B b A a b n =?+?-?>则数列{n C }的前10项和为 ( C )

A .1010A

B + B. 1010

2

A B + C.1010A B ?

7.(2006年浙江省预赛)设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,比如 14321)123(222=++=f 。记)()(1n f n f =,))(()(1n f f n f k k =+,,?=,3,2,1k 则)2006(2006f =

(A) 20 (B) 4 (C) 42 (D) 145. ( D ) 解: 将40)2006(=f 记做402006→,于是有

Λ→→→→→→→→→→→164204214589583716402006

从16开始,n f 是周期为8的周期数列。故.145)16()16()16()2006(48250420042006====?+f f f f 正确答案为D 。 二、填空题部分

1.数列{}n a 的各项为正数,其前n 项和n S 满足)1

(21n n n a a S +

=,则n a

O

O O M N N N

15101051146411331121111

2.(200 6天津)已知d c b a ,,,都是偶数,且d c b a <<<<0,90=-a d ,若c b a ,,成等差数列,d c b ,,成等比数列,则d c b a +++的值等于 194 .

3. (2006吉林预赛)如图所示,在杨辉三角中斜线上方的数所组成的数列1,3,6,10,…,记这

个数列前n 项和为S(n),则)

(lim 3

n S n n +∞→=___________。

4.(2006年江苏)等比数列{}n a 的首项为12020a =,公比1

2

q =-.设()f n 表示这个数列的前n 项的积,则当n = 12 时,()f n 有最大值.

5. 在x 轴的正方向上,从左向右依次取点列 {}

Λ,2,1,=j A j ,以及在第一象限内的抛物线x y 2

32=

上从左向右依次取点列{}Λ,2,1,=k B k ,使k k k A B A 1-?(Λ,2,1=k )都是等边三角形,其中0A 是坐标原点,则第2005个等边三角形的边长是 2005。

【解】:设第n 个等边三角形的边长为n a 。则第n 个等边三角形的在抛物线上的顶点n B 的坐标为(2

121n

n a a a a +

+++-Λ, ??

? ??

++++-223121n n a a a a Λ)

。 再从第n 个等边三角形上,我们可得n B 的纵坐标为

n n n

a a a 23212

2

=??

?

??-。从而有

??? ??

++++=-2232

3

121n n n a a a a a Λ,即有 2

211212n n n a a a a a +

+++=-Λ。 由此可得2212

12n n n a a a a a +=+++Λ (1) , 以及 2

11121212---+=+++n n n a a a a a Λ (2)

(1)-(2)即得 ))((2

1

)(21111---+-+-=

n n n n n n n a a a a a a a . 变形可得 0))(1(11=+----n n n n a a a a .

由于01≠+-n n a a ,所以 11=--n n a a 。在(1)式中取n = 1,可得 2112

1

21a a =,

而01≠a ,故11=a 。 因此第2005个等边三角形的边长为 20052005=a 。

6.(2005年浙江)已知数列n x ,满足n x x n n n +=++1)1(, 且21=x , 则2005x = !

20051

!2005+。

【解】:由 n x x n n n +=++1)1(,推出 1

1

11+-=

-+n x x n n 。因此有 )!

1(1

2)1()1(1)1()1(1)1(11111211+=-+-==-+-=+-=+-=---+n n n n x n n n x n n x n x x n n n n ΛΛ.

即有 1)!1(1

1++=+n x n 。 从而可得 !

20051!20052005+=x 。

7. (2005全国)记集合},4,3,2,1,|7777{},6,5,4,3,2,1,0{4

433221=∈+++==i T a a a a

a M T i 将M 中的元素

按从大到小的顺序排列,则第2005个数是( )

A .43273767575+++

B .43272767575+++

C .43274707171+++

D .4327

3707171+++

解:用p k a a a ][21K 表示k 位p 进制数,将集合M 中的每个数乘以4

7,得

32123412347{777|,1,2,3,4}{[]|,1,2,3,4}.i i M a a a a a T i a a a a a T i '=?+?+?+∈==∈=

