DS18B20数字温度测量报警程序1

DS18B20数字温度测量报警程序1
DS18B20数字温度测量报警程序1

硬件电路:

软件设计:

/****************************************************************** 程序名称:DS18B20温度测量、报警系统

简要说明:DS18B20温度计,温度测量范围0~99.9摄氏度

可设置上限报警温度、下限报警温度

即高于上限值或者低于下限值时蜂鸣器报警

默认上限报警温度为38℃、默认下限报警温度为5℃

报警值可设置范围:最低上限报警值等于当前下限报警值

最高下限报警值等于当前上限报警值

将下限报警值调为0时为关闭下限报警功能

编写:吴彦刚

******************************************************************/ #include

#include "DS18B20.h"

#define uint unsigned int

#define uchar unsigned char //宏定义

#define SET P3_1 //定义调整键

#define DEC P3_2 //定义减少键

#define ADD P3_3 //定义增加键

#define BEEP P3_7 //定义蜂鸣器

bit shanshuo_st; //闪烁间隔标志

bit beep_st; //蜂鸣器间隔标志

sbit DIAN = P2^7; //小数点

uchar x=0; //计数器

signed char m; //温度值全局变量

uchar n; //温度值全局变量

uchar set_st=0; //状态标志

signed char shangxian=38; //上限报警温度,默认值为38

signed char xiaxian=5; //下限报警温度,默认值为38

uchar code LEDData[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0xff};

/*****延时子程序*****/

void Delay(uint num)

{

while( --num );

}

/*****初始化定时器0*****/

void InitTimer(void)

{

TMOD=0x1;

TH0=0x3c;

TL0=0xb0; //50ms(晶振12M)

}

/*****定时器0中断服务程序*****/

void timer0(void) interrupt 1

{

TH0=0x3c;

TL0=0xb0;

x++;

}

/*****外部中断0服务程序*****/

void int0(void) interrupt 0

{

EX0=0; //关外部中断0

if(DEC==0&&set_st==1)

{

shangxian--;

if(shangxian

}

else if(DEC==0&&set_st==2)

{

xiaxian--;

if(xiaxian<0)xiaxian=0;

}

}

/*****外部中断1服务程序*****/

void int1(void) interrupt 2

{

EX1=0; //关外部中断1

if(ADD==0&&set_st==1)

{

shangxian++;

if(shangxian>99)shangxian=99;

}

else if(ADD==0&&set_st==2)

{

xiaxian++;

if(xiaxian>shangxian)xiaxian=shangxian;

}

}

/*****读取温度*****/

void check_wendu(void)

{

uint a,b,c;

c=ReadTemperature()-5; //获取温度值并减去DS18B20的温漂误差a=c/100; //计算得到十位数字

b=c/10-a*10; //计算得到个位数字

m=c/10; //计算得到整数位

n=c-a*100-b*10; //计算得到小数位

if(m<0){m=0;n=0;} //设置温度显示上限

if(m>99){m=99;n=9;} //设置温度显示上限

}

/*****显示开机初始化等待画面*****/

Disp_init()

{

P2 = 0xbf; //显示-

P1 = 0xf7;

Delay(200);

P1 = 0xfb;

Delay(200);

Delay(200);

P1 = 0xfe;

Delay(200);

P1 = 0xff; //关闭显示

}

/*****显示温度子程序*****/

Disp_Temperature() //显示温度{

P2 =0xc6; //显示C

P1 = 0xf7;

Delay(300);

P2 =LEDData[n]; //显示个位

P1 = 0xfb;

Delay(300);

P2 =LEDData[m%10]; //显示十位DIAN = 0; //显示小数点

P1 = 0xfd;

Delay(300);

P2 =LEDData[m/10]; //显示百位P1 = 0xfe;

Delay(300);

P1 = 0xff; //关闭显示

}

/*****显示报警温度子程序*****/ Disp_alarm(uchar baojing)

{

P2 =0xc6; //显示C

P1 = 0xf7;

Delay(200);

P2 =LEDData[baojing%10]; //显示十位P1 = 0xfb;

Delay(200);

P2 =LEDData[baojing/10]; //显示百位P1 = 0xfd;

if(set_st==1)P2 =0x89;

else if(set_st==2)P2 =0xc7; //上限H、下限L标示

P1 = 0xfe;

Delay(200);

P1 = 0xff; //关闭显示

}

/*****报警子程序*****/

void Alarm()

{

if(x>=10){beep_st=~beep_st;x=0;}

if((m>=shangxian&&beep_st==1)||(m

}

/*****主函数*****/

void main(void)