M ' 中的最大数为107]2400[]6666[=。在十进制数中,从2400起从大到小顺序排列的第2005个

数是2400-2004=396。而=10]396[7]1104[将此数除以4

7,便得M 中的数

.7

4

707171432+++故选C 。 8.(2004 全国)已知数列012,,,...,,...,n a a a a 满足关系式10(3)(6)18,3n n a a a +-+==且,则1

n

i o i

a =∑

的值是_________________________。

解:设1111,0,1,2,...,(3)(6)18,n n n n

b n a b b +=

=-+=则 即1111113610.2,2()333n n n n n n b b b b b b +++--=∴=++=+ 故数列1

{}3

n b +是公比为2的等比数列,

1100111111

2()2()2(21)33333

n n n n n n b b b a +++=+=+=?∴=-。

()112001112(21)

1(21)(1)2333213n n

n n

i n i i o i i i b n n a +++===??-==-=-+=--??-??∑∑∑。 9.(2005四川)设t s r ,,为整数,集合}0,222|{r s t a a t

s r <<≤++=中的数由小到大组成数列

}{n a :Λ,14,13,11,7,则=36a 131 。

解:∵t s r ,,为整数且r s t <<≤0,∴r 最小取2,此时符合条件的数有12

2=C

3=r ,t s ,可在2,1,0中取,符合条件有的数有323=C

同理,4=r 时,符合条件有的数有62

4=C

5=r 时,符合条件有的数有1025=C 6=r 时,符合条件有的数有1526=C 7=r 时,符合条件有的数有2127=C

因此,36a 是7=r 中的最小值,即1312227

1036=++=a

三、解答题部分

1.(200 6天津)已知数列}{n a 满足p a =1,12+=p a ,20212-=+-++n a a a n n n ,其中p 是给定的实数,n 是正整数,试求n 的值,使得n a 的值最小.

【解】令n n n a a b -=+1,Λ,2,1=n 由题设20212-=+-++n a a a n n n ,有201-=-+n b b n n ,且

11=b ………5分 于是)20()(11

11

1∑∑-=-=+-=-n i n i i i i b b ,即)1(2)]1(21[1---+++=-n n n b b n Λ.

∴12

)

40)(1(+--=

n n b n . (※) …………………10分

又p a =1,12+=p a ,则21123172012a a p a a a <<-=-+-=.

∴当n a 的值最小时,应有3≥n ,1+≤n n a a ,且1-≤n n a a .

即01≥-=+n n n a a b ,011≤-=--n n n a a b . …………………… 15分

由(※)式,得???-≤--≥--2)41)(2(2)40)(1(n n n n 由于3≥n ,且*

N n ∈,解得?

??≤≥4040n n ,

∴当40=n 时,40a 的值最小. …………………………………………… 20分

2.(2006陕西赛区预赛)(20分)已知sin(2)3sin αββ+=,设tan ,tan x y αβ==,记()y f x =。 (1)求()f x 的表达式; 2

21)(x

x

x f +=

(2)定义正数数列2*

111{};,2()()2

n n n n a a a a f a n N +==?∈。试求数列{}n a 的通项公式。1221

2+=--n n n a .

3.(2006安徽初赛)已知数列{}()0n a n ≥满足00a =,对于所有n N +∈,有

1115n n a a +=+,求n a 的通项公式.

4. (2006吉林预赛)设{a n }为一个实数数列,a 1=t ,a n+1=4a n (1-a n )。求有多少个不同的实数t 使

得a 2006=0。 ( 22004

+1)

5.(2006年南昌市)将等差数列{n a }:*

4 1 ()n a n n N =-∈中所有能被3或5整除的数删去后,剩

下的数自小到大排成一个数列{n b },求2006b 的值.

解:由于6015=-+n n a a ,故若n a 是3或5的倍数,当且仅当15+n a 是3或5的倍数.

现将数轴正向分成一系列长为60的区间段:(0,+∞)=(0,60]∪(60,120]∪(120,180]∪…,注意第一个区间段中含有{n a }的项15个,即3,7,11,15,19,23,27,31,35,39,43,47,51,55,59.其中属于{n b }的项8个,为:71=b ,112=b ,193=b ,234=b ,315=b ,436=b ,477=b ,598=b ,于是每个区间段中恰有15个{n a }的项,8个{n b }的项,且有k b b r r k 608=-+,k ∈N,1≤r ≤8.