{

uint z;

InitTimer(); //初始化定时器

EA=1; //全局中断开关

TR0=1;

ET0=1; //开启定时器0

IT0=1;

IT1=1;

check_wendu();

check_wendu();

for(z=0;z<300;z++)

{

Disp_init();

}

while(1)

{

if(SET==0)

{

Delay(2000);

do{}while(SET==0);

set_st++;x=0;shanshuo_st=1;

if(set_st>2)set_st=0;

}

if(set_st==0)

{

EX0=0; //关闭外部中断0

EX1=0; //关闭外部中断1

check_wendu();

Disp_Temperature();

Alarm(); //报警检测

}

else if(set_st==1)

{

BEEP=1; //关闭蜂鸣器

EX0=1; //开启外部中断0

EX1=1; //开启外部中断1

if(x>=10){shanshuo_st=~shanshuo_st;x=0;}

if(shanshuo_st) {Disp_alarm(shangxian);}

}

else if(set_st==2)

{

BEEP=1; //关闭蜂鸣器

EX0=1; //开启外部中断0

EX1=1; //开启外部中断1

if(x>=10){shanshuo_st=~shanshuo_st;x=0;}

if(shanshuo_st) {Disp_alarm(xiaxian);}

}

}

}

/*****END*****/

DS18B20.h:

#include

#define DQ P3_6 //定义DS18B20总线I/O

/*****延时子程序*****/

void Delay_DS18B20(int num)

{

while(num--) ;

}

/*****初始化DS18B20*****/

void Init_DS18B20(void)

{

unsigned char x=0;

DQ = 1; //DQ复位

Delay_DS18B20(8); //稍做延时

DQ = 0; //单片机将DQ拉低

Delay_DS18B20(80); //精确延时,大于480us

DQ = 1; //拉高总线

Delay_DS18B20(14);

x = DQ; //稍做延时后,如果x=0则初始化成功,x=1则初始化失败Delay_DS18B20(20);

}

/*****读一个字节*****/

unsigned char ReadOneChar(void)

{

unsigned char i=0;

unsigned char dat = 0;

for (i=8;i>0;i--)

{

DQ = 0; // 给脉冲信号

dat>>=1;

DQ = 1; // 给脉冲信号

if(DQ)

dat|=0x80;

Delay_DS18B20(4);

}

return(dat);

}

/*****写一个字节*****/

void WriteOneChar(unsigned char dat)

{

unsigned char i=0;

for (i=8; i>0; i--)

{

DQ = 0;

DQ = dat&0x01;

Delay_DS18B20(5);

DQ = 1;

dat>>=1;

}

}

/*****读取温度*****/

unsigned int ReadTemperature(void)

{

unsigned char a=0;

unsigned char b=0;

unsigned int t=0;

float tt=0;

Init_DS18B20();

WriteOneChar(0xCC); //跳过读序号列号的操作WriteOneChar(0x44); //启动温度转换

Init_DS18B20();

WriteOneChar(0xCC); //跳过读序号列号的操作WriteOneChar(0xBE); //读取温度寄存器

a=ReadOneChar(); //读低8位

b=ReadOneChar(); //读高8位

t=b;

t<<=8;

t=t|a;

tt=t*0.0625;

t= tt*10+0.5; //放大10倍输出并四舍五入return(t);

}

/*****END*****/

DS18B20 数字温度传感器

应用指引:在MC430F14板上是标配了DS18B20数字温度传感器器,同时希望用户通过以下DS18B20的讲解能够了解更多1线 MC430F14实物图如下: >>关于MC430F14开发板详情>> 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。 新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。

美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。目前DS18B20批量采购价格仅10元左右。 DS18B20、DS1822 "一线总线"数字化温度传感器 同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20、DS1822的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 一、DS18B20的主要特性 (1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 (2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

DS18B20温度检测程序

(1)先将数据线置高电平“1”。 (2)延时(该时间要求的不是很严格,但是尽可能的短一点) (3)数据线拉到低电平“0”。 (4)延时750微秒(该时间的时间范围可以从480到960微秒)。 (5)数据线拉到高电平“1”。 (6)延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。 (7)若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。 (8)将数据线再次拉高到高电平“1”后结束。

(1)数据线先置低电平“0”。 (2)延时确定的时间为15微秒。 (3)按从低位到高位的顺序发送字节(一次只发送一位)。 (4)延时时间为45微秒。 (5)将数据线拉到高电平。 (6)重复上(1)到(6)的操作直到所有的字节全部发送完为止。(7)最后将数据线拉高。 DS18B20的写操作时序图如图