由于2006=8×250+6,而436=b ,所以1504343250602506062006=+?=+?=b b .

6.(2004湖南)设数列}{n a 满足条件:2,121==a a ,且Λ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有 n

n

n n a a 1

11+

≥+

证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(11

11Λ=+=

+-+k a a

a a k k k k , 于是 ∑

∑=+-=++

=n

k k k n

k k k

a a a a n 11

111

由算术-几何平均值不等式,可得n n n a a a a

a a 132211+???≥Λ+n n n a a a a a a 113120+-???Λ

注意到 110==a a ,可知 n

n n n

n a a a 1

1

1

1

1+++

,即 n

n

n n a a 1

11+

≥+

7.(2006年上海) 数列{}n a 定义如下:11a =,且当2n ≥时,2

1

1,1

,n n n a n a n a -+???=????当为偶数时,

当为奇数时.

已知30

19

n a =

,求正整数n . 解 由题设易知,0,1,2,n a n >=L .又由11a =,可得,当n 为偶数时,1n a >;当(1)n >是奇

数时,1

1

1n n a a -=<. ………………(4分)

由3019n a =

1>,所以n 为偶数,于是2

3011111919n a =-=<,所以,2n

是奇数.

于是依次可得:1219111n a -=>, 12n -是偶数,24

198111111n a -=-=<,24n -是奇数,

2141118n a --=>,64n -是偶数,68

1131188n a -=-=<,6

8n -是奇数,

618813n a --=>,148n -是偶数,1416

851133n a -=-=>,14

16n -是偶数,

1432

521133n a -=-=<,1432n -是奇数, ……………(9分)

14132312n a --=>,4632n -是偶数,4664

311122n a -=-=<,46

64n -是奇数,

4616421n a --=>,110

64n -是偶数, 110128

211n a -=-=,

所以,1101128

n -=,解得,n =238. ……………… (14分)

13. (2005全国)数列}{n a 满足:.,2

36

457,12

10N n a a a a n n n ∈-+=

=+

证明:(1)对任意n a N n ,∈为正整数;(2)对任意1,1-∈+n n a a N n 为完全平方数。

证明:(1)由题设得,51=a 且}{n a 严格单调递增.将条件式变形得,3645722

1-=

-+n n n a a a 两边

平方整理得0972

121=++-++n n n n a a a a ①

0972112=++-∴--n n n n a a a a ②

①-②得1111111()(7)0,,70n n n n n n n n n n a a a a a a a a a a +-+-++=-+-=>∴+-=?Q

.711-+-=b n n a a a ③

由③式及5,110==a a 可知,对任意n a N n ,∈为正整数.…………………………10分 (2)将①两边配方,得.)3

(1),1(9)(2

1112

1n n n n n n n n a a a a a a a a ++++=-∴-=+④ 由③119()n n n n n a a a a a +-+=-+≡()1()mod3n n a a --+ ∴1n n a a ++≡()10(1)