DS18B20的读操作 (1)将数据线拉高“1”。 (2)延时2微秒。 (3)将数据线拉低“0”。 (4)延时15微秒。 (5)将数据线拉高“1”。 (6)延时15微秒。 (7)读数据线的状态得到1个状态位,并进行数据处理。 (8)延时30微秒。DS18B20的读操作时序图如图所示。

DS18B20的Protues仿真图 源程序代码: #include "reg51.h" #include "intrins.h" // 此头文件中有空操作语句NOP 几个微秒的延时可以用NOP 语句,但本人没用NOP,直接用了I++来延时 #define uchar unsigned char #define uint unsigned int uchar code table[]={0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37, 0x38,0x39}; sbit ds18b20_io=P2^0; //单片机与DS18B20的连接口 sbit lcdrs=P2^6; //1602与单片机的接口 sbit lcden=P2^7;

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

电路实物图如下图所示: C 语言程序如下所示: /******************************************************************** zicreate ----------------------------- Copyright (C) https://www.360docs.net/doc/6214121204.html, -------------------------- * 程序名; 基于DS18B20的测温系统 * 功 能: 实时测量温度,超过上下限报警,报警温度可手动调整。K1是用来 * 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限 * 调节模式。在正常模式下,按一下K2进入查看上限温度模式,显示1s 左右自动 * 退出;按一下K3进入查看下限温度模式,显示1s 左右自动退出;按一下K4消除 * 按键音,再按一下启动按键音。在调节上下限温度模式下,K2是实现加1功能, * K1是实现减1功能,K3是用来设定上下限温度正负的。 * 编程者:Jason * 编程时间:2009/10/2 *********************************************************************/ #include //将AT89X52.h 头文件包含到主程序 #include //将intrins.h 头文件包含到主程序(调用其中的_nop_()空操作函数延时) #define uint unsigned int //变量类型宏定义,用uint 表示无符号整形(16位) #define uchar unsigned char //变量类型宏定义,用uchar 表示无符号字符型(8位) uchar max=0x00,min=0x00; //max 是上限报警温度,min 是下限报警温度 bit s=0; //s 是调整上下限温度时温度闪烁的标志位,s=0不显示200ms ,s=1显示1s 左右 bit s1=0; //s1标志位用于上下限查看时的显示 void display1(uint z); //声明display1()函数 #include"ds18b20.h" //将ds18b20.h 头文件包含到主程序 #include"keyscan.h" //将keyscan.h 头文件包含到主程序 #include"display.h" //将display.h 头文件包含到主程序

用1602LCD与DS18B20设计的温度报警器课程设计

程设计温度报警器共11页,2759字。 目录 设计题目 (3) 设计目的 (3) 设计任务和要求 (3) 设计内容 (3) 心得体会 (10) 参考文献 (10) 一、设计题目:温度报警器 二、设计目的: 1.了解温度传感器AD590的基本原理、性能与应用。 2.熟悉单片机AT89C51工作方式和应用。 3.掌握ADC0809的接口方法及其输入程序的设计和调试方法。 4.将所学的单片机原理及检测技术的知识运用于实践,解决实际问题。 三、设计任务和要求: 本设计采用集成温度传感器AD590,设计一个数字显示的温度报警器。定安全温度值范围为77°C~100°C(可根据具体需要在程序中进行调整),对在这一范围内的温度变化采集后送入A/D转换器,A/D转换器的模拟电压范围为0~5V。例如传感器采集的温度为80°C,则对应数码管显示值为80°C。而温度高出100°C或者低于77°C时,不在安全温度范围之内,喇叭会进行报警、二极管发光显示。

ISIS SCHEMATIC DESCRIPTION FORMAT 6.1 ===================================== 设计的温度报警器\22 用1602LCD与DS18B20设计的温度报警器\用1602LCD与DS18B20设计的温度报警器.DSN Doc. no.: Revision: Author: Created: 08/06/19 Modified: 09/03/11 *PROPERTIES,0 *MODELDEFS,0 *PARTLIST,18 C1,CAP,22PF,EID=2,PACKAGE=CAP10,PINSWAP="1,2" C2,CAP,22PF,EID=3,PACKAGE=CAP10,PINSWAP="1,2" C3,CAP-ELEC,10uF,EID=4,PACKAGE=ELEC-RAD10 D1,LED-YELLOW,高温闪 烁,BV=4V,EID=45,IMAX=10mA,ROFF=100k,RS=3,TLITMIN=0.1m,VF=2V