n

a a -+≡0(mod3)∴

13

n n

a a ++为正整数 ④式成立.11-∴+n n a a 是完全平方数.……………………………………20分

高中数学竞赛数列问题

高中数学竞赛数列问题 一、 高考数列知识及方法应用(见考纲) 二、 二阶高次递推关系 1.因式分解降次。例:正项数列{a n },满足12+=n n a S ,求a n (化异为同后高次) 2.两边取对数降次。例:正项数列{a n },a 1=1,且a n ·a n+12 = 36,求a n 三、 线性递推数列的特征方程法 定理1:若数列{a n }的递推关系为a n+2=λ1a n+1+λ2a n ,则设特征方程x 2=λ1x+λ2, 且此方程有相异两根x 1,x 2(x 1≠x 2),则必有 a n =c 1x 1n +c 2x 2n ,其中c 1,c 2由此数列已知前2项解得,即 ???+=+=2 222112 2 2111x c x c a x c x c a 或由???+=+=22111 2 10x c x c a c c a 得到。(见训练及考试题) 定理2:若方程x 2=λ1x+λ2有相等重根x 0,则有 a n =(c 1+c 2n )x 0n ,其中c 1,c 2仍由定理1方程组解得。 例如.:1,已知.数列{}n a 满足)(,11221+++∈+===N n a a a a a n n n ,求数列{}n a 的 通项公式 2,.数列{}n a 中,设,2,1321===a a a 且)3(32 1 1≥+= --+n a a a a n n n n ,求数列{}n a 的通项公式 3,.数列}{n a 满足:.,2 36 457,12 10N n a a a a n n n ∈-+= =+ 证明:(1)对任意n a N n ,∈为正整数;(2)求数列}{n a 的通项公式。 4,已知.数列{}n a 满足121,2,a a n N +==∈都有2144n n n a a a ++=-,求数列 {}n a 的通项公式 四、 特殊递推的不动点法 ( f (x )= x 的解称为f (x )的不动点 ) 定理1:若数列{a n }满足递推:a n+1=a ·a n +b (a ,b ∈R ), 则设x=ax+b ,得不动点1 0--= a b x 且数列递推化为:a n+1-x 0=a (a n -x 0),

2019年全国高中数学联赛试题及解答

全国高中数学联合竞赛试题(A 卷) 一试 一、填空题(本大题共8小题,每小题8分,共64分) 1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11 a b +的值为________. 答案:设连等式值为k ,则2 3 2 ,3 ,6k k k a b a b --==+=,可得答案108 分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过 2. 设集合3|12b a b a ?? +≤≤≤????中的最大元素与最小你别为,M m ,则M m -的值为______. 答案:33251b a +≤+= ,33 b a a a +≥+≥ ,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______. 答案:零点分类讨论去绝对值,答案[]2,0- 分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过 4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则 2014 122013a a a a =+++______. 答案:()1221 n n n a a n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+?+?+++, 乘以公比错位相减,得2n n S n =,故答案为2015 2013 . 分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过 5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN 与PC 之间的距离是 ________. 答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过 6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则 椭圆Γ的短轴与长轴的比值为________. 答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+, 可得△2PQF 三边长为7,21,2c c + ,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关 7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之 比的最大值为________. 答案:sin sin APB APC S PAB S PAC ∠=∠,又两角和为60 最大,即AP 与 (),1I 切于对称轴右侧 2 分析:平面几何最值、面积、三角函数、轨迹

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛专题讲座数列

高中数学竞赛专题试题讲座——数列 一、选择题部分 1.(2006年江苏)已知数列{}n a 的通项公式2 2 45 n a n n =-+,则{}n a 的最大项是( B ) ()A 1a ()B 2a ()C 3a ()D 4a 2(2006安徽初赛)正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a = ( ) A 、98 B 、99 C 、100 D 、101 3. (2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 ( A ) A. 2007 B. 2008 C. 2006 D. 1004 4.(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。则满足不等式|S n -n-6|<125 1 的最小整数n 是 ( ) A .5 B .6 C .7 D .8 解:由递推式得:3(a n+1-1)=-(a n -1),则{a n -1}是以8为首项,公比为- 3 1 的等比数列, ∴S n -n=(a 1-1)+(a 2-1)+…+(a n -1)= 3 11] )31 (1[8+--n =6-6×(-31)n ,∴|S n -n-6|=6×(31)n <1251,得:3n-1 >250,∴满足条件的最小整数n=7,故选C 。 5.(集训试题)给定数列{x n },x 1=1,且x n+1= n n x x -+313,则 ∑=2005 1 n n x = ( ) A .1 B .-1 C .2+3 D .-2+3 解:x n+1= n n x x 3 3 133 - +,令x n =tan αn ,∴x n+1=tan(αn +6 π), ∴x n+6=x n , x 1=1,x 2=2+3, x 3=-2-3, x 4=-1, x 5=-2+3, x 6=2-3, x 7=1,……,∴有 ∑===2005 1 11n n x x 。故选A 。 6、(2006陕西赛区预赛)已知数列{}{}n n a b 、 的前n 项和分别为n A ,n B 记