DS18b20温度传感器

最小的温度显示程序-c51 (2010-12-07 00:45:27) 转载 分类:51单片机 标签: 杂谈 #include #include sbit DQ=P2^0; bit presence; unsigned char templ,temph; char array[10]={0x7e,0x48,0x3d,0x6d,0x4b,0x67,0x73,0x4c,0x7f,0x4f}; void Delay(unsigned int num)//可定义延时 { while( --num ); } bit Init_DS18B20(void) { DQ = 1; //DQ复位 Delay(8); //稍做延时 DQ = 0; //单片机将DQ拉低 Delay(90); //精确延时大于 480us DQ = 1; //拉高总线 Delay(8); presence = DQ; //如果=0则初始化成功 =1则初始化失败 Delay(100); DQ = 1; return(presence); //返回信号,0=presence,1= no presence } unsigned int ReadOneChar(void) { unsigned char i = 0; unsigned char dat = 0;

for (i = 8; i > 0; i--) { DQ = 0; // 给脉冲信号 dat >>= 1; //位右移 DQ = 1; // 给脉冲信号等待传感器返回脉冲 if(DQ) dat |= 0x80; Delay(4); } return (dat); } void WriteOneChar(unsigned char dat) { unsigned char i = 0; for (i = 8; i > 0; i--) { DQ = 0; DQ = dat&0x01; Delay(5); DQ = 1; dat>>=1; } } void Read_Temperature(void) { Init_DS18B20(); WriteOneChar(0xcc); // 跳过读序号列号的操作 WriteOneChar(0x44); // 启动温度转换 Init_DS18B20(); WriteOneChar(0xCC); //跳过读序号列号的操作 WriteOneChar(0xBE); //读取温度寄存器 templ = ReadOneChar(); //温度低8位 temph = ReadOneChar(); //温度高8位 }

DS18B20温度控制数码管显示(汇编非常详细)

; DS18B20温度控制数码管显示(汇编非常详细) * ;* 1、P1.6= → 进入设定温度报警值TL 状态: * ;* L--20 * ;* 2、P1.6 → 进入设定温度报警值TH 状态: * ;* H--28 * ;* 3、P1.6 → 返回 * ;* 4、设定过程:P1.4 →加键(UP),P1.5 →减键(DOWN),可快速调。* ;* ** TIMER_L DATA 23H TIMER_H DATA 24H TIMER_COUN DATA 25H TEMPL DATA 26H TEMPH DATA 27H TEMP_TH DATA 28H TEMP_TL DATA 29H TEMPHC DATA 2AH TEMPLC DATA 2BH TEMP_ZH DATA 2CH BEEP EQU P3.7 DATA_LINE EQU P3.3 RELAY EQU P1.3 FLAG1 EQU 20H.0 FLAG2 EQU 20H.1 ;------------------------------------------------- K1 EQU P1.4 K2 EQU P1.5 K3 EQU P1.6 K4 EQU P1.7 ;=================================================

ORG 0000H JMP MAIN ORG 000BH AJMP INT_T0 ;-------------------------------------------------- MAIN: MOV SP,#30H MOV TMOD,#01H ;T0,方式1 MOV TIMER_L,#00H ;50ms定时值 MOV TIMER_H,#4CH MOV TIMER_COUN,#00H ;中断计数 MOV IE,#82H ;EA=1,ET0=1 LCALL READ_E2 ;LCALL RE_18B20 MOV 20H,#00H SETB BEEP SETB RELAY MOV 7FH,#0AH ;熄灭符 CALL RESET ;复位与检测DS18B20 JNB FLAG1,MAIN1 ;FLAG1=0,DS18B20不存在 JMP START MAIN1: CALL RESET JB FLAG1,START LCALL BEEP_BL ;DS18B20错误,报警 JMP MAIN1 START: MOV A,#0CCH ; 跳过ROM匹配 CALL WRITE MOV A,#044H ; 发出温度转换命令 CALL WRITE CALL RESET MOV A,#0CCH ; 跳过ROM匹配 CALL WRITE MOV A,#0BEH ; 发出读温度命令 CALL WRITE CALL READ ;读温度数据 CALL CONVTEMP CALL DISPBCD CALL DISP1 CALL SCANKEY