高中数学竞赛介绍,尖子生请收好

高中数学竞赛介绍,尖子生请收好! 首先,强调一点:不是所有学生都可以学数学竞赛,要想学习数学竞赛必须同时具备以下条件: ?高考数学可以轻松应对; ?对数学竞赛有兴趣,自发选择学习数学竞赛; ?具备自主学习能力; ?高考涉及的其他学科不存在太大问题,或个人的竞赛前景远优于高考前景。 数学竞赛需要的时间和精力都是很大的,并且如果因为学习竞赛受挫而导致对数学产生负情绪是得不偿失的,因此,我从不提倡“全民竞赛”。当然,如果你恰好符合以上的四个条件,那么你一定要学习竞赛。为什么?因为学习数学竞赛的好处很多。 与其他学科竞赛一样,学习数学竞赛除了能在升入高校方面获得保送或降分的优惠外,还能培养学生的自主学习能力,这对学生的整个大学学习乃至今后的学术研究或是社会工作是尤为重要的。

因此,若你有足够的实力,精力和时间,那么竞赛将是你们的不二之选。 此外,数学竞赛学到一定深度后就会发现,数学竞赛不再是由知识结构和解题方法组成,而是对思维能力的培养和运用,而思维能力的价值是远超过数学本身的,这将会对学生以后对问题的思考与对事物的判断等产生不可估量的影响。当然,这是后话。 说归说,高中数学竞赛指的究竟是什么?我想说的是,绝不仅仅是高联(全国高中数学联赛)这么简单。下面,我就带着大家理一理高中阶段可能会遇到的竞赛。

1. 全国高中数学联赛 全国高中数学联赛旨在选拔在数学方面有突出特长的同学,让他们进入全国知名高等学府,而且选拔成绩比较优异的同学进入更高级别的竞赛,直至国际数学奥林匹克(IMO)。并且通过竞赛的方式,培养中学生对于数学的

兴趣,让学生们爱好数学,学习数学,激发学生们的钻研精神,独立思考精神以及合作精神。 2.中国数学奥林匹克(CMO) CMO考试完全模拟IMO进行,每天3道题,限四个半小时完成。每题21分(为IMO试题的3倍,为符合中国人的认知习惯),6个题满分为126分。颁奖与IMO类似,设立一、二、三等奖,分数最高的约前60名选手将组成参加当年国际数学奥林匹克(International Mathematical Olympiad,简称IMO)的中国国家集训队。 3.国际数学奥林匹克(IMO) 国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。 正如专家们指出:IMO的重大意义之一是促进创造性的思维训练,对于科学技术迅速发展的今天,这种训练尤为重要。数学不仅要教会学生运算技巧,更重要的是培养学生有严密的思维逻辑,有灵活的分析和解决问题的方法。 根据我的感觉,如果高考的数学难度有两星,那么高联的一试难度大概有三颗星,二试难度大概有四颗星;而CMO和IMO的难度大概在五颗星左右。因此,参加高中竞赛的确

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高中数学竞赛讲义(五)──数列

高中数学竞赛讲义(五) ──数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2,a3,…,a n或a1, a2, a3,…,a n…。其中a1叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。 定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1. 定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d. 定理2 等差数列的性质:1)通项公式 a n=a1+(n-1)d;2)前n项和公式: S n=;3)a n-a m=(n-m)d,其中n, m 为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B 至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.

定义3 等比数列,若对任意的正整数n,都有 ,则{a n}称为等比数列,q叫做公比。 定理3 等比数列的性质:1)a n=a1q n-1;2)前n 项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。 定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作 定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n 项和S n的极限(即其所有项的和)为(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n ≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 定理5 对于齐次二阶线性递归数列x n=ax n-1+bx n-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则x n=c1a n-1+c2βn-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则x n=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是 人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。

高中数学竞赛训练题—填空题

高中数学竞赛训练题—填空题 1. 若不等式1-log a )10(x a -<0有解,则实数a 的范围是 . 2.设()f x 是定义在R上的奇函数,且满足(2)()f x f x +=-;又当01x ≤≤时, 1()2 f x x = ,则方程21 )(-=x f 的解集为 。 3.设200221,,,a a a Λ均为正实数,且 2 1 212121200221=++++++a a a Λ,则200221a a a ???Λ的最小值为____________________. 4. ,x R ∈ 函数()2sin 3cos 23 x x f x =+的最小正周期为 . 5. 设P 是圆2 2 36x y +=上一动点,A 点坐标为()20,0。当P 在圆上运动时,线段PA 的中点M 的轨迹方程为 . 6.. 设z 是虚数,1 w z z =+ ,且12w -<<,则z 的实部取值范围为 . 7. 设4 4 2 )1()1()(x x x x k x f --+-=。如果对任何]1,0[∈x ,都有0)(≥x f ,则k 的最小值为 . 8.= 。 9.设lg lg lg 111()121418x x x f x = +++++,则 1 ()()_________f x f x +=。 10.设集合{}1215S =L ,,,,{}123A a a a =,,是S 的子集,且()123a a a ,,满足: 123115a a a ≤≤<<,326a a -≤,那么满足条件的集合A 的个数为 . 11.已知数列}{n a 满足,01=a ),2,1(1211Λ=+++=+n a a a n n n ,则n a =___ . 12.已知坐标平面上三点()()) 0,3,,A B C ,P 是坐标平面上的点,且 PA PB PC =+,则P 点的轨迹方程为 . 13.已知0 2sin 2sin 5=α,则) 1tan() 1tan(00-+αα的值是______________. 14.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________. 15.不等式 92) 211(42 2 +<+-x x x 的解集为_______________________.

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数学竞赛讲义_数列

数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学竞赛集训训练题

高中数学竞赛集训训练题 1.b a ,是两个不相等的正数,且满足2 2 3 3 b a b a -=-,求所有可能的整数 c ,使得ab c 9=. 2.已知不等式 24 131...312111a n n n n > ++++++++对一切正整数a 均成立,求正整数a 的最大值,并证明你的结论。 3.设{}n a 为14a =的单调递增数列,且满足22 111168()2n n n n n n a a a a a a +++++=++,求{n a } 的通项公式。 4.(1)设,0,0>>y x 求证: ;4 32y x y x x -≥+ (2)设,0,0,0>>>z y x 求证: .2 333zx yz xy x z z z y y y x x ++≥+++++ 5. 设数列ΛΛΛ,1 ,,12, 1,,13,22,31,12,21,11k k k -, 问:(1)这个数列第2010项的值是多少; (2)在这个数列中,第2010个值为1的项的序号是多少. 6. 设有红、黑、白三种颜色的球各10个。现将它们全部放入甲、乙两个袋子中,要求每

个袋子里三种颜色球都有,且甲乙两个袋子中三种颜色球数之积相等。问共有多少种放法。 7.已知数列{}n a 满足1a a =(0,1a a ≠≠且),前n 项和为n S ,且(1)1n n a S a a = --, 记lg ||n n n b a a =(n *∈N ),当a =时,问是否存在正整数m ,使得对于任意正整数n ,都有m n b b ≥?如果存在,求出m 的值;如果不存在,说明理由. 8. 在ABC ?中,已9,sin cos sin AB AC B A C ==u u u r u u u r g ,又ABC ?的面积等于6. (Ⅰ)求ABC ?的三边之长; (Ⅱ)设P 是ABC ?(含边界)内一点,P 到三边AB 、BC 、AB 的距离为1d 、2d 和3d ,求 123d d d ++的取值范围. 9.在数列{}n a 中,1a ,2a 是给定的非零整数,21n n n a a a ++=-. (1)若152a =,161a =-,求2008a ; (2)证明:从{}n a 中一定可以选取无穷多项组成两个不同的常数数列. 10. 已知椭圆)1(12 22>=+a y a x ,Rt ABC ?以A (0,1)为直角顶点,边AB 、BC 与椭圆 交于两点B 、C 。若△ABC 面积的最大值为27 8 ,求a 的值。