基于DS18B20的温度报警器设计说明

毕业设计论文 基于DS18B20的温度报警器设计 系电子信息工程系 专业电子信息工程技术康志凌

班级电子信息122 学号 1201043206 指导教师徐敏 N 职称讲师 设计时间 2014.10.08-2015.04.08

摘要 本设计以AT89C51单片机为核心,设计了一个温度测量报警系统,可以方便的实现温度采集和显示。它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工农业中的温度测量及报警。本设计由AT89C51单片机、DS18B20温度传感器和LED显示器组成,可以直观的显示测量的温度。本设计运行过程中,如果外界温度低于-20℃或高于70℃,系统将出发蜂鸣器,产生报警声音,且对应的LED同步闪烁。 关键词:AT89C51,DS18B20,传感器,温度报警器

目录 摘要 ........................................................................ I 目录 ....................................................................... II 第1章引言.. (1) 第2章方案设计 (2) 第3章 DS18B20简介 (3) 3.1 DS18B20性能指标 (3) 3.2 DS18B20的封装及部结构 (4) 3.3 DS18B20工作原理及应用 (4) 3.4 控制器对DS18B20操作流程 (5) 第4章硬件电路设计 (7) 4.1 AT89C51 (8) 4.2 晶振电路 (9) 4.3 复位电路 (9) 4.4 报警电路 (10) 4.5 74LS245 (10) 4.6 显示电路 (11) 第5章软件设计 (12) 5.1 主程序模块 (12) 5.2 程序说明 (12) 第6章仿真结果 (21) 参考文献 (23) 致 (24)

DS18B20温度传感器使用方法以及代码

第7章 DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温 度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个 I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。 7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS^导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9?12位的数字 值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入 DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的 DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较 DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1. DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口 线即可实现微处理器与DS18B20勺双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 C。固有测温分辨率为0.5 C。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个 DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. 引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式 DS18B20的原理图。 3. 工作原理 单片机需要怎样工作才能将DS18B2 0中的温度数据独取出来呢?F面将给出详细分析

DS18B20单片机数码管显示原理图和程序

最近天气热了,想要是做个能显示温度的小设备就好了, 于是想到DIY 个电子温度计, 网上找了很多资料,结合自己的材料,设计了这个用单片机控制的实时电子温度计。 作为单 片机小虾的我做这个用了 2天时间,当然是下班后,做工不行见谅了。 主要元件用到了单片机 STC89C54RD+ , DB18B20温度传感器,4为共阳数码管, PNPS8550三极管等。 先上原理图: 洞洞板布局图: 然后就是实物图了: 函8D P3 iW 、 E E FJ T I RF D51*BZ0渥度澈码管显示 F7 Dl'AI>D li'A£> I 2、心 PDRM, 杖心P0WAD7 Pl I^TO 洋心EI^AJ D FLSAH

附上源程序:程序是别人写的,我只是自己 修改了下,先谢谢原程序者的无私奉献。 #include"reg52.h” #define uchar unsigned char #define uint unsigned int sbit DQ=P3A 4; 〃温度数据口 sbit wx1=P2A0; sbit wx2=P2A1; sbit wx3=P2A2; sbit wx4=P2A3; unsigned int temp, temp1,temp2, xs; //位选1 //位选2 //位选3 //位选4

uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99, 0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6}; /****** 延时程序 *******/ void delay1(unsigned int m) { unsigned int i,j; for(i=m;i>0;i--) for(j=110;j>0;j--); } void delay(unsigned int m) { while(m--); } /***********ds18b20 uchar ReadOneChar() { unsigned char i=0; unsigned char dat = 0; for (i=8;i>0;i--) { 读一个字节 **************/ void Init_DS18B20() { unsigned char x=0; DQ = 1; //DQ 复位 delay(8); 〃稍做延时 DQ = 0; 〃单片机将 ds18b20通信端口 DQ 拉低 delay(80); //精确延时大于480us DQ = 1; delay(4); x=DQ; delay(20); } 〃拉高总线 //稍做延时后如果x=0则初始化成功 x=1 则初始化失败 〃共阳数码管 〃温度延时程序