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

《高中数学竞赛》数列

竞赛辅导 数列(等差数列与等比数列) 数列是高中数学中的一个重要课题,也是数学竞赛中经常出现的 问题。数列最基本的是等差数列与等比数列。 所谓数列,就是按一定次序排列的一列数。如果数列{a n}的第n项a n与项数(下标)n之间的函数关系可以用一个公式a n=f(n)来表示,这个公式就叫做这个数列的通项公式。 从函数角度看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。 为了解数列竞赛题,首先要深刻理解并熟练掌握两类基本数列的定义、性质有关公式,把握它们之间的(同构)关系。 一、等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。等差数列{a n}的通项公式为: 前n项和公式为: 从(1)式可以看出,是的一次数函()或常数函数(),()排在一条直线上,由(2)式知,是的二次函数()或一次函数(),且常数项为0。在等差数列{ }中,等差中项:且任意两项的关系为: 它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前项和公式还可推出: 若 二、等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比。公比通常用字母表示。等比数列{a n}的通项公式是: 前项和公式是:

在等比数列中,等比中项: 且任意两项的关系为 如果等比数列的公比满足0<<1,这个数列就叫做无穷递缩等比数列,它的各项的和(又叫所有项的和)的公式为: 从等比数列的定义、通项公式、前项和公式可以推出: 另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂,则{}是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。重要的不仅是两类基本数列的定义、性质,公式;而且蕴含于求和过程当中的数学思想方法和数学智慧,也是极其珍贵的,诸如“倒排相加”(等差数列),“错位相减”(等比数列)。 数列中主要有两大类问题,一是求数列的通项公式,二是求数列的前n项和。 三、范例 例1.设a p,a q,a m,a n是等比数列{a n}中的第p、q、m、n项,若p+q=m+n, 求证: 证明:设等比数列{}的首项为,公比为q,则 说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积, 即:a1+k·a n-k=a1·a n 对于等差数列,同样有:在等差数列{ }中,距离两端等这的两项之和等于首末两项之和。即:a1+k+a n-k=a1+a n 例2.在等差数列{}中,a4+a6+a8+a10+a12=120,则2a9-a10= A.20 B.22 C.24 D28 解:由a4+a12=2a8,a6+a10 =2a8及已知或得 5a8=120,a8=24 而2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24。

高中数学竞赛训练题 (3)

高中数学竞赛训练题 一、选择题(仅有一个选择支正确) 1.已知全集}{}{N n n x x B N n n x x A N U ∈==∈===,4,,2,,则( ) (A ) B A U = (B) )(B A C U U = (C) B C A U U = (D) B C A C U U U = 2.已知b a ,是正实数,则不等式组???>+>+ab xy b a y x 是不等式组? ??>>b y a x 成立的( ) (A )充分不必要条件 (B) 必要不充分条件 (C) 充分且必要条件 (D)既不充分又不必要条件 3.等差数列{}n a 中,,336),9(30,1849=>==-n n S n a S 则n 的值是( ) (A )8 (B) 9 (C) 16 (D) 21 4.已知复数2 121 -+ =z z w 为纯虚数,则z 的值为( ) (A ) 1 (B) 21 (C) 31 (D) 不能确定 5.边长为5的菱形,若它的一条对角线的长不大于6,则这个菱形对角线长度之和的最大值是( ) (A ) 16 (B) 210 (C) 14 (D) 65 6.平面上的整点(横、纵坐标都是整数)到直线5 435+=x y 的距离中的最小值是( )(A ) 17034 (B) 8534 (C) 170343 (D) 30 1 7.若232,2,2++x y x x 成等比数列,则点),(y x 在平面直角坐标系内的轨迹是( ) (A ) 一段圆弧 (B) 一段椭圆弧 (C) 双曲线的一部分 (D) 抛物线的一部分 8.若ABC ?的三边c b a ,,满足:,0322,0222 =+-+=---c b a c b a a 则它的最大内角的度数是( ) (A ) 0150 (B) 0120 (C) 090 (D) 060

相关文档
最新文档