实验八 DS18B20数字温度显示实验

D S18B20数字温度显示实验 1.实验目的 掌握一线式数字温度传感器的使用,了解单总线的工作方式。 掌握数字温度传感器DS18B20的工作原理及温度测量方法。 2.实验原理及内容 DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃。 主机控制DS18B20完成温度转换必须经过三个步骤:初始化、ROM操作指令、存储器操作指令。必须先启动DS18B20开始转换,再读出温度转换值。本程序仅挂接一个芯片,使用默认的12位转换精度,外接供电电源,读取的温度值高位字节送WDMSB单元,低位字节送WDLSB 单元,再按照温度值字节的表示格式及其符号位,经过简单的变换即可得到实际温度值。 图118B20封装引脚 图2相关原理 接线方法: 1.利用S T C89C51实验板上的I R F1插孔和排针,将D S18B20插入I R F1插孔,用一根单条数据线把D S18B20的2脚接到C P U部份的P3.0; 2.用一条4P I N的排线,把7474的A B C D接到P0口的P0.0,P0.1,P0.2,0.3四个端口。(即插入P0口的上半部份)。 3.用一条8P I N的排线。 把数码管译码部份的输出端接到数码管部份的数据口; 4.用一条4P I N的排线,把74138的输入端接到P0口的P0.4,P0.5,P0.6,07四个端口。(即插入P0口的下半部份)。 5.用一条8P I N的排线。 把38译码部份的输出端接到数码管部份的显示位口。 在本系统中,为了简化程序, 采用了74L S47(数码管译码)74L S138(三八译码)。即P0口的P0.0,P0.1,P0.2,P0.3四个端口接到74L S47进行硬件数码管译码,然后输出到数码管部分的数据口。P0.4,P0.5,P.0.6三个端口接到74L S138进行38译码,然后输出到数码管的位控制。

DS18B20温度传感器巡回检测温度报警器设计

DS18B20温度传感器巡回检测温度报警器 设计 摘要:随着电子技术的发展,家用电器和办公设备的智能化、系统化已成为发展趋势,而这些高性能几乎都要通过单片机实现。同时,温度作为与我们生活息息相关的一个环境参数,对其的测量和研究也变得极为重要。故温度检测报警系统在现代生活、生产中得到了越来越广泛的应用。本论文介绍了采用温度传感器DS18B20作为温度采集器、AT89S51单片机为主控制器,外加显示模块以及报警电路实现该智能温度测量报警器的设计方法、工作原理、电路组成等。 关键词:DS18B20,单片机,温度控制,报警 1绪论 温度是与人们生活息息相关的环境参数,许多情况下都需要进行温度测量及报警,温度测量报警系统在现代日常生活、科研、工农业生产中已经得到了越来越广泛的应用。所以对温度的测量报警方法及设备的研究也变得极其重要。随着人们生活水平的不断提高以及应对各种复杂测量环境的需要,我们对温度测量报警器的要求也越来越高,利用单片机来实现这些控制无疑是人们追求的目标之一,它带给我们的方便是不可否定的。其中温度检测报警器就是一个典型的例子。要为现代人工作、科研、生活、提供更好的更方便的设施,就需要从单片机技术入手,向数字化,智能化控制方向发展。 本设计所介绍的温度报警器,可以设置上下限报警温度,当温度不在设置范围内时,可以报警。与传统的温度测量系统相比,本设计中的数字温度测量报警系统具有很多前者没有的优点,如测温范围广而且准确,采用LCD数字显示,读数方便等。 1.1温度报警器的研究意义 随着电子技术的发展,家用电器和办公设备的智能化、系统化已成为趋势,

而这些高性能几乎都要通过单片机实现。同时,温度作为与我们生活息息相关的一个环境参数,对其的测量和研究也变得极为重要。故温度检测报警系统在现代生活、生产中得到了越来越广泛的应用。 工业生产带动了人类社会的进步,同时也促进了各种新的传感器的发展。在工业生产中温度的准确测量是一个比较困难的事情。从最初的酒精、水银温度计到现在的数字化、集成化的温度计可见传感器的发展是飞快的。它的快速发展必将带来新一轮的工业化革命和社会发展的飞跃。 本设计所介绍的温度报警器可以设置上下限报警温度,当温度不在设定范围内时可以报警,主要用于对测温比较准确的场所,或科研实验室使用。它具有结构简单,不需外接元件,可由用户设置温度报警界限等特点,可广泛用于食品库、冷库、粮库等需要控制温度的地方。目前,该类产品已在温控系统中得到广泛的应用。所以设计意义较为深远。 1.2 温度报警器的现状及发展 温度是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一。其测量控制一般采用各式各样形态的温度传感器。根据它们在讯号输出方式上的不同可以分为模拟温度传感器和数字温度传感器。单片机技术的出现则是为现代工业测控领域带来了一次新的技术革命,目前,单片机以其体积小、重量轻、抗干扰能力强、对环境要求不高、可靠性高、性价比高、开发较为容易等特点,在工业控制、数据采集、智能化仪器仪表、办公自动化等诸多领域得到了极为广泛的应用,并已走入我们的日常生活,现在,随处都可以看到单片机的踪影。目前温度报警器的发展已经比较成熟了,它能帮助我们实现想要的温度控制,解决身边的很多问题。 1.2.1 智能温度传感器 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器

DS18B20温度显示演示程序-LCD1602显示

/*DS18B20温度显示演示程序-LCD1602显示 开机时对DS18B20进行检测,如果DS18B20检测不正常,LCD1602显示: DS18B20 ERROR PLEASE CHECK 蜂鸣器报警。 DS18B20检测正常,LCD1602显示: DS18B20 OK TEMP: 100.8℃ 如果温度值高位为0,将不显示出来。 你可以通过拔插DS18B20查看DS18B20的检测功能。*/ #include < reg51.h > #include < intrins.h > #define uchar unsigned char #define uint unsigned int sbit DQ = P3^2 ; //定义DS18B20端口DQ sbit BEEP=P1^0 ; //蜂鸣器驱动线 bit presence ; sbit LCD_RS = P1^0 ; sbit LCD_RW = P1^1; sbit LCD_EN = P1^2 ; uchar code cdis1[ ] = {" DS18B20 OK "} ; uchar code cdis2[ ] = {" TEMP: . C "} ; uchar code cdis3[ ] = {" DS18B20 BUSY "} ; uchar code cdis4[ ] = {" PLEASE WAIT "} ; unsigned char data temp_data[2] = {0x00,0x00} ; unsigned char data display[5] = {0x00,0x00,0x00,0x00,0x00} ; unsigned char code ditab[16] = {0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04, 0x05,0x06,0x06,0x07,0x08,0x08,0x09,0x09} ; void beep() ; unsigned char code mytab[8] = {0x0C,0x12,0x12,0x0C,0x00,0x00,0x00,0x00} ; #define delayNOP() ; {_nop_() ;_nop_() ;_nop_() ;_nop_() ;} ; /*******************************************************************/ void delay1(int ms)

温度传感器DS18B20工作原理

温度传感器: DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。 2 DS18B20的内部结构 DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地,见图4)。 ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 图1 DS18B20的内部结构

图2DS18B20的管脚排列 DS18B20中的温度传感器完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。 温度值高字节 高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。其中配置寄存器的格式如下: R1、R0决定温度转换的精度位数:R1R0=“00”,9位精度,最大转换时间为93.75ms;R1R0=“01”,10位精度,最大转换时间为187.5ms;R1R0=“10”,11位精度,最大转换时间为375ms;R1R0=“11”,12位精度,最大转换时间为750ms;未编程时默认为12位精度。 高速暂存器是一个9字节的存储器。开始两个字节包含被测温度的数字量信息;第3、4、5字节分别是TH、TL、配置寄存器的临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。 3 DS18B20的工作时序 DS18B20的一线工作协议流程是:初始化→ROM操作指令→存储器操作指令→数据传输。其工作时序包括初始化时序、写时序和读时序,如图3(a)(b)(c)所示。

DS18B20与数码管温度显示C程序

#include #define uchar unsigned char #define uint unsigned int sbit DQ=P1^4;//ds18b20与单片机连接口 unsigned char code str[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x39};//共阴数码管字码表 unsigned char code str1[]={0x0bf,0x86,0x0db,0x0cf,0x0e6,0x0ed,0x0fd,0x87,0x0ff,0x0ef,0x39};//个位带小数点字码表 unsigned char code wei[]={0x0fe,0x0fd,0x0fb,0x0f7}; uchar data disdata[5]; uint tvalue;//温度值 uchar tflag;//温度正负标志 /******************************ds1820程序***************************************/ void delay_18B20(unsigned int i)//延时1微秒 { while(i--); } void ds1820rst()/*ds1820复位*/ { unsigned char x=0; DQ = 1; //DQ复位 delay_18B20(4); //延时 DQ = 0; //DQ拉低 delay_18B20(100); //精确延时大于480us DQ = 1; //拉高 delay_18B20(40); } uchar ds1820rd()/*读数据*/ { unsigned char i=0; unsigned char dat = 0; for (i=8;i>0;i--) { DQ = 0; //给脉冲信号 dat>>=1; DQ = 1; //给脉冲信号 if(DQ) dat|=0x80; delay_18B20(10);

DS18B20温度传感器工作原理及其应用电路图

DS18B20温度传感器工作原理及其应用电路图 时间:2012-02-16 14:16:04 来源:赛微电子网作者: 前言 温度与工农业生产密切相关,对温度的测量和控制是提高生产效率、保证产品质量以及保障生产安全和节约能源的保障。随着工业的不断发展,由于温度测量的普遍性,温度传感器的市场份额大大增加,居传感器首位。数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。现在,新一代的DS18B20温度传感器体积更小、更经济、更灵活。DS18B20温度传感器测量温度范围为-55℃~+125℃。在-10℃~+85℃范围内,精度为±0.5℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。基于DS18B20温度传感器的重要性,小编整理出DS18B20温度传感器工作原理及其应用电路图供大家参考。 一、DS18B20温度传感器工作原理(热电阻工作原理) DS18B20温度传感器工作原理框图如图所示: DS18B20温度传感器工作原理框图 图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 二、DS18B20温度传感器的应用电路 1.DS18B20温度传感器寄生电源供电方式电路图 寄生电源方式特点: (1)进行远距离测温时,无须本地电源。 (2)可以在没有常规电源的条件下读取ROM。 (3)电路更加简洁,仅用一根I/O口实现测温。 (4)只适应于单一温度传感器测温情况下使用,不适于采用电池供电系统中。

51单片机操作DS18B20汇编源程序

51单片机操作DS18B20汇编源程序 推荐 ; FLAG1:标志位,为"1"时表示检测到DS18B20 ; DQ:DS18B20的数据总线接脚 ; TEMPER_NUM:保存读出的温度数据 ; 本程序仅适合单个DS18B20和51单片机的连接,晶振为12MHZ左右TEMPER_LEQU36H TEMPER_HEQU35H DQBITP1.7 ; DS18B20初始化程序 ;//*****************************************// INIT_1820: SETBDQ NOP CLRDQ MOVR0,#06BH TSR1: DJNZR0,TSR1; 延时 SETBDQ MOVR0,#25H TSR2: JNBDQ,TSR3 DJNZR0,TSR2 LJMPTSR4; 延时 TSR3: SETBFLAG1; 置标志位,表示DS1820存在 LJMPTSR5 TSR4: CLRFLAG1; 清标志位,表示DS1820不存在 LJMPTSR7 TSR5: MOVR0,#06BH TSR6: DJNZR0,TSR6; 延时 TSR7: SETBDQ RET ;//*****************************************//

; 重新写DS18B20暂存存储器设定值 ;//*****************************************// RE_CONFIG: JBFLAG1,RE_CONFIG1; 若DS18B20存在,转RE_CONFIG1 RET RE_CONFIG1: MOVA,#0CCH; 发SKIP ROM命令 LCALLWRITE_1820 MOVA,#4EH; 发写暂存存储器命令 LCALLWRITE_1820 MOVA,#00H; TH(报警上限)中写入00H LCALLWRITE_1820 MOVA,#00H; TL(报警下限)中写入00H LCALLWRITE_1820 MOVA,#1FH; 选择9位温度分辨率 LCALLWRITE_1820 RET ;//*****************************************// ; 读出转换后的温度值 ;//*****************************************// GET_TEMPER: SETBDQ; 定时入口 LCALLINIT_1820 JBFLAG1,TSS2 RET; 若DS18B20不存在则返回 TSS2: MOVA,#0CCH; 跳过ROM匹配 LCALLWRITE_1820 MOVA,#44H; 发出温度转换命令 LCALLWRITE_1820 LCALLINIT_1820 MOVA,#0CCH; 跳过ROM匹配 LCALLWRITE_1820 MOVA,#0BEH; 发出读温度命令 LCALLWRITE_1820 LCALLREAD_1820 MOVTEMPER_NUM,A; 将读出的温度数据保存 RET ;//*****************************************// ; 读DS18B20的程序,从DS18B20中读出一个字节的数据

DS18B20温度读取及显示讲解学习

D S18B20温度读取及 显示

DS18B20温度读取及显示 #include #define uchar unsigned char #define uint unsigned int #define wela P2 #define dula P0 uchar code table[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,0x7f,0x6f}; sbit DS=P3^7; void delay6us(uchar z){ while(z--); } void delayms(uchar z){ uchar i,j; for(i=0;i

void init(){ uchar presence=1; while(presence){ DS=0; delay6us(80);//延时480us以上 DS=1; delay6us(15); if(DS==0){ presence=0; while(DS==0); } else presence=1; } } uchar ds_read(){ uchar byt,bi; uchar i; for(i=0;i<8;i++){ DS=0; delay6us(1); DS=1; delay6us(1); bi=DS; byt=(byt>>1)|(bi<<7); delay6us(11); } return byt; } void ds_write(uchar ch){ uchar i; for(i=0;i<8;i++){ DS=0; delay6us(1); DS=ch&0x01; delay6us(11); DS=1; delay6us(1); ch>>=1; }

相关文档
最新文档